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Abstract—Today, there are many different methods for analyzing and detecting malware. Some of these methods are basically
based on statistical analysis, some on static and dynamic analysis methods, and some on machine learning methods. The studies
carried out to classify malware with statistical machine learning-based analysis methods are generally based on complex and
challenging feature extraction methods, and manual feature extraction is a very tedious process. However, the capability of
deep learning methods to automatically extract complex features in a way simplifies this arduous process. In this study, a
novel multimodal convolutional neural network-based deep learning architecture and singular value decomposition-based image
feature extraction method are proposed to classify malware files using intermediate-level feature fusion. In addition to this,
the performances of classical machine learning algorithms, neural networks, and the proposed multimodal convolutional neural
networks-based deep learning algorithm are compared, and their performance is revealed. The performance of the proposed
algorithm was also compared with the results of studies conducted with the same data set in the literature. The experimental
results concluded that the proposed method is more successful than other methods or showed the same performance even though
it did not use manual feature extraction techniques. It has been observed that with architecture, intermediate fusion approaches
have the ability to obtain more specific features more effectively than other methods, thus improving performance values more
than other methods.
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1. Introduction

Owing to the amount and variety of malicious
software (malware) attacks, analysts have evolved
techniques for automated malware identification
and classification, rather than manually reviewing
malware files in a time-consuming endeavor [1],
[2]. Simultaneously, threat actors have created
methods to circumvent signature-based identi-
fication techniques. Both analysts and malware
writers have shown that malware detectors are,
sadly, constrained in their capabilities and are

easily managed to evade by convenient obfusca-
tion methods [3]. Malware software and malicious
technology not only cause significant expenses
and damages, but can have a detrimental effect
on the integrity of devices and networks. Mal-
ware writers, hackers, and computer technology
professionals are constantly refining their tactics
for defeating one another. Regrettably, there is no
universal valid solution or suitable approach for
detecting and removing malware. This condition
is exacerbated even by undiscovered bugs in
computer applications and internet resources [4].
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Such flaws would stay undetected until they
are completely exploited by malware creators,
resulting in significant reputational, operational
and financial damages.

The most efficient means of defending against
malware is by the security software, which is fo-
cused chiefly on signature-based identification [5]
to secure individual users. A signature is a se-
quence of function codes that serves as the sole
means of identifying a piece of software or an
application that can be differentiated from other
application or software codes. Malware writers,
on the other hand, can avoid this identification
approach by variant creation strategies [6]. There
are two primary categories of generation technolo-
gies: shared fundamental and obfuscation technol-
ogy. The popular fundamental technology is that
an attacker creates exploit code derivatives by
recycling a basic unit. Obfuscation technology [7]
was designed to supplement emerging protection
and identification systems. It has become more
commonly implemented and is classified into two
groups based on the design philosophy. One is
reverse engineering’s intrusion uncertainty, which
prohibits reverse engineering from obtaining the
right study outcome. Another is command and
control flow [8] inconsistency, which is often used
to disguise malicious code’s inner call logic by
packaging, adding junk code, deleting instruc-
tion equivalents, or reallocating registers. The
fundamental technology for identifying malicious
variations is to isolate and reflect the malicious
behavior’s primary characteristics. So far, mal-
ware function manifestations have been mostly
grouped into two types: static and dynamic [9].
The features are derived from malicious code
depend on the static depiction by evaluating
the Portable Executable data format [10], binary
byte and disassembled codes and device call

following structure. The static depictions, on the
other hand, is often susceptible to obfuscation
technology. Unlike static depictions, dynamic de-
pictions are based on the concept of enclosing the
target software or code in a controllable virtual
environment such as a sandbox, and determining
if it really is infected or malicious by observing the
actions of the executing operation. For instance,
identification can be accomplished by evaluating
the series of Application Programming Interface
calls or instruction streams in terms of certain
activities. In comparison to static depictions, the
dynamic depictions does not require complex
reverse engineering techniques such as decryption
and disassembly [11]. While dynamic identifica-
tion is far more resistant to generic obfuscation,
it is really a time and resource-intensive pro-
cess, requiring significant processing time and
disk capacity. Additionally, since the complex
execution requirements are not always resolved,
certain malicious functions and calls should be
shown, impairing malicious code detection.

