Ag/n-GaAs(100) Schottky Kontakların I-V ve C-V Karakteristikleri

Ö. Faruk YÜKSEL¹, Tuğba DÜNDAR DURAK²

¹S.Ü. Fen Edebiyat Fakültesi Fizik Bölümü 42075 Kampüs/KONYA
²Özel Dildaş Lisesi Meram/KONYA

Özet: Bu çalışmada, Ag/n-GaAs yapının, farklı sıcaklık çekerlerinde doğru ve ters beslem akım gerilim ölçümüleri alınmıştır. Bu ölçümlerden faydalanarak yapının idealite faktörü, doyma akımı, Richardson sabiti ve engel yüksekliği hesaplanmıştır. Ag/GaAs yapının sığa gerilim ölçümümlerinden faydalanarak engel potansiyel değeri hesaplanmıştır.

Anahtar Kelimeler: Schottky Kontak, Ag/GaAs, GaAs

I-V and C-V Characterisation of Ag/n-GaAs(100) Schottky Contacts

Abstract: In this work, current-voltage characteristics of Ag/GaAs structure are performed under forward and reverse bias for different temperatures. The ideality factor, saturation current, Richardson constant and barrier height are calculated using these measurements. In addition, barrier potential value are determined from capacitance-voltage measurements.

Key Words: Schottky Contact, Ag/GaAs, GaAs

Giriş

Doğru akım ve mikrodalgalar uygulamalarındaki öneminden ve diğer temel fiziksel parametrelerin analizinde araç olarak kullanılarak dölmeyi, metal yariletken kontaklar üzerinde yoğun şekilde çalışılır yapılmıştır. Son zamanlarda, modern transistor teknolojisi ve

¹ E-mail: fyuksel@selcuk.edu.tr
düzeltilmiş vakum teknolojisi yardımı ile çoğaltılabilen, ideale yakın metal-yarilletilken kontaklar üretilmiştir [7].

Yarilletilken güneş pillerinin belirli bir sınıflını metal-yarilletilken kontakta piller oluşturmaktadır. Bu güneş pillerini daha da geliştirilebilmek için benzer temel yapı olan metal-yarilletilken diştiğin akım iletim ve kapasitif özellikleri bilinenmesi gerekmemektedir.

GaAs III-V grubu yarilletilken olup, dişit, transistör ve güneş pilleri gibi yarilletilken ağıtların yapımında önemli bir malzeme olarak göre çarpmaktadır [7]. Özellikle GaAs tabanlı olarak yapılan ağıtların yüksek hızlı, düşük güç tüketimi ağıtlar olduğu tespit edilmiştir [8].

Dolayısıyla farklı GaAs metal-yarilletilken (genellikle Au/GaAs) yapılar üzerinde yoğun çalışmalar yapılmıştır [9,10]. Bu çalışmanda Ag/n-GaAs yapının I-V ve C-V karakteristikleri incelenmektektir.

Deneysel Yöntem

Bu çalışmadı, özdeş bir 9,5x10⁻³ Ωm, mobilitesi 3625 V/cm², taşıyıcı yoğunluğu 1,9x10¹⁷ cm⁻³, kalınlığı 500±25 μm olan (100) doğrultulu, iki yüzeyi temizlenmiş ve parlatılmış n-GaAs (GaAs:Te) kristali (Wafer World Inc.) kullanıldı. n-GaAs yüzeyine gümüş iletken pasta ile Schottky kontak yapıldı.

Hazırlanan numune üzerinde akım-gerilim (I-V) ölçümleri, farklı üç sıcaklık için, GW DC güç kaynağı ve Keithley 199 System DMM/Scaran kullanılarak yapıldı. Sığa ölçümlerinde ise GW LCR-815 LCR metresi kullanıldı.

Sonuçlar ve Tartışma

Schottky engelli dişit dönüştürücü akım ifadesi

\[I = I_s \exp \left(\frac{qV}{nKT} \right) - 1 \] \hspace{1cm} (1)

şekline verilir [11]. Burada,

\[I_s = A^*T^2 \exp \left(-\frac{q\phi_{bow}}{kT} \right) \] \hspace{1cm} (2)

doyma akımı, \(\phi_{bow} \), sıfır beslem etkin engel yükseklüğü, \(q \) elektronun yükü, \(A^* \) etkin Richardson sabiti, \(k \) Boltzman sabiti, \(T \) mutlak sıcaklık ve n idealite faktörü olup

\[n = \frac{q}{kT} \frac{\partial V}{\partial \ln I} \] \hspace{1cm} (3)

dir.

Ag/GaAs Schottky dişit dönüştürücü akım I-V karakteristikleri Şekil 1'de verilmektedir. I-V grafiği ise Şekil 2'de verilmektedir.
Şekil 1 Ag/GaAs yapının doğru beşlem I-V grafiği.

Şekil 2 Ag/GaAs yapının doğru beşlem Inl-V grafiği

Denk.(3)'e göre, ln(I)-V eğrisinin eğiminin n idealite faktörü hesaplanması, düşük alanlarda 1.059 ve yüksek alanlarda 1.892 bulunmuştur. Idealite faktörü 1 ile 2 arasında değerler almakta olup, yapılış akım mekanizmaları hakkında bilgi vermektedir. Yukarda
bulunan iki farklı sonuç akımın düşük ve yüksek alan bölgelerinde farklı mekanizmalarla illetildiğini göstermektedir. Yani düşük alanlarda difüzyon akımı, yüksek alanlarda ise yeniden birleşme akımı etkini olmaktadır.

