Lower Bounds For Perron Root Of Positive Matrices

Ahmet Ali ÖÇAL¹, Dursun TAŞCI²

Abstract: In this paper we define "greatest common divisor (or gcd)" symmetrization of a positive matrix and using this we obtain some lower bounds for Perron root of positive matrices.

Key Words: Positive matrix, Perron root

Pozitif Matrislerin Perron Kökleri İçin Alt Sınırlar

Özet: Bu çalışmada, pozitif matrisin en büyük ortak bölen simetrizasyonu tanımlandı ve bu simetrizasyon kullanılarak, pozitif matrislerin Perron kökleri için alt sınırlar elde edildi.

Anahtar Kelimeler: Pozitif matris, Perron kökü

Introduction

Definition 1.1. Let $A = (a_{ij}) \in M_n$. We say that $A \ge 0$ (A is nonnegative) if all its entries a_{ij} are real and nonnegative, where M_n denotes $n \times n$ matrices. We say that A > 0 (A is positive) if all its entries a_{ij} are real and positive.

Definition 1.2. Let A, B \in M_n. We say that A \geq B if A-B \geq 0.

Definition 1.3. The spectral radius $\rho(A)$ of a matrix $A = (a_{ij}) \in M_n$ is

 $\rho(A) \equiv \{ |\lambda| : \lambda \text{ is an eigenvalue of A } \}$

Definition 1.4. Let A be square nonnegative matrix. Then a nonnegative eigenvalue

r(A) which is not less than the absolute value of any eigenvalue of A is called Perron root.

Department of Mathematics, University of Gazi, [42500] Ankara, TURKEY

²Department of Mathematics, University of Gazi, [42500] Ankara, TURKEY

Let A be a (nonsymmetric) nonnegative matrix and let

$$\varepsilon = \frac{e^{\mathsf{T}}\mathsf{S}(\mathsf{A})e}{\mathsf{n}}$$

where S(A) denotes the geometric symmetrization of A (see [8]) as S(A) = (s_{ij}), i.e., $s_{ij} = \sqrt{a_{ij}a_{ji}}$

and $e^{T} = (1,1,K,1)$. Kolotilina (see [5]) showed that

$$\varepsilon \leq r(A)$$
,

where r(A) is the Perron root of A.

Let A be a nonnegative n×n matrix and let

$$\gamma(A) = \min_{1 \le i \le n} \sum_{j=1}^{n} a_{ij} .$$

Yamamoto (see [9]) showed that

$$\gamma(A) \le r(A)$$
.

Let A = (a_{ij}) be a (nonsymmetric) positive n×n matrix, denoted A>0, and $a_{ij} \in Z^+$ where Z^+

denotes positive integers. We define "greatest common divisor (or gcd)" symmetrization of A, as

[A] = (d_{ij}) , i.e., d_{ij} = gcd (a_{ij}, a_{ij}) . Clearly, if A is a positive symmetric matrix, then [A] = A.

The purpose of this paper is to obtain the following lower bound for the Perron root of a positive

matrix:

$$r([A]) \leq r(A)$$
.

Result

Lemma 2.1. [3]. Let A, B \in M_n. If $0 \le A \le B$, then $\rho(A) \le \rho(B)$, where $\rho(A)$ denotes

spectral radius of A and $\rho(B)$ denotes spectral radius of B.

Lemma 2.2. Let A = (a_{ij}) be a positive n×n matrix and let $a_{ij} \in Z^+$, then

$$r([A]) \le r(A), \tag{2.1}$$

where r([A]) denotes Perron root of "gcd" symmetrization matrix of A and r(A) denotes Perron root of A.

Proof. Clearly we have for all i, j (i, j = 1,2, ..., n)

$$\gcd(a_{ij}, a_{ji}) \le a_{ij} \tag{2.2}$$

and

$$gcd(a_{ij}, a_{ji}) \le a_{ji}.$$
 (2.3)

Considering (2.2), (2.3) and Lemma 2.1 we write

$$r([A]) \le r(A)$$

and

$$r([A]) \le r(A^T),$$

respectively, where A^T denotes transpose of A.

Theorem 2.1. Let A = (a_{ij}) be a positive n×n matrix, $a_{ij} \in Z^+$ and let

$$\mu_k = \left(r \left[A^{2^k} \right] \right)^{2^{-k}}$$
.

Then

$$r(A) \ge \mu_k$$
.

Proof. We note that from (2.1) it follows that

$$r\!\!\left(A^{2^k}\right)\!\!=\!r\!\left(A\right)^{\!2^k}\geq r\!\!\left[A^{2^k}\right]$$

which implies

$$r(A) \ge \mu_k$$
.