This article is organized into five sections.
The first section provides a detailed literature
review for research and methods on past malware
classification and detection. In the second section,
the definition of the specific problem aimed to
be solved within the scope of this study, and
the contributions of the proposed method for the
solution are explained in detail. The multimodal
singular value decomposition-based convolutional
neural network method, which is basically based
on the conversion of malware files to images,
has been proposed as an innovative approach,
and this method is explained in detail in the
third section. In the fourth section, the results of
the experimental studies performed on the data
sets widely used in the literature are presented
to examine the performance of the proposed
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method and to prove its accuracy. In the last
section, in the light of the information obtained
based on the experimental findings obtained as
a result of this study, predictions are expressed
in terms of increasing the performance of the
suggested methodology and its use for solving
various problems.

2. Machine Learning Methods for Mal-
ware Classification

According to the literature review carried out,
the researches conducted in this field focus on
the methods and approaches explained in the
following titles:

2.1. Feature Based Machine Learning Methods

To fix the shortcomings of the classical ap-
proaches and in light of the possibility that
variations of malware groups usually exhibit com-
mon behavioral behaviors [5], security authorities
began developing more advanced classification
methods focused on machine learning and data
mining technologies [14]. These strategies use
a variety of feature extracting approaches in
order to create more smart malware security
mechanisms. Numerous ML techniques are used
to detect and identify malware into its forms and
families, with the aim of excluding those who ex-
hibit unusual behavior for comprehensive study.
An early study [12] suggests a flexible paradigm
in that they can distinguish infected files from
normal files utilizing machine learning techniques.
They used one-sided and kernelized one-sided
neurons in the study to reduce false positives and
differentiate between uninfected and files contain-
ing malware. Another research [13] suggested a
framework in that they used machine learning
algorithms to conduct data analysis, malware
recognition, and new malware identification. The

data processing is carried out using gray scale
pictures, Opcode n-grams, and feature extraction.
To find novel malicious software groups, the
identification part of the method employs the
shared nearest neighbor clustering. In a study,
the usage of ML and data mining to identify and
categorize malicious executables on the fly was
reported [14]. They encoded malicious executa-
bles using n-grams, and then selected the most
appropriate features for prediction; they tested a
number of inductive techniques, including NB,
DT, SVM, and boosting. Finally, they found
that boosted decision trees outperformed other
models in terms of a good classification metric as
AUC. They also measured how well the methods
categorized executables depending on the role of
their payloads, with an AUC score of about 0.9
for detecting payload function.

The entropy based analysis was performed
since files containing packed or encrypted code
fragments usually have a greater entropy value
than original code. Numerous studies have been
conducted on entropy-based research. In [15], a
method was proposed to autonomously calculate
the degree that changes according to the file’s
systemic entropy raise suspicions. The value men-
tioned earlier was computed with the executable’s
structural entropy’s wavelet-based energy spec-
trum and then fitted separate LR models over the
different stages to generate a series of parameters
that weigh the intensity of all resolution energy as
a probability. In another study [16], Again, meta-
morphic malware was detected using entropy-
based features. They used wavelet transform to
identify regions with large differences in entropy
values. They also used the Levenshtein distance
to determine the resemblance between two data.
As a result, provided an unfamiliar section of
code, it could be categorized as the group related
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to the most identical example of the training
set. A typical technique for reducing a file’s
entropy is to pad no-operation commands in the
required sections in a file. Nonetheless, files that
contain native, compressed, padded, or encrypted
sections usually have different and special entropy
values. Therefore, analysts began studying a file’s
anatomical entropy [17]. To identify malicious file,
the intrinsic entropy of an undisclosed file was
contrasted to the file in the training data.

