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   Abstract 

The ground state electronic and fluorescence spectra of unsubstituted copper (II) phthalocyanine 

(CuPc) have been studied in the presence of bovine serum albumin (BSA) in water as a solvent. The 

effect of sodium dodecyl sulfate (SDS) on the solution properties of CuPc: BSA bioconjugate has also 

been investigated. FT-IR, UV-Vis, and fluorescence analysis have been carried to evaluate the BSA: 

CuPc bioconjugation. The optimum bioconjugate ratio of BSA: CuPc has been studied via UV-Vis 

and fluorescence spectral techniques. The collaborative effect of SDS with BSA on the aggregation 

of CuPc suspension has also been studied in terms of UV-Vis, fluorescence, and FT–IR analysis. 

1. Introduction*

As a member of aromatic macrocycle compounds 

based on a delocalized 18- electron system, 

phthalocyanines (Pcs) exhibit very attractive chemical and 

physical properties in many fields [1–4]. Unique properties 

as high thermal stability, planarity, and symmetry encourage 

Pcs to use in many application fields as dyes, photodynamic 

therapy (PDT), semiconductors, Langmuir–Blodgett films, 

non-linear optics, liquid crystals, catalyst, information 

storage systems among others [5–11]. 

Besides their excellent chemical and physical 

properties, unique electronical and optical properties 

promote Pcs utilization in many other fields. 

Phthalocyanines exhibit characteristic Q (600 – 750 nm) 

ascribed to the * transitions from the HOMO to the 

LUMO of the Pc2- core, and B (300-400 nm) bands from the 

deeper * transitions, respectively in UV-Vis spectrum. 

Despite all these properties, their poor solubility in water 

and aggregation restricts the efficiency of Pc applications 

* Corresponding Author: cyagci@kocaeli.edu.tr

[12–14]. 

Usually, spectroscopic techniques are utilized to 

understand the aggregation phenomenon of the 

phthalocyanines [15]. The two characteristic peak areas, Q- 

and B-band (Soret band) areas, dominate the UV-Vis spectra 

of the phthalocyanines [16]. The main characteristic Q-band 

peaks in the UV-Vis spectrum can be attributed to the free 

phthalocyanine molecules or stacked molecules within the 

phthalocyanine aggregates. Therefore, the degree and the 

nature of the aggregation in a specific solution can be 

deduced by examining the relevant peak intensities [17,18]. 

The overlapping between the -systems of phthalocyanine 

molecules leads to Pc aggregates, namely dimeric or 

oligomeric Pc complexes, resulting in a peak at around 620–

630 nm and usually a blue shift in the UV-Vis spectrum [17, 

19–21]. 

Unsubstituted phthalocyanines are known to be poorly 

soluble in water and in most of the common organic 

solvents, strongly influencing the bioavailability, singlet 

oxygen production efficiency, and in vivo distribution [8, 
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22–24]. The planar nature of unsubstituted phthalocyanines 

with extended  electron density stimulates the aggregation 

property arising from the * interactions between Pcs 

molecules [19, 25–29]. 

