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Some Theorems On The Sheaf Of Higher Homotopy Groups

Erdal GUNER'

Summary: In this paper, constructing the sheaf Hn of higher homotopy groups on a
connected and locally path connected topological space, its some characterizations are
examined. Let the pairs (X,H, ) and (X,,H, ) be given.if the mapping
fD:Hnl — an is a sheaf isomorphism, we show that there exists an isomorphism
between the pairs (X,,H, ) and (X,,H, ) .
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Yilksek Homotopi Gruplarinin Demetleri Uzerine Bazi
Teoremler

Ozet: Bu galismada, irtibatl lokal egrisel irtibath bir topolojik uzay lizerinde yiiksek
homotopi gruplarinin Hn demeti olusturularak bazi karakterizasyonlari incelenmigtir.

(Xl,Hnl) ve (Xz,an) iki cift olsun. Eger fD:Hnl - an bir demet izomorfizmi
ise (X,H, ) ve (X,,H, ) iftleri arasinda bir izomorfizim oldugu gdsterilmistir.

Anahtar Kelimeler: Yiksek Homotopi Grubu, Abelian Gruplarin Demeti, Regtler Ortii
Uzayi, Demet Izomorfizmi, Kovaryant Funktor.

Introduction

Let X be a connected and locally path connected space. Then X is a path connected and
has only are path component, that is X . For an arbitrary fixed point ¢ [1X, we will consider X as a
pointed topological space (X,c) unless otherwise stated. Let x be any point of X and T|n (X,Xx) be

higher homotopy group of X with respect to x and H_ = g{ N _(X,x). Clearly, H_ is a set over

n

X and the mapping W:H, — X defined by W(0,)=x forany o, (H,), H, is an onto
projection.

We introduce on H, a natural topology as follows: Let X, an arbitrary fixed point of X,
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W =W(x,) be a path connected open neighborhood of x, and o, :[a] % be a homotopy
class of (Hn)XU . Since X is path connected, there exists a path y with initial point X, and with
terminal point x, for every X [JW. Therefore, the path y determines an isomorphism

y*:(H,),, - (H,), defined by y*([a] XO) :[B]Xfor any

[a] o UH,), UH,. Let us now define a mapping sW - H, such that
s(x) :y*([a]xo) =[[3]x for every x UW . If ¢ UW, then we define s(c) =y*([0(]c) :[a]c ,
by taking [y] :[1] [J(H,).. Itis seen that, the mapping s depends on both the homotopy classes
[a] % and [y] Suppose that the homotopy class [y] is chosen as arbitrary fixed, for each
x JW . So, the mapping s depends on only the homotopy class [O(] x, - S is well defined and
W os =1, . Let us denote the totality of the mapping s defined over Wby I'(W,H ).

Let B be a basis of path connected open neighborhoods for each x [1X . Then,

T, ={s(W):W OB, sOr(W,H, )}

is a topology base on H [4] . In this topology, the mapping W and s are continuous and
W is a local homomorphism. Thus, (H,,W) is a sheaf over X. (H,,W) (oronly H, ) is called
“The Sheaf H_  of Higher Homotopy Groups over X’ [6,7] . For any open set W L1 X, an
element s of [(W,H,) is called a section of the sheaf H, over W. The group
(H,), = T1_(X,x) is called the stalk of the sheaf H_ for any x X . The set (W,H,) is an
abelian group with pointwise addition operation. Thus, the operaton +H UH_ - H, s
continuous for every stalk of H_ [5]. Moreover, the group (H,), =Tl (X,x) is abelian for
n>1. Hence, H_ is a sheaf of abelian groups over X

The sheaf H  satisfies the following properties:
1. Any two stalks of H are isomorphic with each other.

2. Let W,,W, X be any open sets, s, [T (Wl,Hn) and s, [ (Wz,Hn).If

5,(X,) =5,(x,) forany point x, JW| W, then s, =s, over the whole W, 1 W,[10] .