Thus the therom is proved.

Lemma 2.3. Let A = (a_{ij}) be a positive n×n matrix and let $a_{ij} \in Z^{^{+}}.$ Then

$$\frac{e^{\mathsf{T}}[\mathsf{A}]e}{e^{\mathsf{T}}e} \le \frac{e^{\mathsf{T}}\mathsf{A}e}{e^{\mathsf{T}}e} \tag{2.4}$$

or

$$\frac{e^{\mathsf{T}}[\mathsf{A}]e}{e^{\mathsf{T}}e} \le \frac{e^{\mathsf{T}}\mathsf{A}^{\mathsf{T}}e}{e^{\mathsf{T}}e} \tag{2.5}$$

where $e^{T} = (1,1, ..., 1)$.

Proof. To prove (2.4) and (2.5) it suffices that

$$e^{T}[A] e \leq e^{T}A e$$

or

$$e^{T}[A] e \leq e^{T}A^{T}e$$
.

Indeed we have

$$e^{T}[A] e = \sum_{i,j=1}^{n} gcd(a_{ij}, a_{ji}) \le \sum_{i,j=1}^{n} a_{ij} = e^{T}A e$$

or

$$e^{T}[A] e = \sum_{i,j=1}^{n} gcd(a_{ij}, a_{ji}) \le \sum_{i,j=1}^{n} a_{ji} = e^{T}A^{T}e.$$

Thus the proof is complete.

Theorem 2.2. Let $A = (a_{ij})$ be a positive $n \times n$ matrix and let $a_{ij} \in Z^+$. Then

$$r([A]) \le r(S(A)) \le r(M(A))$$
,

where S(A) denotes the "geometric" symmetrization and M(A) denotes the "arithmetic" symmetrization of A (see [4]) as M(A) = (m_{ij}) , i.e.,

$$m_{ij} = \frac{a_{ij} + a_{ji}}{2} \qquad 1 \le i, j \le n.$$

Proof. Considering Lemma 2.1 and

$$gcd(a_{ij}, a_{ji}) \le \sqrt{a_{ij}a_{ji}} \le \frac{a_{ij} + a_{ji}}{2}$$

the proof is immediately seen.

We end the paper with an example (see [4]). Consider the following matrix:

$$A = \begin{bmatrix} 1 & 1 & 2 \\ 2 & 1 & 3 \\ 2 & 3 & 5 \end{bmatrix}.$$

The Perron root of A is r(A) = 7.531. On the other hand since

$$[A] = \begin{bmatrix} 1 & 1 & 2 \\ 1 & 1 & 3 \\ 2 & 3 & 5 \end{bmatrix}$$

the Perron root of [A] is r[A] = 7.387.

Kolotilina (see [5]) showed ϵ is a better approximation to r(A) = 7.531 than the other lower bounds from the literature, such as those by Deutsch (see [1]), Deutsch and Wielandt (see [2]), and Szule (see [6,7]). The bound discussed in this paper yield $\gamma(A)$ = 4, ϵ = 6.609, r(A) = 7.387. All values were rounded to four significant figures. Thus the lower bound r(A) provides a better approximation the Perron root than the lower bounds provided by other authors.

References

- Deutsch, E., Bounds for the Perron Root of a Nonnegative Irreducible Partitioned Matrix, Pasific J. Math. 92: 49-56 (1981).
- 2. Deutsch, E. And Wielandt, H., **Nested Bound for Perron Root of a Nonnegative Matrix**, Linear Igebra and its Appl., 52/53: 235-251 (1983).
- 3. Horn, R.A. and Johnson, C.R., Matrix Analysis, Cambridge University Press., 1990.
- 4. Kirkland, S. and Taşcı, D., Sequence of Upper Bounds for The Perron Root of a Nonnegative Matrix, Linear Algebra and its Appl., 273: 23-28 (1998).
- Kolotilina, L.Y., Lower Bounds for the Perron Root of a Nonnegative Matrix, Linear Algebra and its Appl., to appear.
- Szule, T., A Lower Bound for the Perron Root of a Nonnegative Matrix, Linear Algebra and its Appl., 101: 181-186 (1988).
- 7. Szule. T., A Lower Bound for the Perron Root of a Nonnegative Matrix II, Linear Algebra and its Appl., 112: 19-27 (1989).
- 8. Szyld, D.B., A Sequence of Lower Bounds for the Spectral Radius of Nonnegative Matrices, Linear Algebra and its Appl., 174: 239-242 (1992).
- 9. Yamamoto, T., A Computational Method for the Dominant Root of Lower Nonnegative Irreducible Matrix, Numer Math., 8: 324-333 (1966).