Having both hydrophilic and hydrophobic sites, 

protein molecules may be introduced to phthalocyanine 

molecules to diminish aggregation behavior in solution [30–

32]. Serum albumins, as bovine serum albumin (BSA) and 

human serum albumin (HSA), are known to be the most 

abundant plasma protein in blood [33]. Serum albumins act 

as carriers for many molecules like bilirubin, fatty acids, and 

hemin in plasma [34,35]. Having both hydrophilic and 

hydrophobic sites and being easy to handle makes BSA a 

good candidate to investigate the effect of the BSA and the 

water-soluble phthalocyanine molecules interaction in 

photodynamic therapy (PDT) [36,37]. There have been 

several studies about the effect of BSA protein on PDT of 

Pc molecules after binding or encapsulation processes [37–

41]. However, there are limited investigations in the 

literature on the effect of the interaction of unsubstituted 

phthalocyanines and BSA on the aggregation of 

phthalocyanines, except for the study of Larroquel, et al., in 

which unsubstituted zinc (II) phthalocyanine and BSA 

coordination are studied [42]. We have previously studied 

the dispersion effect of degraded cellulase enzyme on 

copper (II) phthalocyanine pigment [43]. Here in this work, 

best of our knowledge, the non-covalent binding of BSA 

protein to unsubstituted CuPc has been investigated for the 

first time in the literature. We also studied the effect of the 

increase of BSA concentration and the effect of SDS as a 

low molecular weight dispersant together with BSA on 

CuPc in terms of UV-Vis and fluorescence spectra of CuPc. 

 

2. Materials and Methods 

 

2.1 Materials 

 

Bovine serum albumin, Cu (II) phthalocyanine, and 

sodium dodecyl sulfate were supplied from Sigma-Aldrich. 

In this work, purchased chemicals were used as received and 

solvents used after the purification process according to the 

literature [44]. 

 

2.2. Equipment  

 

The UV-Vis spectra of the bioconjugates were 

recorded on A T80+ UV/VIS Spectrometer in a 1 cm 

pathlength quartz cell between 190-900 nm in water as a 

solvent. Agilent Cary Eclipse spectrophotometer was used 

to determine fluorescence spectra of the bioconjugate 

solutions via 1 cm pathlength quartz cuvettes at room 

temperature in water. The FT-IR spectra of the samples were 

studied with Shimadzu FTIR-8201 PC in the spectral range 

of 4000–400 cm-1. KBr pellets with a 1:1000 mass ratio 

KBr: the sample was prepared to record the transmission. 

The sonication of the bioconjugate solutions was performed 

with QSonica, Q500 Sonicator equipped with a standard 

needle titanium probe (1/2 inch) submerged approximately 

5 mm into the solutions. The sonication process was carried 

out at 20 kHz. All samples were sonicated three times for 20 

seconds at 10-second intervals. 

 

2.3. Methods 

 

Stock BSA solutions were prepared at 2.0 mg/mL 

using the buffer pH 7.4, as physiological pH (adjusted with 

0.2 M Na2HPO4). CuPc-BSA bioconjugations were 

prepared as follows: BSA solutions at 0.2 mg/L, 0.4 mg/L, 

0.6 mg/L, 0.8 mg/L and 1.0 mg/L concentrations using the 

stock BSA solution and 2 mg/L (3.5x10-6 M) CuPc 

compound was added to each one. The suspensions were 

stirred for 20 mins with a magnetic stirrer before the 

homogenization using an ultrasonic apparatus. 

Ultrasonication was performed in a 20 s duty cycle, with 10 

s of rest and 10 s generator acting. 

 

3. Results and Discussion 

 

3.1. FT-IR Spectroscopy 

 

FT-IR spectrum was conducted to investigate the 

interaction between unsubstituted CuPc and BSA. As 

depicted in Figure 1, unsubstituted CuPc showed 

characteristic peaks at 1620 and 1592 cm-1 respectively 

attributed to the vibration bands of aromatic –C=N–, –C=C– 

and –C–H peaks of the phthalocyanine core ring [45]. In-

plane and out plane vibration peaks arising from the bending 

were appeared between 725–877 cm-1 and 1000–1180 cm-1 

as expected [46,47]. After the bioconjugation process, two 

new peaks have appeared at 2972 and 3214 cm-1 attributed 

to the -C-H vibration and to the primary amine, respectively. 

In addition to the bands corresponding to CuPc peaks with 

slight shifts, the characteristic amide I band and amide II 

bands of BSA at 1647 cm-1 and 1574 cm-1, and the –NH and 

–NH2 vibration band at around 700 cm-1 were also detected 

in the FT-IR spectrum [47–49]. It can be said from Figure 1 

that BSA has been successfully adsorbed on CuPc 

molecules according to the FT-IR spectrum. 
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Figure 1. FT-IR spectra of CuPc and CuPc-

BSA bioconjugate. 

