On Pre-Open And M Pre-open Functions

Şaziye YÜKSEL¹ Ahu AÇIKGÖZ¹ Aynur KESKİN¹

Abstract: In this study, the concepts of pre-open, M pre-open and M pre-closed function given in were introduced and their characterizations were investigated. We obtained the characterizations of M pre-open functions. Moreover we gave the concept of M pre-homeomorphism and characterized this concept.

Key Words: pre-open set, semi-open set, pre neighbourhood, pre-open function, M pre-open function, M pre-homeomorphism.

Özet: Bu çalışmada, ön-açık , M ön-açık and M ön-kapalı fonksiyon kavramları sunuldu ve bu kavramların karakterizasyonları incelendi. Ayrıca, M ön-açık fonksiyonların karakterizasyonlarını elde ettik. Üstelik, M ön eş yapılı dönüşüm kavramını verdik ve bu kavramı karakterize ettik.

Anahtar Kelimeler: ön-açık küme, yarı açık küme, ön komşuluk, ön açık fonksiyon, M ön açık fonksiyon, M ön eş yapılı dönüşüm.

Preliminaries: Let (X, τ) or, simply X denote a topological space. For any subset $A \subset X$. Int $(A) = A^{\circ}$ and $Cl(A) = A^{\circ}$ denote the interior and closure of A respectively.

Definition 1.1.[1] Let X be a topological space and S be a subset of X. S is said to be pre-open if $S\subset Int(CI(S))$. The family of all pre-open sets in X will be denoted by PO(X).

Remark 1.1.Every open set is pre-open set. But the converse not true. As the following example illustrates

Example 1.1. Let X={a,b,c}. Define $\tau = \{X,\emptyset,\{a\},\{b,c\}\}$ where τ is a topology on X. We show that for $\{b\}\subset X$ subset, $\{b\}\subset \{b\}^{-\circ}$

$$\kappa = \{\emptyset, X, \{b,c\}, \{a\}\}$$

is the set of closed sets for the topology τ . Then $\{b\}^- \circ = \{b,c\}$. Since $\{b\}\subset \{b,c\}$, $\{b\}$ is pre-open set, that is, $\{b\}\subset \{b\}^- \circ$. But $\{b\}$ set is not open set.

Definition 1.2.[2] Let X be a topological space and A be a subset of X. A subset A is said to be semi-open if there exists an open set U of X such that $U \subset A \subset U^-$ The complement of a semi-open set is called semi-closed set.

¹ Selcuk University, Department of Mathemathics, [42031] Campus/Konya/TURKEY

¹ Selcuk University, Department of Mathemathics, [42031] Campus/Konya/TURKEY

Selcuk University, Department of Mathemathics, [42031] Campus/Konya/TURKEY

Remark 1.2. A open set is pre-open set if and only if this pre-open set is semi-closed set.

Definition 1.3.[5] Let X be a topological space and F be a subset of X. F is said to be pre-closed if Cl(Int(F))⊂F.

Remark 1.4. Every closed set is pre-closed set. But the converse not true. As the following example illustrates.

Example 1.2. Let X={a,b,c}. Define $\tau = \{X,\emptyset,\{a\},\{b,c\}\}$ where τ is a topology on X. We show that for $\{b\}\subset X$ subset, $\{b\}^{\circ}\subset \{b\}$

 $\kappa = \{\emptyset, X, \{b,c\}, \{a\}\}$

is the set of closed sets for the topology τ . Then $\{b\}^{\circ -} = \emptyset$. Since $\emptyset \subset \{b\}$, thus, $\{b\}$ is pre-closed set, that is, $\{b\}^{\circ -} \subset \{b\}$. But $\{b\}$ set is not closed set.

Remark 1.5. A closed set is pre- closed set if and only if this pre- closed set is semi-open set.

Definition 1.4.[4] Let x be a point of a topological space X. Subset is called a pre-neighbourhood of x in X if there exists $A \in PO(X)$ such that $x \in A \subset U$

U is called a pre-neigbourhood of $x \Leftrightarrow \exists A \in PO(X) \ni x \in A \subset U$

Definition 1.5.[1] Let X and Y be topological space. The function $f: X \to Y$ is pre-open function if the image of each open set in X is pre-open in Y.

Theorem 1.1. Let X and Y be two topological spaces. The open function is pre-open function if and only if each subset A of X, is semi closed set in Y.

