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Abstract   

An arbitrarily curved beam under the effect of a moving load has been considered.  An analytical series solution has been developed 

for the case when the beam cross-section is symmetrical so that it resides in a plane during the motion.  The moving force is assumed 

to be a singular force sliding through the length of the beam with constant speed while its direction always pointing in the principal 

normal of the curved shape of the beam.  After developing the general solution for any plane beam, example computations were 

carried out on a specific example by means of power series expansion. 
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Hareketli bir yüke maruz kalan keyfi kavisli bir kirişin tepkisi için 

kesin çözüm 

Öz 

Rastgele bir düzlem eğimli kirişin hareketli bir yüke tepkisi analitik olarak incelenmiştir. Kiriş kesiti belirli bir simetriye sahip olacak 

şekilde sınırlandırılmıştır, böylece kiriş hareket eden kuvvetin etkisi altındayken düzleminde kalır. Hareket eden kuvvetin, yönü 

daima kirişin kavisli şeklinin ana normalini işaret ederken, kirişin uzunluğu boyunca sabit hızla kayan tekil bir kuvvet olduğu 

varsayılır. Genel denklemler herhangi bir düzlem eğrisi için verilmiş ve özel bir örnek için kuvvet serileri yöntemi kullanılarak 

çözülmüştür. 

Anahtar Kelimeler: Keyfi kavisli, Hareketli yük, Kuvvet serileri. 

 

 

 

 

 

___________________________________ 

* Corresponding Author: sakman@iuc.edu.tr 

http://dergipark.gov.tr/ejosat
https://orcid.org/0000-0002-9599-8875?lang=en
mailto:sakman@iuc.edu.tr


European Journal of Science and Technology 
 

e-ISSN: 2148-2683            415 

1.  Introduction

     While many of the curved elements used in engineering 

structures are very common shapes like circular arcs and 

helixes, arbitrarily shaped elements also find usage which may 

be expected to expand with the ever increasing complexity of 

mechanisms, and aerospace and civil structures (bridges etc.).  

The general equations for the small vibrations of an arbitrarily-

shaped space beam were derived long ago; the definitive 

reference for this (and many other problems) is (Love, 1944) 

according to whom the general formulation for arbitrarily-

curved space beams is due to Clebsch (1895). 

     Most of the studies presented in the literature related to 

moving loads and curved beams involve circular arcs and 

numerical methods.  We cite the following recent studies: (Wu 

and Chiang, 2004) computed the response of a circular arc to a 

moving load by using the finite element method.  (Gulyayev 

and Tolbatov, 2004) considered a liquid mass moving inside a 

helicoidal tube. (Wayou et al., 2004) investigated the nonlinear 

dynamics of a straight beam due to a moving load. (Forbes and 

Randall, 2004) solved the case of a full circular ring under the 

effect of a moving load using the mode expansion method.  

(Huang et al., 2011) solved the nonlinear vibrations of a curved 

beam which is excited by an outside agent; in this case the agent 

was not a moving load, nevertheless the mathematical 

formulation is very similar. 

     The number of studies about moving loads on curved beams 

seems to be scarce.  Since the solution procedures for these 

types of problems involve computation of natural frequencies 

and mode shapes, we mention some of the related work. 

(Tufekci and Dogruer, 2006) gave and exact solution for the out 

of plane vibrations of a circular arc including rotatory inertia 

and shear effects.  (Yang et al., 2008) investigated free in plane 

vibrations of arbitrary curved beams including the effects of 

extensibility, shear and rotatory inertia using finite element 

formulation. (Ozturk, 2011) investigated the in-plane vibrations 

of a pre-stressed curved beam obtained from a larger straight 

beam by using finite elements. (Tolomeo, 2005) investigated a 

method for forming parabolically shaped beams to optical 

accuracy by using the curved beam theory. (Lin and Hsieh, 

2007) gave closed form solutions for laminated curved beams. 

(Piovan and Cortinez, 2007) investigated thin-walled 

composite curved beams including shear effects using finite 

elements.  (Wang and Liu, 2013) used elasticity theory 

solutions (Airy stress function) for anisotropic, functionally 

graded, curved beams.  (Lenci and Clementi, 2009) developed 

a simple mechanical model for space curved beams including 

bending and torsion effects.  (Lim et al., 1997) investigated the 

Euler-Bernoulli and Timoshenko models comparatively for a 

curved beam of constant curvature.  (Luu et al., 2015) used a 

finite element approach to investigate laminated curved beams 

including extensibility, shear and rotatory inertia effects. 