Application Programming Interfaces imple-
mented as function calls are widely recognized
since highly distinguishing characteristics then
they can be used as features in ML studies.
The literature indicates that invocation of API
functions may be used to model the actions
of a program. API functions and device calls
are mostly concerned on the services offered
by operating systems. Since programs cannot
access system resources in any other way but
by API functions, the execution of specific API
functions offers critical knowledge about malware
activity. In a recent research [18] it was suggested
a three-step classification system for Portable
Executable (PE) files dependent on the API
calls they use. They began by analyzing the PE
files and obtaining a collection of acquired API
calls. Second, they used the Clospan algorithm
to reduce the function vector. Finally, a Random
Forest algorithm was trained using the subset of
features obtained. In another study [19], a rule-
based method for malware categorization was
suggested. The framework was composed of three
modules: a PE translator, a rule builder for
Objective-Oriented Associations (OOA), and a
malware identification module. The executable’s
PE parser was charged with decoding it and
retrieving the static operation requests for the
relevant API functions. These requests were then

utilized to create signatures for the PE data,
which were then placed in a signature database.
Then, using an OOA algorithm, class association
rules were generated and saved in the rule reposi-
tory. Finally, the malware identification unit was
transferred the function calls and guidelines in
order to decide if a file is benevolent or harmful.

2.2. Deep Learning Based Methods

Recently, deep learning has been applied to
the classification of malware. A recent study
reduced the dimensions of the input function
vectors by utilizing a Deep Belief Network (DBN)
architectures as to learn efficient data depictions
in an unsupervised way (autoencoders) [20]. By
training the DBN on unlabeled results, they
outscored the K-NN, SVM, and DT algorithms
in terms of classification accuracy. In [21], a
DNN based malware detection architecture using
static analysis results was proposed. In the study
Byte/Entropy Histogram, PE Import, String 2D
Histogram, PE Metadata Features were used to
form a new feature vector. By using this feature
vector they trained a deep learning model with
Bayesian calibration. A novel multi-task, DL
architecture for binary malware categorization
was suggested by using feature extraction [22].
Their multi-task design combines both the binary
and malware family classification loss functions.
Additionally, they suggested a common malware
family classification architecture in their study.
Both models were trained using 4.5 million files
gathered through complex file processing of ma-
licious and benign files, and models were tested
on a 2 million file holdout data. Their algorithms
were reached an error rate of 0.358 percent, their
regular (non-multitasking) model reached a 2.94
percent error rate. In a recent study [23], both
convolutional and recurrent neural networks are
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used to acquire the features for classification
problems. They obtained a hierarchical charac-
teristic extraction structure using this approach,
which blends n-gram convolution with complete
sequential modeling. Their results showed that
the proposed solution outperforms commonly
used approaches for malware classification, with
an overall precision value of 85.6% and recall
value of 89.4% utilizing suggested hybrid neural
network architecture.

2.3. Novel Malware File to Image Conversion
Based Methods

In [1], pioneered an intriguing method for mal-
ware representation, in which malware’s binary
material is translated and rendered as a grayscale
picture. This is accomplished by translating each
byte into a pixel in a picture of values ranging
from 0 to 255. Following that, the resultant
collection is reorganized into a two-dimensional
array. The image depiction of malware relating to
a particular malicious software family is very close
to that of malware connected to a related mali-
cious software family. This visual resemblance is
the outcome of malware code pieces reutilization
when creating novel malware binaries. Thus, if
previously implemented binaries are recycled to
create new ones, the resultant binaries could
become identical. In most instances, by depict-
ing a malware file as a grayscale image, minor
differences between malicious software codes be-
longing to the same family may be detected.
In another study with the same approach [24],
after the malware-to-image conversion, several
hand-made features were derived dependent on
intensity, Wavelet, and Gabor filters. By using
these features, machine learning algorithms are
applied for classification. On a specific dataset
consisting of 12000 benign and 15000 malicious

samples, the output of SVM as a machine learning
model was evaluated using 70% for training and
30% for research.