Proof. \Rightarrow Let T \subset X be any open subset. Since f is open function, f(T) set is open set. Since every open set is pre-open set, then the image under mapping f of any open T is pre-open, by Definition 1.5, we have that f function is pre-open function.

 \Leftarrow Consider any be open A \subset X. We show that f is open function. By the hypothesis, since f(A) is semi-closed set,

 $(f(A))^{-} \circ \subset f(A) \tag{1}$

By the hypothesis, since f is pre-open function, then the image under mapping by f of open set A is pre-open set. That is,

 $(f(A)) \subset (f(A))^{-\circ} \tag{2}$

By (1) and (2) statements,

$$f(A) = (f(A))^{-\circ}$$
 (3)

By (3) statement, take the interior of both side $(f(A))^{\circ} = ((f(A))^{-\circ})^{\circ}$ and hence

$$(f(A))^{\circ} = (f(A))^{-\circ}$$

By (3) statement, $(f(A))^{\circ} = f(A)$, then f(A) is open set. Consequently, f function is open function.

Theorem 1.2. Let X and Y be any topological spaces. Then the function f^{-1} is a.c.H. if and only if the function $f: X \to Y$ is pre-open function.

Proof. \Rightarrow Let G \subset X be any open subset. Then $(f^{-1})^{-1}(G)\subset (f^{-1})^{-1}(X)$. However $(f^{-1})^{-1}(G)=f(G)\subset Y$. By the hypothesis, since the function f^{-1} is a.c.H., $(f^{-1})^{-1}(G)$ is pre-open set, that is, f(G) is pre-open set. Hence, by Definition 1.5., f is pre-open function.

 \leftarrow Let G \subset X be any open set. Since f is pre-open function, f(G) is pre-open set in Y. Since f(G) set is written by form

$$f(G) = (f^{-1})^{-1} (G)$$

hence f⁻¹ is a.c.H. (see Definition of a.c.H.[1])

Theorem 1.3.[1] Let X and Y be any topological spaces. For a function $f: X \to Y$ the following properties are equivalent:

(1) The function f is pre-open.

(ii) For each point x in X and each neighbourhood U \subset X with x \in U, there is a pre-open set f(x) \in V \subset Y such that V \subset f(U).

Proof. (i) \Rightarrow (ii) Let $x \in X$ and U be a open neighbourhood of x. According to the hypothesis, since f is pre-open function, $f(x) \in f(U)$ is pre-open set and since every pre-open is pre-neighbourhood (see

- [4],) $f(U) \subset Y$ is pre-neighbourhood. Then by Definition 1.4, there exists a pre-open set V in Y such that $f(X) \in V \subset Y$.
- (II) \Rightarrow (I) Let $x \in X$ and $x \in U$ be any subset in X. By the hypothesis, there is a pre-open set V in Y such that

$$f(x) \in V \subset f(U)$$
 (1)

From here if we take, the closure of both side at first, the interior of both side later, we get

$$V - \circ \subset (f(U)) - \circ$$
 (2)

Since V is pre-open set, by Definition 1.1,

By (2) and (3) statements,

then

$$f(x) \in V \subset (f^{-1}(U))^{-\circ}$$
 (4)

From (1) statement $x \in f(U)$ and by (4), $x \in (f(U))^{-\circ}$ Hence $f(U) \subset (f(U))^{-\circ}$ and by Definition 1.1, f(U) is pre-open set. Since the image under mapping of open set is pre-open set, f is pre-open function.

Theorem 1.4. Let X and Y be any topological spaces. For a function $f: X \to Y$ the following properties are equivalent:

- (i) The function f is pre-open.
- (II) For any point x in X the image under mapping of f of every neighbourhood U of x is a preneighbourhood of f(x).
- (III) For each point x in X and each neighbourhood U \subset X of x, there is a pre-neighbourhood V \subset Y of x such that V \subset f(U).
- Proof. (I) \Rightarrow (II) For any point $x \in X$, U is a neighbourhood of x. By Definition of neighbourhood, there is a open set $T \subset X$ such that

from here, take the image under mapping by f of both side,

$$f(x) \in f(T) \subset f(U)$$

by the hypothesis, since f is pre-open function, f (T) is pre-open set. Then, by Definition 1.4, f(U) is a pre-neighbourhood of point f(x).