(Tseng et al., 2000) studied vibrations of composite laminated 

curved beams including a Timoshenko beam model.  (Krishnan 

and Suresh, 1998) developed cubic elements for analysis of 

curved beams.  (Kim et al., 2003) investigated free vibrations 

of thin-walled, non-symmetric, curved beams including second 

order effects.  (Lee et al., 2008) studied out of plane vibrations 

of plane curved beams using numerical solutions of the 

governing differential equations by Runge-Kutta methods.  

(Huang et al., 2000) did the same as (Lee et al., 2008) but using 

a finite element approach and arbitrary cross section.  (Huang 

et al., 1998) studied in plane vibrations of curved beams using 

power series approach. 

     Classical curved beam problem seems to be an active 

research area where many methods of applied mathematics still 

can be tested and applied. 

     This paper will consider an arbitrarily curved Euler-

Bernoulli beam.  To appreciate the effects of arbitrary 

curvature, the internal structure of the beam will be taken as 

simple as possible.  The beam is loaded with a singular force 

along its normal direction, while the load moves through the 

length of the beam with a constant velocity.  The end result is a 

sixth order partial differential equation with variable 

coefficients which turns out to be non-self-adjoint; therefore, 

the mode-shapes do not constitute an orthogonal family. When 

the time-response is computed, this leads to an infinite system 

of coupled ordinary differential equations which is truncated to 

get an approximate series solution. 

     As a concrete example in which the curvature changes along 

the beam, a specific shape of the beam is chosen such that the 

form of the resulting ordinary differential equation for the mode 

shapes is amenable to power series solution.  This results in an 

analytical (series) solution.  More general beam shapes would 

undoubtedly require  some type of numerical approximations to 

be made.

 

2.  Material and Method 

     The curved beam axis, which is the curve formed by the 

centroids of the cross-sections, will be named the beam axis. 

Let the tangent to beam axis at any point along the beam be the 

z-axis.  y-axis is normal to the plane in which the beam resides 

whne not moving; and x-axis, which is the normal to beam axis 

within the plane, completes the orthogonal frame.  If the xz-

plane is a symmetry plane of the beam axis, the beam would not 

move outside of the plane unless forced in that direction.  

Therefore, the moving load will be assumed to be in x-direction.   

The derivation of the governing equations were given by (Love, 

1944) using equation of motion. The derivation is summarized 

using vectorial notation in the general 3-dimensional case 

(Sakman and Uzal, 2017). 

The beam described here is a conservative system; thus the 

governing differential equations should result from the 

Hamilton’s principle, 

 

            𝛿 ∫ 𝐿 = 0
𝑡2

𝑡1
                                                (1) 
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where  

           𝐿 = 𝑇 − 𝑉                                                (2) 

is the Lagrangian with T representing kinetic energy and V 

representing potential energy of the system.  We show the 

components of moment as  𝑀𝑥 , 𝑀𝑦 , 𝑀𝑧 and the components 

of body force as  𝑓𝑥 , 𝑓𝑦 , 𝑓𝑧.  The beam will not move out of 

its plane if 

𝑀𝑥 = 𝑀𝑧 = 0 , 𝑓𝑦 = 0 

Kinetic and potential energies can be expressed as, 

          𝑇 =
1

2
∫ 𝑚 (�̇�2 + �̇�2)

𝑠

0
 𝑑𝑠                         (3) 

         𝑉 =
1

2
∫ (𝑀𝑦 (𝜅𝑦 − 𝜅y0))

𝑠

0
 𝑑𝑠                      (4) 

dot showing differentiation with respect to time.  In Eqs. (3) and 

(4), s and 𝜅𝑦 , 𝜅y0 are the arc-length and curvature after and 

before the deformation, m is the mass per unit length, U, W are 

deformations along x and z-axes.  The curvatures before and 

after deformation are related by 

          𝜅𝑦 = 𝜅𝑦0 +
𝜕

𝜕𝑠
(

𝜕𝑈

𝜕𝑠
+ 𝜅𝑦0𝑊)                       (5) 

During deformation, the beam axis is assumed to not undergo 

extension; this is expressed as 

           
𝜕𝑊

𝜕𝑠
− 𝜅𝑦0𝑈 = 0                                          (6) 

The relation between the bending moment and curvature 

change is expressed as 

            𝑀𝑦 = 𝑏(𝜅𝑦 − 𝜅𝑦0)                                    (7) 

where 

             𝑏 = 𝐸𝐼𝑦                                                     (8) 

is the bending rigidity. E is the the elastic modulus of the beam 

material,  𝐼𝑦   is the second moment of area of the cross section 

around y-axis. 