Thanks to the approach of converting malware
files to images, it has made it possible to use deep
learning architectures such as convolutional neu-
ral networks in this field. The use of CNN-based
algorithms in the solution of this problem is an in-
creasingly popular approach. For example, in [25],
They suggested a CNN-based classification archi-
tecture for malware samples. They transformed
malware files to grayscale pictures and then
equipped a CNN architecture to classify them.
According to their experiments on two difficult-
to-classify malware datasets, this suggested ap-
proach outperforms the SOTA methods. On the
Malimg and MS datasets, the proposed approach
reached an accuracy of 98.52 percent and 99.97
percent, individually. More novel approach has
been proposed in [26]. They intended to extend
deep networks to malware image detection in
light of recent progress with Siamese NN for one-
shot image recognition. They converted malware
examples to rescaled monochrome images and
categorized them according to their hash value
within the same species. The siamese architecture
was taught to rate association among examples
during the training and testing periods. Their
networks outperformed the baseline approaches
in the trial. Additionally, their study showed that
their architectures were more eligible for 1-shot
learning of malware images than traditional DL
models. In another research [27], They proposed
a novel classifier, called IMCFN, that uses CNN-
based deep learning to recognize variants of
malicious software species and advance malware
disclosure. Their approach is unique in that it
proposes a novel strategy for multi-class clas-
sification problems using an adjusted CNN ar-
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chitecture for detecting and identifying malware
classes. They contrasted IMCFN’s efficiency to
that of Inception Version III, Res-Net50, and
VGG-16. They discovered that their approach
would efficiently identify embedded code, ob-
scured malware, and malware class modifications
whilst requiring minimal work-time. The pro-
posed approach was stated to be resistant to
straightforward obfuscation techniques typically
utilized by attackers to hide malicious code,
such as packing and encryption; moreover, it
shows that malware depicted in colored images
outperformed grayscale malware images in terms
of accuracy. Another study by the same au-
thors [28], suggested a novel architecture focused
on ensemble convolutional neural networks (IM-
CEC) for the successful identification of packed
and unpacked malware. Their primary claim is
that since various CNNs have different deeper
architectures, they have distinct semantic depic-
tions of the image; hence, a collection of CNN ar-
chitectures enables the extraction of features with
superior quality than conventional approaches.
According to their result, using malware raw as
an input, they accomplished a higher detection
performance with a low false discovery rate with
greater than 99 percent accuracy in detecting
unpacked malwares and greater than 98 percent
accuracy in detecting packaged malwares.

As a result of the literature review, the solution
methods for the problem of malware detection
and classification, which was examined with dif-
ferent perspectives, the approach of using clas-
sical machine learning algorithms by extracting
manual attributes has been replaced by methods
of classifying malicious software files using deep
learning algorithms by converting them into im-
ages [29]. However, the detection and classifica-
tion of malicious software and its variants that

are encrypted or packaged with some methods
and software is still a problem that needs to be
dwelled on. In this study, a new image processing
based methodology and method is proposed by
focusing on this subject.

3. Image Based Malware Classification
with Singular Value Decomposition
Features

The grayscale picture depiction of malicious
software has a number of disadvantages that are
directly linked to the image generation process.
Primarily, files are not two-dimensional images,
and converting them into such introduces super-
fluous predictions. At the first step, an image
width value must be chosen, which introduces a
new hyper-parameter to tune. Take note that the
image’s height is determined by the binary’s scale
by specifying the dimension. Second, it introduces
spatial correlations among pixels in distinct rows
that do not occur. Additionally, it tends to
suffer from code obfuscation methods, as most
of the static malware features. Encryption and
compression, in particular, will totally alter the
inner layout of a binary code, causing methods
relying on this depiction to struggle to identify it
accurately. In Figure 1, example malware images
are shown for two different malware families
(Fakerean and Swizzor.gen!E) after conversion
process was completed. As seen from the figure,
After the malware files are converted to images,
the malware belonging to the same family is
very similar when they are represented as images,
while the malware belonging to different families
are depicted by different images and shows signifi-
cant dissimilarity. Obviously, the images per each
class exhibit significant variations that help us
distinguish samples from one class from samples
from the other malware family.