- (II) \Rightarrow (III) Let $x \in X$ and U be a neighbourhood of x. By (II), f(U) is a pre-neighbourhood of f(x). According to Definition 1.4, there exists a pre-neighbourhood V such that $f(x) \in V \subset f(U)$. Since every pre-open set is pre-neighbourhood, V set is a pre-neighbourhood of point f(x).
- (III) \Rightarrow (I) Let x be a point in X. Suppose that U is a pre-neighbourhood of point x. By (III), there is a pre-neighbourhood V such that $f(x) \in V \subset f(U)$. Then f(U) is a pre-neighbourhood of point f(x) as well. Hence by Definition 1.4, there exists a pre-neighbourhood W such that $f(x) \in W \subset f(U)$. Therefore, by Definition 1.5, we have that f is a pre-open function.

Theorem 1.5 Let $f:(X,\tau)\to (Y,\upsilon)$ be surjective, pre-open function with G(f) closed. Then Y space is T_2 - space.

Proof. Let y and w be distinct points in Y. Since f is surjective function, then there are distinct points x and z in X such that f(x) = y and f(z) = w. Since $(x,w) \notin G_f$ and $G_f \subset XxY$ is closed, there exists open sets U and V containing x and w respectively, such that

$$f(U) \cap V = \emptyset$$
 (1)

hence f (U) \subset Y-V. From here take the closure of both side, (f (U)) $^ \subset$ (Y-V) $^-$. Since Y-V is closed, Y-V =(Y-V) $^-$. Hence

Since f is pre-open function, f(U) is pre-open set in Y. That is,

$$f(x) \in f(U) \subset (f(U))^{-\circ}$$
 (3)

By (2) statement, we have

$$(f(U))^{-\circ} \subset (Y-V)^{\circ}$$
 (4)

By (3) statement, $f(x) \in (f(U))^{-\circ}$, According to (3) and (4) statements, $f(x) \in f(U) \subset (Y-V)^{\circ}$, that is, there exists open set $(Y-V)^{\circ}$ containing y. $V \cap (Y-V)^{\circ} = \emptyset$. (Y,v) space is T_2 - (Hausdorff) space.

Theorem 1.6. Let X and Y be any topological spaces. Then the function $f: X \to Y$ is pre-open function if and only if each subset $B \subset X$, $f(B^\circ) \subset (f(B))^{\circ p}$

Proof. \Rightarrow Let B \subset X be any subset. B° is open set in (X,τ) and by hypothesis, f is pre-open function, f (B°) is pre-open set. It is always true that B° \subset B. From here f (B°) \subset f (B) and then if we take the pre-interior of both side, we have $(f(B^\circ))^{\circ p} \subset (f(B))^{\circ p}$ [see [6]]. Since f (B°) is pre-open set and the pre-interior of pre-open set is itself, thus

$$f(B^{\circ}) \subset (f(B))^{\circ p}$$

 \Leftarrow Let B \subset X be any subset. Since B is open set, B $^{\circ}$ = B. By the hypothesis f (B $^{\circ}$) \subset (f (B)) $^{\circ}$ hence we get

$$f(B) \subset (f(B))^{\circ p}$$
 (1)

In addition,

$$(f(B))^{\circ p} \subset f(B)$$
 (see. [3]) (2)

By (1) and (2) statements, we have $f(B) = (f(B))^{op}$. Then f(B) set is pre-open set. According to the Definition 1.5, we get that $f(B) = (f(B))^{op}$.

Theorem 1.7. Let X and Y be any topological spaces. For a function $f: X \to Y$ the following properties are equivalent:

(1) The function f is pre-open.

(II) For each subset A of X, $f(A^\circ) \subset (f(A))^{\circ p}$

(III) For each B∈β set, f(B) set is pre-open.

Proof. (i) \Rightarrow (ii) This is seen from the Theorem 1.6.

(II) \Rightarrow (III) For each B \in β set, since $\beta \subset \tau$, B \in τ . From here B is open set, written B $^{\circ}$ = B. By the hypothesis, f (B $^{\circ}$) \subset (f (B)) $^{\circ}$ and

$$f(B) \subset (f(B))^{\circ p}$$
 (1)

In addition,

$$f(B))^{op} \subset f(B)$$
 (see. [3]) (2

By (1) and (2) statements, $f(B) = (f(B))^{\circ p}$. Thus, f(B) set is pre-open set.