In the linearized theory (small deformation) the curvatures 

appearing in Eq. (4) can be assumed to be the curvatures before 

the deformation.  The deformation component  U  can be 

eliminated by (6),  𝑈 = (
1

𝜅𝑦0
)

𝜕𝑊

𝜕𝑠
  and the variational problem 

(1) can be expressed in terms of  W  only.  Then, the Euler-

Lagrange equations of (1) gives 

𝐺(𝑤) +
𝜅0′

𝜅0
2 𝑓𝑥 −

1

𝜅0
𝑓𝑥

′ + 𝑓𝑧 = 𝑚 (
𝜕2𝑤

𝜕𝑡2 +
2𝜅0′

𝜅0
2

𝜕3𝑤

𝜕𝑡2𝜕𝑠
−

1

𝜅0
2

𝜕4𝑤

𝜕𝑡2𝜕𝑠2)                                                               

(9) 

where  𝐺(𝑤)  is a linear sixth order partial differential operator. 

It involves only differentiation with respect to  s and has 

variable coefficients also depending on s. 

The equations developed here are completely general.  As a 

concrete example, we consider a beam for which the curvature 

before the deformation is given as 

              𝜅𝑦0 =
1

𝐿𝜃
                                                (10) 

where we introduced characteristic length L, since the curvature 

has dimension of inverse length.  𝜃 is the tangential angle which 

is related to arc-length by 

              𝑑𝑠 =
1

𝜅0
𝑑𝜃                                            (11) 

The actual shape of the curve can be found by integrating 

Eq.(11) and is shown in Figs. 1-10 together with mode shapes. 

We assume the moving load with magnitude F is always in the 

normal direction of the beam axis and moves with constant 

velocity U, i.e., 

            𝑓𝑧 = 0   ,       𝑓𝑥 = 𝐹 𝛿(𝑠 − 𝑈𝑡)                (12) 

where  𝛿  is the Dirac delta function. From Eq. (10) and Eq. 

(11), the relation between  s  and  𝜃  is 

            𝑠 =
𝐿

2
(𝜃2 −

𝜋2

16
)                                       (13) 

where  𝜃  changes in the interval 

            
𝜋

4
≤ 𝜃 ≤

3𝜋

4
                                              (14) 

so that the total length of the beam is  𝐿𝜋2/4. 

The displacement w is non-dimensionalized by the 

characteristic length  L  and time is non-dimensionalized by  

√𝜇𝐿4/𝑏; then  2𝑈√𝜇𝐿2/𝑏 is a non-dimensional velocity.  A 

suitable non-dimensional force is  2𝐹𝐿2/𝑏.  For specific 

computations later we take 𝐿 = 1. 

Consequently, Eq. (9) becomes, 

𝐻(𝑤) + 𝜃7𝑓𝑥 + 𝜃8 𝜕𝑓𝑥

𝜕𝜃
= 𝜃8 𝜕2𝑤

𝜕𝑡2 + 𝜃7 𝜕3𝑤

𝜕𝑡2𝜕𝜃
−       𝜃8 𝜕4𝑤

𝜕𝑡2𝜕𝜃2                                                        

(15) 

In Eq. (15) all quantities are non-dimensional, and we defined 

𝐻(𝑤) = 3(30 + 𝜃2)𝑤 − 3𝜃(30 + 𝜃2)
𝜕𝑤

𝜕𝜃
+ (𝜃4 + 42𝜃2 +

90)
𝜕2𝑤

𝜕𝜃2 + 𝜃(𝜃3 − 12𝜃2 + 39𝜃 −          90)
𝜕3𝑤

𝜕𝜃3 + 𝜃4 𝜕4𝑤

𝜕𝜃4 −

9𝜃3 𝜕5𝑤

𝜕𝜃5 + 𝜃5 𝜕6𝑤

𝜕𝜃6         (16) 

which is the same as  𝐺(𝑤)  except that expressed for this 

specific example and new non-dimensional variables. This 
simplification (and many others to be encountered later) 

was carried out by using symbolic manipulation codes.  The 

force term is 

          𝑓𝑥 = 𝐹 𝛿(𝜃2 − 𝛼2)                                   (17) 

with 
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          𝛼 = √𝑈𝑡 −
𝜋2