47



INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
M.U. Demirezen, Vol.10, No.2, pp.42-59

Fig. 1. Example Malware Images After Conversion From Binary Files [1].

To fight malware proliferation, it is critical to
develop novel techniques for rapidly identifying
and classifying malicious files so that their actions
can indeed be evaluated. Machine learning-based
malware classification approaches for detecting
and classifying malware depend heavily on a
single form of function or modality of data.
However, malware identification is a multimodal
research challenge, as it involves several data
modalities. Multimodal learning is the study of
how to process certain multimodal signs in combi-
nation. While mixing various modalities or types
of knowledge to improve efficiency can sound
attractive, integrating the differing amounts of
noise and tension between modalities is extremely
difficult.

Multimodal techniques may be classified into
several categories based on the way the var-
ious modalities are integrated. Earlier fusion
techniques combined the features derived from
different modalities into a single depiction. Con-
catenating these function vectors produces a fused
representation. Following that, a single model is
equipped to discover the correlations and asso-
ciations between the modality’s characteristics.
Through combining the intermediate features
extracted from the different models, intermediate
fusion approaches provide a common depiction.

After concatenating such intermediate features,
a machine learning model is equipped to catch
relationships among modalities. Fusion at the
decision-making level or at a later stage. In
comparison to early fusion, late fusion approaches
train a single algorithm for each module and
combine the trained individual values using a
fusion process like averaging, polling, or a final
trained algorithm or model. The primary benefit
of late fusion is that it enables the use of several
templates on multiple modalities, thus increas-
ing flexibility. Additionally, since projections are
rendered independently for each modality, it is
simpler to deal with incomplete modalities.

In this study, an intermediate fusion-based
approach has been proposed as a multimodal
method for detecting and classifying malware
and this process is given in Figure 2. As the
suggested method, malware files are converted
to color and gray scale images. Three different
matrices are obtained by applying the single
value decomposition of the gray scale images. The
previously produced color image and these three
matrices are given as input to 4 different non-
complex convolutional neural network models.
The convolution layer outputs in the last layer
of each convolutional network are combined on
a single vector, and the intermediate layer fusion
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Fig. 2. Proposed Pipeline for Image Based Malware Classification with Matrix Decomposition and
Multimodal Deep Learning.

process is performed. At this stage, the features
obtained by convolutional neural networks are
combined on a vector and a new feature vector
will be obtained by combining the information
produced by each model output. In the next
step, this new fusion vector obtained is input to
a classical multilayer perceptron neural network.
As a result, with the proposed architecture, by
obtaining 4 different representations of a single
malware image data, it will be provided to
train a neural network type classifier with the
new information obtained by fusing these new
representations.

3.1. Malware to Image conversion

Malware versions that are members of the same
family usually share a typical texture. To benefit
from this idea, the binary malware file must first
be converted to an image to obtain image-based
functionality from a malware sample. This idea
is a basic but efficient method for visualizing
raw malware binary files into a color picture to
represent the problem in 2-dimensional space.
Also, This approach is devoid of the need for
feature engineering or domain specialist exper-
tise and provides the usage of computer vision
algorithms specific to this problem. In order to
convert binary malware files to images, the binary

file of a specified malware is first read into a vector
of 8-bit unsigned integers. Following that, each
part of this vector’s binary value is translated to
its decimal counterpart, which is then stored in
a new numerical vector symbolic of the malware
sample. Finally, the resulting decimal vector is
transformed into a two-dimensional matrix and
rendered as a grayscale image. The spatial resolu-
tion of the image is the width and height of the 2D
matrix as a grayscale image, and their values are
determined primarily by the size of the malware
binary file. These decimal vectors are resized
using the spatial resolution according to idea
from [1] and given in Table 3.1. Finally, A color
map to obtain a colored version of the images is
applied to these two-dimensional sequences. All
necessary steps are shown in Figure 3.