3. Let W [ X be an open set. Every section over W can be extended to a global section
over X.

4. Let x OX be any point and W=W(x) be an open set. Then ™' (W) = i\Dflsi (W) and
l]J‘si (W):s,(W) - W is a topological mapping for every i LIl . Hence, W=W(x) is evenly covered
by W.Thus, (H, ,{) is an abelian covering space of X [9].

5. Atopological stalk preserving mapping of H onto itself is called a sheaf isomorphism or
a cover transformation, and the set of all cover transformation of H is denoted by T. Clearly, T is
a group and isomorphic to the group I'(X,H,) .Hence, (H,), O (X,H, ) OT. Thus, T is

transitive and H  is a regular covering space of X [1] .

Characterization

Let X,,X, be any connected and locally path connected topological spaces and Hnl , an
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be the corresponding sheaves, respectively. Let us denote these as the pairs (Xl,Hnl) and
(X,,H,,)-
We begin by giving the following definitions.
Definition. 2.1. Let f*:Hn] - H, be amapping. If f* is continuous, a homomorphism on
each stalk of H, ~and maps every stalk of H into stalk of H  , then it is called a sheaf

homomorphism.
Let f:X, — X, be a continuous mapping and f*:H, — H, be a sheaf homomorphism.

iF £*((H, ), )UMH, )y, for each x,UX;, then f* is called a stalk preserving
homomorphism with respect to f [2] .
Definition 2.2. Let f’":Hnl - an be a sheaf homomorphism. If f* is homeomorphism then

f* is called a sheaf isomorphism [8] .
Definition 2.3. Let the pairs (X,,H, ) and (X,,H, ) be given. If
1. The mapping f:X, - X, is continuous,
2. The mapping f"‘:Hnl - H, is continuous,

3. The mapping f*:Hn] — H,, is stalk preserving with respect to f.
4. The mapping f~ (H,),:(H,), - (H, )¢y, is a homomorphism for every x, X,

then (f, fD):(Xl,Hnl) - (X,,H,) is called a homomorphism between the pairs (X,,H, ) and
(Xy,H,,)

Definition 2.4. Let the pairs (Xl,Hnl), (Xz,an) and the homomorphism

(f,f*):(Xl,Hnl) - (Xz,an) be given. If the mappings f and f are homemorphisms, then (f,
f*)is called an isomorphism between the pairs (X,,H, ) and (X,,H, ) [3].

Teorem 2.1. Let the pairs (Xl’Hnl) and (Xz,an) be given. If the mapping
f*:H, - H, is given as a sheaf homomorphism, then there exists a unique continuous
mapping f:X, — X, such that the pair (f, f") is a homomorphism between the pairs (Xl,Hnl)
and (X,,H, ).

Proof. To prove this teorem, we must first find a mapping f: X, — X, . However, for each
(H,), UH, there exists astalk (H, ), UH, |:|f*((Hnl )y, ) U (H, ), since fis stalk
preserving. Therefore, to any point x, L1X, there uniquely corresponds a point x, UX, . If we

denote this correspondence by f(x,) = X, ,then we obtain a mapping f: X, - X,.
Let us now show that the mapping f is continuous. Let W UJ f(X,) be an open set. We

may be prove that the set f™'(W) is an open set in X, . Since W is an open set in X, , there

exists the arcwise connected open sets W, in X, , 10l , such that W =Y W,. Thus
ia

S (W) = Y52 (W))

is an open setin H, , for a section s> [T (W,H, ). However,
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£ (W) =Y £ (s (w))

is an open set in Hnl, since f is continuous. Thus, there exists the arcwise connected
opensets V,in X,,10l, such that

£ (W) = Ysl(v)

where s, ‘s are section over V, for each i (I . Hence

W, (7 (s ew)) =YV,

is an open set in X .ﬂll_et us now show that

(W) = EVi.

1. Let x, Of '(W). Then, there exists only one point x, OX, [lf(x,) =x,. Hence
sz(xz):CIXZ Os’(W) and there is an element o, of* (sz(W)) Df*(oxl): O,
o, Os!(V,), foran i 0l since £ (SZ(W)) = iEsil(Vi) . Hence Y, (0, ) =x, UV, . Therefore
7' (W) O i\D(vi.