16
                                           (18) 

Note that  𝛼  depends on  t.  In Eq. (17), the right hand side is 

simplified by using the delta-function identity 

𝛿(𝜃2 − 𝛼2) =
1

2|𝛼|
[𝛿(𝜃 + 𝛼) + 𝛿(𝜃 − 𝛼)]  (19) 

As to the boundary conditions we assume that both ends of the 

beam are fixed, thus  

         𝑤 = 0 ,   𝑢 =
𝜕𝑢

𝜕𝑠
= 0                                  (20) 

at both ends, which, in terms of these variables become, 

          𝑤 =
𝜕𝑤

𝜕𝜃
=

𝜕2𝑤

𝜕𝜃2 = 0  ,   𝑓𝑜𝑟   

          𝜃 =
𝜋

4
  𝑎𝑛𝑑  

3𝜋

4
                                          (21) 

Some discussion about the boundary conditions will be suitable 

at this point.  The model being developed takes into account 

motion in the direction of the beam and normal direction in the 

plane of the beam.  The boundary conditions should reflect 

motion in both directions. Since small displacement 

magnitudes are assumed, fixed boundary conditions are 

choosen in the present study for all directions. 

We assume that the beam is unloaded at the beginning so that 

the initial conditions are 

            𝑤 =
𝜕𝑤

𝜕𝑡
= 0  ,   𝑓𝑜𝑟   𝑡 = 0                     (22)

3.  Solution 

As the first step for evaluating the response of the beam,  we 

must evaluate the eigensolutions or mode shapes of the non-

forced beam.  Considering the non-forced or homogeneous 

form of Eq. (16): 

       𝐻(𝑤) = 𝜃8 𝜕2𝑤

𝜕𝑡2 + 𝜃7 𝜕3𝑤

𝜕𝑡2𝜕𝑠
− 𝜃8 𝜕4𝑤

𝜕𝑡2𝜕𝑠2        (23) 

with homogeneous boundary conditions Eq. (21), assume 

time-harmonic solution in the form 

       𝑤(𝜃, 𝑡) = 𝑒𝑖𝜔𝑡𝑊(𝜃)                                    (24) 

Then Eq. (23) becomes, with prime denoting differentiation 

with respect to 𝜃, 

       𝐻(𝑊) = −𝜔2(𝜃8𝑊 + 𝜃7𝑊′ − 𝜃8𝑊′′)    (25a) 

with the boundary conditions 

𝑊 = 𝑊′ = 𝑊′′ = 0   𝑓𝑜𝑟    

             𝜃 =
𝜋

4
  𝑎𝑛𝑑  

3𝜋

4
                                     (25b) 

Eq. (25) is an eigenvalue problem with a discrete spectrum.  

The eigenvalues and eigenfunctions will be shown as 

              𝜔𝑛 , 𝜑𝑛(𝜃), 𝑛 = 1,2,3, …                     (26) 

Leaving aside, for the moment, the solution of the eigenvalue 

problem, the solution of the forced (non-homogeneous) 

differential equation can be written as 

             𝑤(𝜃, 𝑡) = ∑ 𝑞𝑛(𝑡)𝜑𝑛(𝜃)∞
𝑛=1                   (27) 

The force terms in Eq. (15) are also expanded in the  𝜑𝑛-basis.  

For example, the derivative of Dirac delta is expanded as 

             𝛿′(𝜃 − 𝛼) = ∑ 𝑐𝑛(𝑡)𝜑𝑛(𝜃)∞
𝑛=1               (28) 

and the coefficient functions  𝑐𝑛(𝑡)  are evaluated by 

multiplying this equation with  𝜑𝑚(𝜃)  and integrating 

(𝜑𝑚(𝜃), 𝛿′(𝜃 − 𝛼)) = ∑ 𝑐𝑛(𝑡)(𝜑𝑚(𝜃), 𝜑𝑛(𝜃))∞
𝑛=1                   

(29) 

where the paranthese show the “inner product” 

           (𝜑𝑚, 𝜑𝑛) = ∫ 𝜑𝑚(𝜃)𝜑𝑛(𝜃)𝑑𝜃
3𝜋/4

𝜋/4
          (30) 

Left hand side of (29) is  −𝜑𝑚′(𝛼) using the ususal properties 

of delta function ,  but the right hand side does notlead to a 

simple expression since  𝜑𝑛(𝜃)  is not an orthogonal family.  