(III) \Rightarrow (I) Consider any open subset A \subset X. Since β is a basis, A is the union of members of β , that is,

$$A = \bigcup_{i \in I} B_i \tag{3}$$

According to (III) statement, $f(B_i)$ is pre-open set. In (3) statement, take the image under mapping by f of both side, we have

$$f(A) = f(\bigcup_{i \in I} B_i) = \bigcup_{i \in I} f(B_i)$$

Since the union of pre-open sets is again a pre-open set (see. [3]), f(A) is a pre-open set. By the Definition 1.5, f is pre-open function.

Definition 1.6.[3]. Let X and Y be topological space. The function $f: X \to Y$ is M pre-open function if the image of each pre-open set in X is pre-open in Y.

Some properties of M pre-open mappings are given in the following theorem:

Theorem 1.8. Let X and Y be any topological spaces. For a function $f: X \to Y$ the following properties are equivalent:

(1) The function f is M pre-open.

(II) For each point x in X and each pre-neighbourhood U \subset X with x \in U, there is a pre-open set $f(x)\in V\subset Y$ such that $V\subset f(U)$.

Proof. (i) \Rightarrow (ii) Let $x \in X$ and U be a pre-open neighbourhood of x. According to the hypothesis, since f is M pre-open function, $f(x) \in f(U)$ is pre-open set and since every pre-open is pre-neighbourhood (see. [4]) $f(U) \subset Y$ subset is pre-open neighbourhood. Then, there exists a pre-open set V in Y such that $f(x) \in V \subset Y$.

(II) \Rightarrow (I) Let $x \in X$ and $x \in U$ be any pre-open subset in X. By the hypothesis, there is a pre-open set V in Y such that

$$f(x) \in V \subset f(U)$$
 (1)

From here if we take, the closure of both side at first, the interior of both side later, we get

$$V \stackrel{\circ}{-} \stackrel{\circ}{-} (f(U)) \stackrel{\circ}{-} \stackrel{\circ}{-} (2)$$

Since V is pre-open set, by Definition 1.1,

By (2) and (3) statements,

then

$$f(x) \in V \subset (f^{-1}(U))^{-\circ} \tag{4}$$

From (1) statement $x \in f(U)$ and by (4), $x \in (f(U))^{--\circ}$ Hence $f(U) \subset (f(U))^{--\circ}$ and by Definition 1.1, f(U) is pre-open set. Thus, since the image under mapping of pre-open set is pre-open set, f is M pre-open function.

Theorem 1.9. Let X and Y be any topological spaces. For a function $f: X \to Y$ the following properties are equivalent:

- (I) The function f is M pre-open.
- (II) For any point x in X the image under mapping of f of every pre-neighbourhood f of f is a pre-neighbourhood of f (f).
- (III) For each point x in X and each pre-neighbourhood $U \subset X$ of x, there is a pre-neighbourhood $V \subset Y$ of x such that $V \subset f(U)$.

Theorem 1.10. Let X and Y be any topological spaces. Then the function $f: X \to Y$ is M preopen function if and only if each subset $B\subset X$,

$$f(B^{\circ p}) \subset (f(B))^{\circ p}$$

Proof. \Rightarrow Let B \subset X be any subset. It is always true that B $^{\circ p}\subset$ B. From here if we take the image under mapping by f of both side, f (B $^{\circ p}$) \subset f (B). B $^{\circ p}$ is pre-open set and by the hypothesis since f is M pre-open function, f (B $^{\circ p}$) is pre-open set. In f (B $^{\circ p}$) \subset f (B) statement, if we take the pre-interior of both side, we have (f (B $^{\circ p}$)) $^{\circ p}\subset$ (f (B)) $^{\circ p}$. f (B $^{\circ p}$) is pre-open set and the pre-interior of pre-open set is itself, thus f (B $^{\circ p}$) $^{\circ p}$ =f (B $^{\circ p}$) then, f (B $^{\circ p}$) \subset (f (B)) $^{\circ p}$

 \Leftarrow Let B⊂X be any pre-open subset. Since B is pre-open set, B°^p = B (see. [6]). By the hypothesis f (B°^p) ⊂ (f (B))°^p, hence we get

$$f(B) \subset (f(B))^{\circ p}$$
 (1)

In addition,

$$(f(B))^{\circ p} \subset f(B) \text{ (see. [3])}$$
 (2)

By (1) and (2) statements, we have $f(B) = (f(B))^{op}$. Then f(B) set is pre-open set. According to the Definition 1.6, we get that f(B) is M pre-open function.