 

3.2. Ground State Electronic Spectroscopy 

 

UV-Vis spectrum of CuPc is given in Figure 2. The 

characteristic Q-band peaks attributed to the π→π* 

transitions of metallophthalocyanines can be clearly seen in 

the UV-Vis spectrum of CuPc at 730 and 642 nm and the 

Soret band at 345 nm in water [14, 51,52]. The narrow peak 

at 730 nm is attributed to the monomeric CuPc species and 

the peak at 642 nm is assigned to the aggregated CuPc 

molecules in water [53]. The bands at around 259 and 232 

nm in Figure 2 correspond to the other aromatic sites and 

bis-triazine groups of the CuPc [54].  

 

Figure 2. UV-Vis spectrum of CuPc in water 

(C:3.5x10-6 M)  

 

The UV-Vis spectra of CuPc after bioconjugation with 

BSA together with that of CuPcs’ is depicted in Figure 3. 

The decrease in the Q- and B-bands peak intensities in the 

UV-Vis spectrum may be due to not only to the dilution 

effect as expected but also to the non-covalent interaction of 

CuPc and BSA molecules. Furthermore, the peak at 232 nm 

has been lost in Figure 3 owing to the bioconjugation [43].  

 

 

Figure 3. UV-Vis spectra of CuPc and CuPc–

0.2 mg/L BSA bioconjugate 

 

In Figure 4 and 5, the UV-Vis spectra of CuPc and 

various CuPc-BSA bioconjugate concentrations are given in 

different wavelength ranges. BSA protein exhibits two 

characteristic bands in the UV-Vis spectrum at around 220 

nm and 280 nm due to the -helix structure and amino acid 

residues, respectively [55]. According to Figure 4, there is a 

decrease in the Q-band intensities with the increase of BSA 

concentration in the bioconjugate until CuPc:0.6 mg/L BSA 

ratio. After the mentioned concentration ratio, an increase 

has been observed with the increase of BSA amount. This 

may be the result of the non-covalent binding of BSA 

molecules to unsubstituted CuPc molecules. The anionic, 

cationic, hydrophobic, and hydrophilic nature of proteins 

arises from the carboxyl, amino and methyl functional 

groups of the protein molecule. Hence the interactions of 

proteins with ligands are induced by hydrogen bonding, 

hydrophobic interactions, electrostatic interactions, and van 

der Waals forces, meanly non-covalent interactions [56,57]. 

The supramolecular approach can be used to explain the 

non-covalent interaction between phthalocyanines and 

protein molecules such as BSA, HSA and lipoproteins [35, 

58,59]. As it is well-known that phthalocyanines are 

hydrophobic molecules [60,61], the interaction between 

CuPc and BSA may be attributed to the non-covalent 

binding [42,62]. At higher concentrations as 0,8 mg/L and 

1,0 mg/L BSA, the Q-band absorbance was higher as can be 

seen in Figure 4. As the Q-band absorbance arises from the 

* transitions of phthalocyanine molecules [12], this 

behaviour may be attributed to the lack of protein molecules 

that can form BSA-CuPc bioconjugate after this 

concentration ratio and the increase of CuPc molecules. 
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Figure 4. UV-Vis spectra of CuPc and CuPc–

BSA bioconjugate at various concentrations 

between 500-900 nm 

 

Moreover, similar behavior has also been detected 

between 220-300 nm in Figure 5. As depicted in Figure 5, 

the bands at around 269 and 233 nm disappeared with the 

addition of BSA protein as a result of bioconjugation. 

According to both Figure 4 and Figure 5, with 0.6 mg/L BSA 

addition, the optimal bioconjugate composition is achieved 

in our working conditions. 