Therefore, we truncate the infinite series at an iteratively chosen 

upper limit value  𝑛 = 𝑁  and compute the  𝑐𝑛(𝑡)  coefficients 

by solving a linear algebraic system of  N  equations.  Note that  

𝛿(𝜃 + 𝛼)  and  𝛿′(𝜃 + 𝛼)  do not contribute since  𝜃 = −𝛼  is 

outside the interval. 

As a result Eq. (15) becomes 

− ∑ 𝜔𝑛
2(𝜃8𝜑𝑛 + 𝜃7𝜑𝑛

′ − 𝜃8𝜑𝑛
′′)𝑞𝑛(𝑡)∞

𝑛=1 +

∑ 𝐹𝑛(𝜃, 𝑡)𝜑𝑛
∞
𝑛=1 = ∑ (𝜃8𝜑𝑛 + 𝜃7𝜑𝑛

′ −          𝜃8𝜑𝑛
′′)

𝑑2𝑞𝑛

𝑑𝑡2
∞
𝑛=1                                                   

(31) 

since  𝜑𝑛  satisfies Eq. (25a).  Here, all terms related to the 

forcing  𝜃7𝑓𝑥 + 𝜃8𝑓𝑥
′  have been collected in the middle sum in 

Eq. (31) in the function 𝐹𝑛(𝜃, 𝑡). Scalar multiplying Eq. (31) by  

𝜑𝑚(𝜃) leads to an infinite system of linear ordinary differential 

equations with constant coefficients for  𝑞𝑛(𝑡) , which we 

similarly truncate at  𝑛 = 𝑁 , 

∑ 𝜔𝑛
2𝐴𝑛𝑚

𝑑2𝑞𝑛(𝑡)

𝑑𝑡2
𝑁
𝑛=1 = − ∑ 𝜔𝑛

2𝐴𝑛𝑚𝑞𝑛(𝑡)𝑁
𝑛=1 +     ∑ 𝐹𝑛𝑚(𝑡)𝑁

𝑛=1   

,   1 ≤ 𝑚 ≤ 𝑁                            (32) 

where 

        𝐴𝑛𝑚 = (𝜃8𝜑𝑛 + 𝜃7𝜑𝑛
′ − 𝜃8𝜑𝑛

′′ , 𝜑𝑚)       (33a) 

        𝐹𝑛𝑚(𝑡) = ( 𝐹𝑛 , 𝜑𝑚)                                 (33b) 

Forcing term is the last sum in Eq. (32).  Homogeneous system 

corresponding to Eq. (32) is 

∑ 𝜔𝑛
2𝐴𝑛𝑚

𝑑2𝑞𝑛(𝑡)

𝑑𝑡2
𝑁
𝑛=1 = − ∑ 𝜔𝑛

2𝐴𝑛𝑚𝑞𝑛(𝑡)𝑁
𝑛=1 ,                    

      1 ≤ 𝑚 ≤ 𝑁                                                    (34) 

which will have solutions of the form 
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         𝑞𝑛(𝑡) = 𝑄𝑛𝑒𝑟𝑡                                           (35) 

Substituting, we obtain 

       ∑ 𝜔𝑛
2𝐴𝑛𝑚(𝑟2 + 𝛿𝑛𝑚)𝑄𝑛

𝑁
𝑛=1 = 0, 

       1 ≤ 𝑚 ≤ 𝑁                                                  (36) 

where  𝛿𝑛𝑚  is the Kronecker delta symbol.  Eq. (36) is an 

algebraic, linear, homogeneous system of equations. 

Eigenvalues (𝑟𝑘
2) and eigenvectors (𝑄𝑛

(𝑘)
) are evaluated by 

utilizing the coefficient matrix as usual.  In our case all 

eigenvalues turned out to be distinct, 

         𝑟𝑘
2   →   𝑄1

(𝑘)
, 𝑄2

(𝑘)
, … , 𝑄𝑁

(𝑘)
; 1 ≤ 𝑘 ≤ 𝑁     (37) 

Then the general solution of the homogeneous system van be 

written as 

     𝑞𝑛(𝑡) = ∑ 𝑄𝑛
(𝑘)

(𝐷𝑛
(𝑘)

𝑒𝑟𝑘𝑡 + 𝐸𝑛
(𝑘)