Ters beslemeye akım ifadesi ise,

\[I_R = I_S \exp[\alpha(V' + V_T)^{1/4}] \] \hspace{1cm} (4)

şeklinde verilir [11]. Burada, \(V_b \) engel potansiyeli ve \(\alpha \),

\[\alpha = \left(\frac{q^3 N_D}{8\pi^2 \varepsilon^3} \right) \] \hspace{1cm} (5)

ile verilen bir sabit olup, \(N_D \) donor yoğunluğu ve \(\varepsilon \) dielektrik sabitidir. Denk.(4), \(V' \gg V_T \) için,

\[I_R = I_S \exp(\alpha V'^{1/4}) \] \hspace{1cm} (6)

şekline yeniden yazılabılır. \(\ln (I_R') - V'^{1/4} \) grafiği çizildiğinde, elde edilen doğrunun sıfır gerilime ekstrapole edilmesi ile \(I_S \) doyma akımı belirlenir ve aşağıdaaki eşitlikten

\[\phi_{bn} = \frac{kT}{q} \ln \left(\frac{A'' T^2}{I_S} \right) \] \hspace{1cm} (7)

engel yüksekliği hesaplanır.

\(A'' \) etkin Richardson sabitinin kesin değerlerinin bilinmesi halinde, \(I_S \) doyma akım yoğunluğunun sıcaklıkta değişimi incelenir. Bu amaçla, değişik sıcaklıklar için \(I_R - V'^{1/4} \) eğrileri çizilir. Her bir eğrinin sıfır gerilime ekstrapole edilmesi ile farklı sıcaklıklar için \(I_S \) doyma akım yoğunlarını elde edilir. Elde edilen \(I_S \) değerlerinden çizilen \(\ln(I_S/T^2) - (10^3/T) \) grafiğinin eğiminden,

\[\phi_{bn} = \frac{10^3 k}{q} \frac{\Delta \ln(I_S/T^2)}{\Delta (10^3/T)} \] \hspace{1cm} (8)

\[\phi_{bn} = \frac{10^3 k}{q} \tan \beta \] \hspace{1cm} (9)

engel yüksekliği bulunur.

Bu amaçla farklı sıcaklıklar için yapının ters beslem \(I_R - V \) karakteristikleri ölçülmüş ve Şekil 3' de verilmektedir. \(I_R - V \) grafiği Şekil 4' de ve \(\ln(I_S/T^2) - (10^3/T) \) grafiği ise Şekil 5' de verilmektedir.
Şekil 3 Ag/GaAs yapının farklı sıcaklıklar için ters beslem I_R-V grafiği

Şekil 4 Ag/GaAs yapının $\ln(I_R) - V^{1/4}$ grafiği.
\textbf{Şekil 5} Ag/GaAs yapının \(\ln(I_R/T^2) - (10^3/T) \) grafiği

\(\frac{\ln(I_R/T^2) - (10^3/T)}{10^3} \)

Çizilen, \(\ln(I_R/T^2) - (10^3/T) \) grafiğinden etkin Richardson sabiti \(A^{**}=8,12 \ A / cm^2K^2 \) ve engel yüksekliği \(\Phi_{\text{ph}} = 0.57 \ eV \) olarak bulunmuştur.

Engel yüksekliği, sığa ölçümleri ile de tayin edilebilmektedir. Bir dc beslem üzerine küçük bir ac gerilim bindirildiği zaman, yariletkenin tipine bağlı olarak, metal üzerinde belirli bir işarette, yariletkeni ise zıt işarette yükler meydana gelir. C ve V arasındaki ilişki,

\[
\frac{1}{C^2} = \frac{2(V_d-V)}{q\varepsilon_r\varepsilon_0 N_D}
\]

dir [11]. Burada \(V_d \) difüzyon potansiyeli, \(\varepsilon_r \) ve \(\varepsilon_0 \) sırasıyla yaniletkenin ve boşluğun dielektrik sabiti ve \(N_D \) donor yoğunluktur. Uygulanan gerilimin \(1/C^2 \) ye karşılık grafiğinin, gerilim ekseni üzerindeki kesim noktasından difüzyon potansiyeli belirlenir.

Ag/GaAs yapının C-V eğrisi Şekil 6'da verilmektedir.
Şekil 6 Ag/GaAs yapının $1/C^2$ - V grafiği

Bu eğrinin gerilim eksenini kestiği noktadan difüzyon potansiyeli $V_0=0.5$ V olarak bulunmuştur.

Doğan ve ark., Ni/n-GaAs Schottky diyodu için yapıları çalışmada engel yüksekliğini 0.835 eV ve etkin Richardson sabitini $A''=8.16 \frac{A}{cm^2K^2}$ olarak bulmuşlardır [12]. Kampen ve arkadaşları tarafından yapılan bir çalışmada ise engel yüksekliği 0.59 eV ve idealite faktörü 1.09 (düşük alan) bulunmaktadır [13]. Yukarıda elde edilen sonuçlar Doğan ve ark ile Kampen ve arkadaşlarının elde ettiği değerlerle iyi bir uyum göstermektedir.

Kaynaklar
4. Schottky, W., NatarWiss., 26, 843 (1938).
Ag/n-GaAs(100) Schottky Kontaklarının I-V ve C-V Karakteristikleri