 

 

Figure 5. UV-Vis spectra of CuPc and CuPc–

BSA bioconjugate at various concentrations 

between 200-320 nm 

 

3.3. Fluorescence Spectroscopy  

 

Fluorescence spectroscopy is an effective technique to 

evaluate the structural alterations of proteins due to the 

susceptible structure of aromatic amino acid, i.e. tyrosine, 

tryptophan, and phenylalanine, residues to the polarity of 

microenvironments during the excitation [63,64]. The 

fluorescence spectrum of CuPc and CuPc-BSA 

bioconjugates is given in Figure 6. The fluorescence 

intensity of CuPc and CuPc-BSA bioconjugates increased 

with the increase of BSA concentration in the bioconjugate 

due to the increase of aromatic amino acid species. It can be 

said from Figure 6 that, at CuPc-0.2 mg/L BSA bioconjugate 

concentration, the surface of unsubstituted CuPc has been 

covered by BSA molecules. However, there is no red or blue 

shift was observed at the maxima of the emission bands. It 

is known that the shifts of emission bands emerge from the 

changes in the hydrophobicity of the micro-environment 

around tryptophan residues [64]. As can be seen in Figure 6 

emission maxima of the spectra showed a regular increase 

with the increase of BSA ratio without any shifts, suggesting 

that there is no change in the local dielectric environment of 

BSA [65].  

 
Figure 6. Fluorescence emission spectra of 

CuPc and CuPc-BSA bioconjugate solutions 

(excitation wavelength 272 nm) 

 

3.4. SDS Effect on the Bioconjugation of CuPc 

and BSA Protein 

 

The presence of an ionic detergent can affect the 

binding and denaturation capacity of proteins [66]. As a 

surfactant SDS strongly interacts with BSA and induces the 

proteins partial unfolding [67]. This interaction can be 

identified by the changes in UV-Vis and fluorescence 

spectra [68]. First of all, in order to understand the 

synergistic effect of SDS on the non-covalent binding of 

BSA to the CuPc molecule, UV-Vis spectra of a series of 

BSA: SDS mass ratios between 10:0 and 0:10 studied and 

the favorable mass ratio of BSA to SDS was found to be 8:2. 

Figure 7 shows the UV-Vis spectra of CuPc, CuPc-BSA, and 

CuPc-BSA-SDS bioconjugation system. As can be seen 

from Figure 7, the peak at 272 nm, attributed to the aromatic 

residues, blue-shifted 2 nm indicating the binding of SDS 

and BSA molecules. 

 

 

Figure 7. UV-Vis spectra of CuPc, CuPc-BSA 

and CuPc-BSA-SDS bioconjugation system 

 

The fluorescence spectra of CuPc, CuPc-BSA and 

CuPc-BSA-SDS bioconjugation system is given in Figure 8. 

There was an increase in the fluorescence intensity with 

SDS addition as contrary to the expectation. This behavior 

may be the result of the increased interaction of CuPC with 

BSA in presence of SDS [69]. 
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Figure 8. Fluorescence emission spectra of CuPc

–CuPc–BSA and CuPc–BSA–SDS bioconjugatio

n system (excitation wavelength 272 nm). 

 

4. Conclusions  

 

We have studied the bioconjugation of unsubstituted 

CuPc and BSA protein in this work. Bioconjugation was 

investigated via spectroscopic methods. Non-covalent 

interaction of CuPc and BSA was observed according to the 

FT-IR spectrum. The nature of the non-covalent interaction 

was evaluated using UV-Vis and fluorescence spectroscopy 

and the optimum BSA concentration for a stable 

bioconjugation is found to be 0.6 g/mL. SDS effect on 

bioconjugation of CuPc and BSA as a low molecular weight 

dispersant is also studied and 8:2 BSA: SDS mass ratio is 

found to be the most effective ratio. According to UV-Vis 

and fluorescence spectra SDS increased the non-covalent 

interaction of the CuPc-BSA bioconjugation system.  
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