𝑒−𝑟𝑘𝑡)𝑁
𝑘=0                         

           1 ≤ 𝑛 ≤ 𝑁                                                 (38) 

where  𝐷𝑛
(𝑘)

 , 𝐸𝑛
(𝑘)

  are arbitrary constants.  The solution of the 

nonhomogeneous Eq. (32) is assumed to be of the form 

𝑞𝑛(𝑡) = ∑ 𝑄𝑛
(𝑘)

[𝐷𝑛
(𝑘)

(𝑡)𝑒𝑟𝑘𝑡 + 𝐸𝑛
(𝑘)

(𝑡)𝑒−𝑟𝑘𝑡]𝑁
𝑘=0          1 ≤ 𝑛 ≤

𝑁                                                       (39) 

by using the variation of constants method: here now 𝐷𝑛
(𝑘)(𝑡),

𝐸𝑛
(𝑘)

(𝑡)  are unknown functions.  This leads to two sets of N 

equations each 

∑ 𝑄𝑛
(𝑘)

[
𝑑𝐷𝑛

(𝑘)

𝑑𝑡
𝑒𝑟𝑘𝑡 +

𝑑𝐸𝑛
(𝑘)

𝑑𝑡
𝑒−𝑟𝑘𝑡]𝑁

𝑘=0 = 0   ,     1 ≤ 𝑛 ≤ 𝑁                       

(40) 

    ∑ ∑ 𝜔𝑛
2𝐴𝑛𝑚𝑟𝑘𝑄𝑛

(𝑘)
[

𝑑𝐷𝑛
(𝑘)

𝑑𝑡
𝑒𝑟𝑘𝑡 −

      𝑑𝐸𝑛
(𝑘)

𝑑𝑡
𝑒−𝑟𝑘𝑡]𝑁

𝑘=0
𝑁
𝑛=1 =

∑ 𝐹𝑛𝑚(𝑡)𝑁
𝑛=1   , 1 ≤ 𝑚 ≤ 𝑁      (41) 

These are solved for   
𝑑𝐷𝑛

(𝑘)

𝑑𝑡
  and  

𝑑𝐸𝑛
(𝑘)

𝑑𝑡
  and integrated to 

complete the solution. 

We still need to deal with the eigenvalue problem consisting of 

Eq. (25a) and boundary conditions (25b).  This can 

conveniently be done by using the method of power series.  

Assume an analytic solution around the middle of the range of  

𝜃, 

          𝑊(𝜃) = ∑ 𝑎𝑛(𝜃 − 𝜋/2)𝑛∞
𝑛=0                    (42) 

Substituting in Eq. (25a) after evaluating various derivatives of 

Eq. (42) leads to a recurrence relation for the coefficients  𝑎𝑛.  

The first six coefficients can not be evaluated since there are six 

boundary conditions to be satisfied.  Therefore, the general 

solution is of the form 

           𝑊(𝜃) = ∑ 𝑎𝑘𝜓𝑘(𝜔, 𝜃)5
𝑘=0                        (43) 

where  𝜓𝑘(𝜔, 𝜃)  are power series in  𝜃.  Some representative 

terms resulting from the recurrence relation are shown below: 

𝑎6 =
1

11520𝜋4
(−23040𝑎0 − 192𝜋2𝑎0 − 𝜋8𝜔2𝑎0

+ 11520𝜋𝑎1 + 32𝜋3𝑎1 + 2𝜋7𝜔2𝑎1

− 46080𝑎2 − 5376𝜋2𝑎2 − 32𝜋4𝑎2

+ 2𝜋8𝜔2𝑎2 + 69120𝜋𝑎3 + 2304𝜋3𝑎3

− 59904𝜋2𝑎4 − 768𝜋4𝑎4 + 34560𝜋3𝑎5) 

𝑎7 =
1

80640𝜋3
(−768𝑎0 − 16𝜋6𝜔2𝑎0 + 28𝜋5𝜔2𝑎1

− 𝜋7𝜔2𝑎1 + 1536𝑎2 − 192𝜋2𝑎2

+ 36𝜋6𝜔2𝑎2 − 2304𝜋𝑎3 − 96𝜋3𝑎3

+ 6𝜋7𝜔2𝑎3 + 36864𝑎4 + 3072𝜋2𝑎4

− 92160𝜋𝑎5 − 3840𝜋3𝑎5 + 115200𝜋2𝑎6) 