3.2. Singular Value Decomposition

Singular Value Decomposition [30] is a well
known and generic linear algebra method that
is used to analyze matrices. A matrix Z of size n
× n can be represented by three special matrices
as defined in Equation (1). It Is a sophisticated
linear algebra procedure that yields a foundation
for the matrix’s row and column spaces as well
as an indicator of the matrix’s rank.
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Fig. 3. Malware to Image Conversion and SVD Feature Extraction.

TABLE 1
File Size vs. Image Width for Malware to Image Conversion [1].

File Size (Kilo Bytes) Image Width (Pixels)

0 kBytes <F.S. <10 kBytes 32

10 kBytes <F.S. <30 kBytes 64

30 kBytes <F.S. <60 kBytes 128

60 kBytes <F.S. <100 kBytes 256

100 kBytes <F.S. <200 kBytes 384

200 kBytes <F.S. <500 kBytes 512

500 kBytes <F.S. <1000 kBytes 768

F.S. >1000 kBytes 1024

Zm×n = Um×m × Sm×n × V T
n×n (1)

Where U is an m × m orthogonal matrix, V is
an n × n orthogonal matrix, and S is an m × n
matrix with the diagonal elements representing
the singular values, σ1>σ2>····>σn, of Z. The
matrix S can be represented in Equation (2).

In Equation (2), The columns of U and V
matrices are named the left singular vectors,
and right singular vectors respectively. The left
singular vectors of matrix Z are defined as the
eigen vectors of Z.ZT , and the right singular
vectors are named as the eigen vectors of ZT .Z.

Singular Value Decomposition may be used for
a variety of purposes, including watermarking
images, calculating weighted least squares, and
optimizing prediction. Each singular value corre-
sponds to an image layer’s light intensity, whereas
the related pair of singular vectors corresponds
to the image’s geometry. U and V are unitary
orthogonal matrices, whereas S is a diagonal
matrix of decreasing singular values. Each eigen-
image’s singular value is literally its L2-norm. Due
to the fact that SVD gives the maximum the
highest singular values, the first eigen-image is
the template that explains the highest level of
variance-covariance form.
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By evaluating the biggest singular values that
constitute the majority of the image’s resources,
SVD may provide low-rank estimations that may
be ideal sub-rank estimates [31]. SVD demon-
strates how to view a matrix as a sum of lower
rank matrices especially rank-one. A matrix Z
can be generated approximately by a shortened
matrix Zkof unique rank k and can be seen
in Equation (3). Utilizing SVD for matrix ap-
proximation has a range of functional benefits,
including the ability to store the approximation
Zk of a matrix rather than the entire matrix Z,
which is the case in image compression and, more
lately, image watermarking frameworks.

Z =
t∑

i=1

siuiv
T
i ≈ s1u1v

T
1 + s2u2v

T
2 + . . . .+ stutv

T
t

(3)
In Equation (3), Z equals to summation of the

product of t rank-1 matrices. The fractional sum-
mation extracts as much energy of Z as a matrix
with at maximum rank-r can. The Frobenius (L2)
norm is used to describe the level of energy in this
situation. Each outer product (ui.vi

T ) is a basic
rank one matrix that can be held in m+n numbers
(m and n are the number of the rows and columns
of the matrix Z respectively), as opposed to the
m×n of the initial matrix. The memory contains
(m+n+1)×t for truncated SVD transformations
with rank-t elements [31].