Theorem 1.11. Let X and Y be any topological spaces. Then the function f^{-1} is M pre-continuous if and only if the function $f: X \to Y$ is M pre-open function.

Proof. \Rightarrow Let A \subset X be any pre-open subset. From here if we take the inverse image under mapping of f of both side, $(f^{-1})^{-1}(A) \subset (f^{-1})^{-1}(X)$. However $(f^{-1})^{-1}(A) = f(A) \subset Y$. By the hypothesis, since the function f^{-1} is M pre-continuous, $(f^{-1})^{-1}(A)$ is pre-open set, that is, f(A) is pre-open set. Hence, by Definition 1.5, f is M pre-open function.

 \leftarrow Let A \subset X be any pre-open set. Since f is M pre-open function, f(A) is pre-open set in Y. Since f(A) set is written by form

 $f(A) = (f^{-1})^{-1} (A)$

hence, f⁻¹ is M pre-continuous function.

Definition 1.7.[3]. Let X and Y be topological space. The function $f: X \to Y$ is M pre-closed function if the image of each pre-closed set in X is pre-closed in Y.

Theorem 1.12. Let X and Y be any topological spaces. Then the function $f: X \to Y$ is M closed function if and only if each subset $A \subset X$, $(f(A))^{-p} \subset f(A^{-p})$.

Proof. \Rightarrow Let A \subset X be any subset. It is always true that A \subset A $^{-p}$ [5]. From here if we take the image under mapping by f of both side, f(A) \subset f(A $^{-p}$). B op is pre-closed set and by the hypothesis since f is M pre-closed function, f(A $^{-p}$) is pre-open set. In f(A) \subset f(A $^{-p}$) statement, if we take the pre-closure of both side, we have $(f(A))^{-p}\subset (f(A^{-p}))^{-p}$. $f(A^{-p})$ is pre-closed set and the pre-closure of pre-closed set is itself, thus $(f(A^{-p}))^{-p}=f(A^{-p})$ then, $(f(A))^{-p}\subset f(A^{-p})$.

 \leftarrow Let F \subset X be any pre-closed subset. We show that f(F) is pre-closed set, that is, $f(F)=(f(F))^{-p}$. Since F is pre-closed set,

$$F = F^{-p}$$
 (see [5]). (1)

From here if we take the image under mapping by f of both side,

$$f(F) = f(F^{-p})$$
 (2)

by (III) statement,

$$(f(F))^{-p} \subset f(F^{-p})$$

by (1) and (2) statements, we have

$$(f(F))^{-p} \subset f(F) \tag{3}$$

Moreover

$$f(F) \subset (f(F))^{-p}$$
 (4)

According to (3) and (4) statements, f (F) set is pre-closed set. Consequently, f is M pre-closed function.

Theorem 1.13. Let X and Y be any topological spaces. Then the function f^{-1} is M pre-continuous if and only if the function $f: X \to Y$ is M pre-closed function.

Proof. \Rightarrow Let F \subset X be any pre-closed subset. From here if we take the inverse image under mapping of f of both side, $(f^{-1})^{-1}(F) \subset (f^{-1})^{-1}(X)$. However $(f^{-1})^{-1}(F) = f(F) \subset Y$. By the hypothesis, since the function f^{-1} is M pre-continuous, $(f^{-1})^{-1}(F)$ is pre-closed set, that is, f(F) is pre-closed set. Hence, by Definition 1.7, f is M pre-closed function.

 \leftarrow Let F \subset X be any pre-closed set. Since f is M pre- closed function, f(F) is pre-closed set in Y. Since f(F) set is written by form

$$f(F) = (f^{-1})^{-1} (F)$$

hence, f⁻¹is M pre-continuous function.

Definition 1.8. Let X and Y be topological space. A mapping $f: X \to Y$ is called M prehomeomorphism if there exists a bijective mapping f such that f and f^{-1} are M pre-continuous functions.

Remark 1.5. For M pre-homeomorphism concept, by Theorem 1.11 and Theorem 1.13, we give the following thorem;

Theorem 1.14. Let $f: X \to Y$ be bijective function. Then the function f is M pre-homeomorphism if and only if f is M pre-continuous and M pre-open function.

Theorem 1.15. Let $f: X \to Y$ be bijective function. Then the function f is M pre-homeomorphism if and only if f is M pre-continuous and M pre-closed function.