𝑎8 =
1

322560𝜋4
(−768𝑎0 − 112𝜋6𝜔2𝑎0 − 384𝜋𝑎1

+ 168𝜋5𝜔2𝑎1 − 16𝜋7𝜔2𝑎1 + 1536𝑎2

− 576𝜋2𝑎2 + 280𝜋6𝜔2𝑎2 − 𝜋8𝜔2𝑎2

− 2304𝜋𝑎3 − 672𝜋3𝑎3 + 102𝜋7𝜔2𝑎3

+ 36864𝑎4 + 4608𝜋2𝑎4 − 192𝜋4𝑎4

+ 12𝜋8𝜔2𝑎4 − 92160𝜋𝑎5 − 7680𝜋3𝑎5

+ 69120𝜋2𝑎6 − 11520𝜋4𝑎6

+ 80640𝜋3𝑎7) 

𝑎9 =
1

967680𝜋4
(−448𝜋5𝜔2𝑎0 − 512𝑎1 + 560𝜋4𝜔2𝑎1

− 112𝜋6𝜔2𝑎1 − 1024𝜋𝑎2 + 1232𝜋5𝜔2𝑎2

− 16𝜋7𝜔2𝑎2 − 1920𝜋2𝑎3 + 756𝜋6𝜔2𝑎3

− 𝜋8𝜔2𝑎3 + 3072𝜋𝑎4 − 1408𝜋3𝑎4

+ 200𝜋7𝜔2𝑎4 − 7680𝜋2𝑎5 − 320𝜋4𝑎5

+ 20𝜋8𝜔2𝑎5 − 92160𝜋𝑎6 − 46080𝜋3𝑎6

+ 322560𝜋2𝑎7 − 26880𝜋4𝑎7

− 645120𝜋3𝑎8) 

𝑎10 =
1

2419200𝜋4
(−1120𝜋4𝜔2𝑎0 + 1120𝜋3𝜔2𝑎1

− 448𝜋5𝜔2𝑎1 − 320𝑎2 + 3360𝜋4𝜔2𝑎2

− 112𝜋6𝜔2𝑎2 − 2688𝜋𝑎3 + 3192𝜋5𝜔2𝑎3

− 16𝜋7𝜔2𝑎3 + 1536𝑎4 − 4032𝜋2𝑎4

+ 1456𝜋6𝜔2𝑎4 − 𝜋8𝜔2𝑎4 − 3840𝜋𝑎5

− 2400𝜋3𝑎5 + 330𝜋7𝜔2𝑎5 − 46080𝑎6

− 80640𝜋2𝑎6 − 480𝜋4𝑎6 + 30𝜋8𝜔2𝑎6

+ 161280𝜋𝑎7 − 134400𝜋3𝑎7

− 322560𝜋2𝑎8 − 53760𝜋4𝑎8

− 3386880𝜋3𝑎9) 

In our computations, taking 175 terms for each 𝜓𝑘(𝜔, 𝜃) gave 

sufficient accuracy. 

Applying the boundary conditions (25b) to Eq. (43) results in a 

system of six linear, homogeneous, algebraic equations; and the 

coefficient determinat equated to zero is the eigenvalue 

equation for  𝜔 

|

|

𝜓0(𝜋/4) 𝜓1(𝜋/4) 𝜓2(𝜋/4) 𝜓3(𝜋/4) 𝜓4(𝜋/4) 𝜓5(𝜋/4)

𝜓0(3𝜋/4) 𝜓1(3𝜋/4) 𝜓2(3𝜋/4) 𝜓3(3𝜋/4) 𝜓4(3𝜋/4) 𝜓5(3𝜋/4)

𝜓0′(𝜋/4) 𝜓1′(𝜋/4) 𝜓2′(𝜋/4) 𝜓3′(𝜋/4) 𝜓4′(𝜋/4) 𝜓5′(𝜋/4)

𝜓0′(3𝜋/4) 𝜓1′(3𝜋/4) 𝜓2′(3𝜋/4) 𝜓3′(3𝜋/4) 𝜓4′(3𝜋/4) 𝜓5′(3𝜋/4)

𝜓0′′(𝜋/4) 𝜓1′′(𝜋/4) 𝜓2′′(𝜋/4) 𝜓3′′(𝜋/4) 𝜓4′′(𝜋/4) 𝜓5′′(𝜋/4)