After the malware transformation process is
completed, the 2-dimensional matrix obtained
is parsed into U, S and VT matrices by the

singular value decomposition method. The U
and V matrices show the matrices consisting
of orthonormal vectors belonging to the image
representing the malware, while the S matrix
shows the eigenvalues for the same image. As a
result of this process, the most distinctive features
on the image can be revealed. The sizes of the
3 matrices obtained may differ. For this reason,
these three matrices are also subjected to the
normalization process.

3.3. Image Normalization

Normalization is a pre-processing phase em-
ployed to rescale the input data in regards to the
CNN configuration to make inputs similar scale
and statistical properties. Malicious software im-
ages are yielded from binary malware files, and
are not pre-configured in terms of scale. To ad-
dress this problem, malware images were resized
and set the size of 224×224 pixels. The primary
advantage of the normalization method was that
it reduced the scale of the input images, which
was beneficial for CNN training. Additionally,
certain critical characteristics were missing during
the dimensionality reduction phase. As a result,
the significant number of malware images in
the dataset retained their texture characteristics
throughout the normalization phase.

Since the U, S and VT matrices obtained by the
singular value decomposition method will be used
as an input in the convolutional neural network
architecture in the next step, the normalization
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process is applied to these matrices as well. As
with the approach applied to previous malware
images, these matrices are resized to 224×224
dimensions.

3.4. Convolutional Neural Networks

A Convolutional Neural Network (CNN) [32],
is a form of Deep Learning model that can accept
an image as input, allocate significance by using
learnable parameters as weights and biases to
various objects in the image, and distinguish
between them. CNNs need far less pre-processing
than other classification algorithms. Although ba-
sic techniques include hand-engineering of filters,
CNNs may acquire these filters with sufficient
preparation. A CNN’s configuration is similar
to the connection structure of Neurons in the
Human Brain and was influenced by the Visual
Cortex’s configuration. Neural circuits react to a
stimulus only within a small area of the field of
vision referred to as the Receptive Field. A set
of such fields will converge to fill the visual space
fully. A high level architecture diagram of CNN
is shown in Figure 4.

Many layers comprise a convolutional neural
network. These layers can take on a variety of
forms, but the most fundamental and popular
are as follows:

Convolutional layers (CL) are made up of a
grid of neurons in lattice shape. It is therefore
essential for the preceding layer to be a grid of
neurons in similar shape. Every neuron accepts
inputs from lattice parts of the preceding part of
the architecture; the trainable weight parameters
of this lattice section are equal for all neurons that
existed in the CL. Therefore, the CL is simply
the preceding layer’s 2 dimensional convolution,
in which the weights define a convolution filter.
Additionally, each convolutional layer can include

several meshes; each mesh takes inputs from
every other nodes in the former layer, utilizing
theoretically distinctive filters.

Following each CL, a pooling layer (PL) can be
added. The PL subsamples tiny square chunks
from the CL to generate an individual contri-
bution from each chunk. This pooling can be
accomplished in a variety of forms, either by
taking the average or limit of the neurons in the
row, or by learning a linear mixture of the units
in the lattice. PLs might all be maximum-pooling
operations; that is, they will always calculate the
maximum amount of the pooled sections. But
other type of pooling operations can also be used
such as average pooling, and global pooling.

Eventually, following to the many convolutional
and max pooling layers, the neural network’s
high-grade inference is carried out using fully-
connected layers. A fully-connected layer executes
a flattening operation, and binds all neurons in
the preceding layer to each and every neuron in
the subsequent layer in the architecture. Due to
the fact that fully connected layers are no longer
spatially positioned, behind a fully connected
layer, there may be no convolutional layers. They
can be visualized as one-dimensional after a
flattening operation.

With the implementation of suitable filters, a
CNN is capable of effectively capturing the spatial
and temporal relations in a picture. Owing to
the reduced set of elements and reusability of
weights, the model achieves a closer match to
the image or tensor type of data. In other terms,
the network may be programmed to recognize the
image’s sophistication.

