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The Harnack Inequalities for The Solutions of
an Elliptic Type Equation

Fatma TASDELEN?

Abstract: In this study, by using the well-known Harnack inequalities of the harmonic
functions, some Harnack type inequalities are given for the solution of an elliptic type
equation, which has variable coefficients.
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Eliptik Tiirden Bir Denklemin Géziimleri igin
Harnack Esitsizlikleri

Ozet: Bu calismada harmonik fonksiyonlar igin bilinen Harnack esitsizliklerinden
yararlanarak, degisken katsayili eliptik tipten bir denklemin ¢oziimleri igin Harnack tipi
esitsizlikler elde edilmigtir.

Anahtar Kelimeler: Eliptik denklem, Harnack esitsizligi, Harmonik fonksiyon

Introduction
Let, in xoy-plane, u*(x, ¥) be a nonnegative harmonic function in a disk D of radius a with
center M. Then for any P e D, the following Harnack inequality

7P yrany<utPy< P )
a+p a-p ?
y

is hold between the values of " (x, y)
at the point P and at the center M. ' R
(Figure 1) [3,4,5].

Figure 1.
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It should be noted that the Harnack Inequality is hold also for n — dimensional case with
the inequality

__C_Z___p___a"ﬂu*(M)Su*(p)g.iip_a

"ur (M 2
(Cl+p)ll_l a_P)n—l . ( ) ( )

where M is the center of the n-dimensional ball B" of radius a, P€ B" is a point at distance
p < a from the center, and uv* is a non-negative harmonic function in B”.

More generally, let u* be a non-negative harmonic function defined in a domain D < R”"
and S be a closed bounded set contained in D. Then there is a positive constant A depending on S
and D but not on u* such that for every pair of points Pand Qin S, we have

Au*(Q)Su*(P)S A'u*(0) (3)

Harnack Type Inequalities

In this study, we obtain Harnack type inequalities for the solutions of the class of equation

n—-1 2 p 2 -
u 1 20w 0u 1 1 1 | 1-2m Ou
Lu = E >+ E — Y . 2 - 2-—=—1; Y —1=0 (4)
= ox; A m; dy; m; m; p dy;

where m; € Z",(i=12,...,n) are arbitrary constants .
Thus, we can give the following theorem.

Theorem 1. Let the function u(x,,x,.:sX,-15¥;»-»y,) be a nonnegative solution of the

2
n-1

equation (4) in the domain D :{xl2 +...+x +ylz’"‘ +...+yzm” < R’} .Then the following

inequality holds.

Ror  prey0y<upy<s—BHT

Rn-—l 0 5
(R+r>”—l (R_r)n—l Ll( ) ( )

where P(X,...;X, 1> Yiseees y,) is a point at distance r <R from the center O of the ball D.

- 2m
Proof. If we let x; = y." in(4), then
j=1

ax,, _ 1 [ 2m;-1
S =y
.)j xn
2
a-xu 1 2 4m;=2 1 Im =2
=——m:y. ’ . e ) e Ve
52 S m;y; +m;(2my =) —y;
)j “*n #¥yi
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and hence
ou 1 w1 Ou
—=m,—y,;
i i
dy; X, a\
and
alu 1 2 4m.-2 2m;=2 all | dim ;=4 a u
—=|——m;y; ' +m;2m; - )—)1 —+m’ i) 3
ay i Ca ‘n a“\n Xu axn
substituting these values in (4) we obtain
n-1 az
u
Lu= =
i=1 ax,f
; a?.
2-2m; 2 1 dm;—4 u | 2 4m;=2 all 2m;=2 all
+2 =¥ m; —y;- T m;y; —tm; (2m )—\ —
m j * ‘n axn xn a.\” Xn a'Xn
1 . 1 40
_ (2 _ __) 1 ~m j _y;m 1 ll _ O
m; m; p x, 81
or
n—-1 02
d°u
Lu= Z >
i=1 (.lf,-_
u 1 d 1.1 9 1 1.1 0
2 - du du du
+2 ) ‘m _—3)73'”/—’_+(2__)_-—'—(2_—"__)__ =O
X, X, ox, m; x, ox, m; p x,ox,

By making the necessary simplifications, we get

=o' 9w
g

== l} (6)
i=1 a'xlz axr;

Lu=

which is the Laplace equation of n-dimension. Since u.(.xl,...,x,,_l,yl,...,yp) is a non-negative
solution of (4), then the function

- P —_ ES 2m 2m ;
Lt(xl,.xz,...,,x,,_l,y],...,)>1,)—u*(xl, e BET L M S s )—u (X0 x,) (7

is a non-negative solution of (6). Thus y * satisfies the inequality

(?1%”__1_]2"-2“* 0)<u' (P)< %R”_zum (0) (8)
. -r

and hence u satisfies the inequality (5).
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Remark 1. The Harnack inequality given by (8) can be applied to the solutions, which are
bounded from below or above. For if u is bounded from below by a constant m in D, then the
function v=u—m satisfies the equation Lv=0 and is non-negative and hence the Harnack
inequality (8) is valid for it. Similarly, if v is bounded from above by a constant M, then the non-

negative function w =M —u also satisfies the Harnack inequality.

Remark 2. An analogous result of (3) holds for non-negative solutions ( or for the solutions
bounded from above or below ) of the equation (4) .That is, if v is a non-negative solution

contained in D R"*"™", then there is a positive constant A depending on S but not on u such that
for every pair of points Pand Qin S, we have

Au(Q)<u(P)< A™u(Q)

Remark 3. If uis any solution of (4), bounded from below or above in all of n+p-1-dimensional
space, then since (5) holds also for R — o=, we have u=u(0), a constant.

Example. Letin (4) n=2 and p=2. Then,

2' 1 ’7m 1 l —-2m /i
Lu:a ”+—TV1 M__l_ 2—— |y , ou
ay,

ox;  m} dy. m m, 2
10
1 2-2m azu 1 1 | 1=2m out o)
t—y, sz |25 =0
my dy, M, m, 2 ay,

Now, u=x+/y."™ +y3™ is a solution of (10). On the other hand, in the domain
xp+yM™+y"™ <1, m=-1/2 is a lower bound for u since the minimum value of the

2 1
function u = x,x, in the disk x; +x,f <1lis ~§. Hence, by Remark 1 and Theorem 1, the

1-%n

function v=u+1/2 satisfies the Harnack inequality. In this case, in (8), R=1, n=2 and so letting
u =V, we obtain

L= 0.0.0) < v(P) < 0(0,0.0)
1+r 1—r
or since v(0,0,0) =u(0,0,0)+— :%, we have
ll— <v(P )<ll+l
21+7r 2 1-r

where P is any point of the distance rfrom the origin in the domainx; + y™ +y7"™ <1.
From the last inequality, we get

L b=y ’ 2m ”m 11
s L + =
21 21
L= 7m

’ <2,x11/ My “+1<1+'

Hence, for a bounded solution of (10) in the domain x;" + y; T ¥)

S

t\)l»—-

or

Hl

<1, the Harnack inequality
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—=F r
Sx”[ylz'"' +y22m: < 0 ;o r<li

I+ -r

is hold. For the special case r=1 we have
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