𝜓0′′(3𝜋/4) 𝜓1′′(3𝜋/4) 𝜓2′′(3𝜋/4) 𝜓3′′(3𝜋/4) 𝜓4′′(3𝜋/4) 𝜓5′′(3𝜋/4)

|

|

= 0 
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Note that each entry in this determinat involves  𝜔  in a 

complicated way as can be seen from Eq. (43). We take 𝑁 = 5; 

the corresponding eigenvalues are 

𝜔1 = ∓9.12338967737348743757275069814 

𝜔2 = ∓17.2406494706429733466236011265 

𝜔3 = ∓31.4436893088065109131632954686 

𝜔4 = ∓46.2998412670707832165432810622 

𝜔5 = ∓66.922713782870457545444711657 

 

 

4.  Results and Discussion 

Figs. 1 and 2 show the first five mode shapes for both u (normal 

displacement) and w (tangential displacement) 
superimposed on the unloaded shape of the beam 

axis.  

 

 

 

 

 

First mode shape for normal displacement. Second mode shape for normal displacement. 

  

Third mode shape for normal displacement. Fourth mode shape for normal displacement. 

  

Fifth mode shape for normal displacement. 
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Figure 1. Mode shapes for normal displacement. 

 

 

               First mode shape for tangential displacement. Second mode shape for tangential displacement. 

  
 

 

Third mode shape for tangential displacement. 

 

 
 

Fourth mode shape for tangential displacement. 

  
                                                                         
 

Fifth mode shape for tangential displacement. 

 
Fig. 2. Mode shapes for tangential displacement. 
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We choose the non-dimensional velocity of the load as  𝜋2/20  

so the load remains on the beam between  𝑡 = 0  and  𝑡 = 5.  

At  𝑡 = 0, the beam is not moving; therefore only the forced 

part of the solution of Eq. (34) is computed for  0 ≤ 𝑡 ≤ 5.  

After the load leaves the beam, only the homogeneous part of 

the solution is used with the shape and velocity of the beam for 

 𝑡 = 5  from the previous solution taken as initial conditions.  

Fig. 3 shows the total displacement, √𝑢2 + 𝑤2. The sign and 

direction of the total displacement can be inferred from the 

components u, w.  Therefore, these figures show the actual 

shape the beam has at these given times.  The non-dimensional 

force is taken as  𝐹 = 250. 

 

 

t =0,5 t =1,0 

  
 

 
 

 

t =2,0 

 

 
 

 

t =3,0 

  
t =4,0 t =5,0 

  
Fig. 3. Total Displacements at different times before the moving load leaves the beam. 

 

 

At   𝑡 = 5 the load leaves the beam after which the total 

displacement (as explained above), multiplied by 5 is shown 

Fig. 3. 
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t =7,0 t =9,0 

  
t =11,0 t =13,0 

  
 

t =15,0 
 

t =17,0 

                         
 

 Fig. 4. Total Displacements at different times after the moving load leaves the beam. 

 

Fig. 4. is free vibrations of the beam after the load leaves it.  

Comparing Fig. 4. (t=15) and Fig. 4. (t=17) for example, the 

displacement is larger in Fig. 4. (t=15).  This means the velocity 

would be larger in Fig. 4. (t=17) since the total energy is 

conserved. Looking at Fig. 3. the displacement is larger 

immediately after the load is on the beam.  In this case the total 

energy is not conserved because of the force. 

 

5.  Conclusions and Recommendations 

We reported an analytic series solution for the response of a 

plane, arbitrarily curved beam subject to a moving load.  The 

shape of the beam was computed both when the load is on the 

beam and after the load leaves the beam.  Mode shapes were 

also computed and presented as part of the solution. Although 

the load was assumed to be always in the direction of the normal 

to the beam axis, loading in any direction in the plane can be 

considered. 

It can be observed that the mode shapes for the normal 

displacement involve more points of inflection compared to the 

mode shapes of the tangential displacement.  The simple reason 

for this is the relation between them, Eq. (5).  The vibrations 

are more chaotic, local and have larger amplitude immediately 

following the entrance of the moving load on the beam from the 

boundary.  As the load moves towards the other boundary, the 

vibrations become more ordered and less in amplitude, 

probably due to the effects of the moving load being felt at the 

other parts of the beam.  After the load leaves the beam, the 

beam undergoes free, undamped vibrations since no damping 

effects are considered here. The vibrations seem to repeat at 

roughly 10 second-intervals. 
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