2. Let x, DigVi. Then x, 0V, and s}(xl)D(Hnl)xl, for an 10l . Therefore

£°(s!x,)) s> (W) and @, (°(s!(x)) ) = x, OW.
From the definition of f, f(x,) =x, . Thus x, Of ' (W). Also,
YV, Of'(W).

i
Thus the mapping f:X, — X, is continuous. On the other hand it can be shown that the
pair (f,f") is a homomorphism between the pairs (Xl,Hnl) and (XZ,HHZ), and f is unique,

since foy, =, of .
We can now state the following theorem.
Theorem 2.2. Let the pairs (X,H,), (X,,H,) and (X;,H,) be given. If the

mappings fl*:Hnl - H, and f;:an — H,  are sheaf homomorphisms, then there exists a
homomorphism between the pairs (X,,H,, ) and (X;,H, ) suchthat f =f, of ,f =1, of] .
Proof. Since the mappings fl*, fz* are continuous, the mapping fz* Of]* is also continuous. By
Theorem 2.1, there is a continuous mapping f from X, into X;. Clearly fz* Ofl* preserves the stalk
with respect to f and f, Of, is a homomorphism on each stalk. Hence the pair (f,f, Of) )is a

homomorphism between the pairs (X,H, ) and (X;,H, ). Now, let us show that f =f, of, .
Since, for any stalk (H, ), UH, , thereis a stalk (H, ), UH |:|fl*((Hnl)Xl b H,),
and forany stalk (H, ), UH, ,thereisastalk (H, ), OH, LI (H,), B (H,), .

(fZ* Ofl*)((Hn] )Xl) = fZ*(fl* (Hnl )xl ) D f2* ((Hn2 )xz ) |:| (Hn3 )x3 ’
and f(x,) = X;. On the other hand f,(x,) =X, and f,(X,) =X, since
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fi (H,),)0MH,),,. £(H,))0H,),.
So, (f, of )(x,) = fz(fl(xl)) = X,. Therefore f, of, =f.
Now, we can give the following theorem.

Theorem 2.3. Let the pairs (X,,Hnl) and (Xz,an) be given. If the mapping

f*:H111 -~ H, is a sheaf isomorphism, then there exists an isomorphism between the pairs
(Xl’Hn]) and (Xz,an).

Proof. It follows from the theorem 2.1 that, there exists a continuous mapping f: X, - X,.
Let us now show that f is a bijection. In fact, for any two elements x,,y, UX,, if
f(x,) =1(y,) =x,, then there is a stalk H,),, UH, , x[J X, 0
f*((Hn])xl):f*((Hnl)yl):(an)xz. However, this is impossible, since f is one-to-one.
Therefore X, =y,. On the other hand, for each stalk (an)x2 , there exists a stalk
(H,),, Df*((Hn])xl) =(H, ),, since f* is onto. It follows from this reason that, for each

x, 0X,, there exists an element x, 0X, [If(x,) = x,. Hence fis a bijection. By Theorem 2.1,

there is a continuous mapping g:X, — X, , since f*_1 is continuous. It is similarly shown that g

is a bijection. On the other hand, it can be shown that g = £~ Therefore fis a homeomorphism.

Clearly, £ preserves the stalk with respect to f. Thus the pair (f,f") is an isomorphism.

Now, let C be the category of the sheaves of higher homotopy groups and sheaf
homomorphisms and D be the category of the connected and locally path connected topological
spaces and continuous mappings. Then, we can define a mapping

F:C - D as follows:

For any sheaf H_ 6 and every morphism f*5Hn1 - H, . let F(H,)=X and
F(f")=f:X, - X,. Then,
LIf 7 =1y , then F(1, )=1_

2. 1If fl*:HrlI - H, and f;:Hnz - H, are two sheaf homomorphisms, then

F(f; of,) = F(f;) OF(f)).
Thus, we can state the following theorem.
Theorem 2.4. There is a covariant functor from the category of the sheaves of higher
homotopy groups and sheaf homomorphisms to the category of the connected and locally path
connected topological spaces and continuous mappings.
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