Now, we give a criter related to M pre-homeomorphism function in the following;

Theorem 1.16. Let X and Y be any topological spaces. Then the function $f: X \to Y$ is M prehomeomorphism function if and only if each subset $A \subset X$,

$$(f(A))^{-p} = f(A^{-p})$$

Proof. \Rightarrow Let f be M pre-homeomorphism. By Definition 1.8, f is M pre-continuous. Then for each A \subset X subset

$$f(A^{-p}) \subset (f(A))^{-p}[5]$$
 (1).

According to Definition 1.8., since f^{-1} is M pre-continuous function by Theorem 1.13, f is M pre-closed function. According to Theorem 1.12,

$$(f(A))^{-p} \subset f(A^{-p}) \tag{2}.$$

Therefore by (1) and (2) statements, for each A⊂X subset,

$$f(A^{-p}) = (f(A))^{-p}$$

 \Leftarrow For each A \subset X subset, if $f(A^{-p}) = (f(A))^{-p}$, by Theorem 1.12, f is M pre-closed function and f is M pre-continuous [4]. Consequently, by Theorem 1.15, f is M pre-homeomorphism.

Theorem 1.17. Let $f:(X,\tau_1)\to (Y,\tau_2)$ and $g:(Y,\tau_2)\to (Z,\tau_3)$ be any to mappings. If f is a pre-open and g is a M pre-open, then $gof:(X,\tau_1)\to (Z,\tau_3)$ is a pre-open function.

Proof. Let A be open subset of topological space X. By the hipotezix, since f is a pre-open function, $f(A) \subset Y$ is pre-open set. Since g is M pre-open function, by Definition 1.6, $g(f(A)) \subset Z$ is pre-open set, that is, g(f(A)) = (gof)(A) is pre-open set. Therefore gof is pre-open function.

Theorem 1.18. Let $f:(X,\tau_1)\to (Y,\tau_2)$ and $g:(Y,\tau_2)\to (Z,\tau_3)$ be any to mappings. If f is a precontinuous and surjective function and gof: $(X,\tau_1)\to (Z,\tau_3)$ is a M pre-open function, then g is a pre-open function.

Proof. Let A be open subset of topological space X. By the hipotezix, since f is pre-continuous function, $f^{-1}(A) \subset X$ is pre-open set. Since gof is M pre-open function, the image under mapping of gof of $f^{-1}(A)$ set is pre-open set, that is, $(gof)(f^{-1}(A)) \subset Z$ is pre-open set.

$$(gof)(f^{-1}(A))=g(f(f^{-1}(A)))$$

and since f is surjective function, $(gof)(f^{-1}(A))=g(A)$. Consequently, g is pre-open function. Theorem 1.19. Let $f:(X,\tau_1)\to (Y,\tau_2)$ and $g:(Y,\tau_2)\to (Z,\tau_3)$ be any to mappings. If gof is a pre-open and g is injective and M pre-continuous, then $f:(X,\tau_1)\to (Y,\tau_2)$ is a pre-open function.

Proof. Let G be open subset of topological space X. By the hipotezix, since gof is a pre-open function, (gof)(G)=g(f(G)) is pre-open set. Since g is injective and M pre-continuous function,

$$g^{-1}(g(f(G))) = g^{-1}g(f(G)) = f(G) \subset Y$$

f(G) is pre-open set. Consequently, f is pre-open function.

REFERENCES

- [1]. A.S.Mashhour., M.E.Abd El-Monsef and S.N.El-Deeb, On Precontinuous and Weak Precontinuous Mappings , (to appear) in Proc. Mat. And Phys. Soc. Egypt (1981).
- [2]. N.Levine., Semi Open Sets and Semi Continuity in Topological Spaces , Amer. Math. Monthly 70 , 36-41 (1963).
- [3]. A.S.Mashhour., M.E.Abd El-Monsef and I.A.Hasanein , On Pretopological Spaces , Bull. Math. Soc. Sci. Math. R.S.R. 28 (76) , 39-45 (1984).
- [4]. V.Popa., Characterizations of H-Almost Continuous Functions, Glasnik Matematicki, Vol. 22 (42), 157-161 (1987).
- [5]. S.N.El-Deeb., I.A.Hasanein , A.S. Mashhour and T.Noiri , On P-Regular Spaces, Bull. Math. Soc. Sci. Math. R.S. 27 (75) , 331-315 (1983).