Assume that a layer of N×N size neurons
preceded by a layer of convolutional neurons.
If we select to use an m×m size filter ω,
the convolutional layer output will be of size
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Fig. 4. Convolutional Neural Network High Level Diagram [33].

(N−m+1)×(N−m+1). In order to calculate the
pre-activation function input to some unit xℓ

ij in
the layer, It is required to add up all the in-
dividual contributions as weighted by the filter
components from the previous layer cells. This
operation is given in Equation (4).

oℓij =
m−1∑
x=0

m−1∑
y=0

ωxyf
ℓ−1
(i+x)(j+y) (4)

After this operation is conducted for a layer,
a nonlinear activation function is applied to the
output of the each neuron in the layers. This
operation is given in Equation (5).

yℓij = σ
(
oℓij

)
(5)

In Equation (5), σ is an activation function
such as ReLU, hyperbolic tangent, Sigmoid or
similar type of nonlinearities for neurons. The
max-pooling layers do not perform any learning
operation. Other than that, then, reduce the
problem’s scale by adding sparsity. During the
training, at the forward propagation step, it

reduces k×k blocks to a single value. Then, at
the backpropagation stage, from the proceeding
layers, this single value receives an error and
gradient. This error value is then simply redi-
rected to the location from which it originated.
Due to the fact that it originated from a single
location in the k×k block, the gradients obtained
by backpropagation operation from max-pooling
layers are very sparse.

In this study, CNNs are used to provide feature
extraction for image data. However, by applying
an architecture different from the standard convo-
lutional neural networks architectures, it has been
used to automatically extract and fuse different
features on multiple images.

3.5. Multimodal Convolutional Neural Network
with Intermediate Fusion

The paper propose an intermediate fusion-
based solution as a multimodal system for de-
tecting and classifying malware, and this archi-
tecture is given in Figure 5. Malware files are
translated to color and grayscale photos using
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the recommended process. Three distinct matri-
ces are obtained by decomposing the gray scale
representations into single values. The previously
produced color image and these three matrices are
fed into four separate uncomplicated CNN mod-
els. The outputs of each convolutional network’s
final layer are merged into a single vector, and
the intermediate layer fusion step is done. At this
point, the CNN features are merged into a vector,
and a new feature vector is created by integrat-
ing the information provided by each model’s
performance. Following that, this newly created
fusion vector is fed into a classical multilayer
perceptron neural network. As a consequence,
utilizing the proposed architecture, it would be
possible to train a neural network style classifier
using the new knowledge gained from fusing these
new representations.

In this study, 2 different types of convolutional
neural networks are used for 4 different images.
The main reason for this is that different types
of features are obtained by CNNs by making
use of the proposed multimodal architecture and
then fused. For this purpose, VGG16 [34] ar-
chitecture was used for the image obtained by
converting the malware to image and normalizing
it. This architecture was chosen because it is
simpler compared to the others, the selected
CNN architecture is less prone to overfitting
problems due to the limited number of malware
samples in the data set, and also because it can
successfully extract basic image attributes on the
malware image. On the other hand, determining
the textures on the image, especially performing
this analysis on the SVD matrices, will allow
extracting important features in the classification
of malware. On the other hand, obtaining texture
based features in multiple resolution will provide
important information in solving the classification

problem. Therefore, for each matrix obtained
after SVD process, architectures are used in Pyra-
mid CNN [35], [36], [37] structure. In this way,
both vision-based and texture-based features on
the image data will be obtained at the same
time and will be combined in the last layer
of CNN architectures and subjected to fusion
process. The biggest advantage of this proposed
method is that it enables to obtain more effective
and distinctive features by using both different
solutions and classical image features together.
These advantages provide the usage of multi-
resolution information and both global and local
features together.

4. Experimental Results
Malimg malware dataset [1], which includes

9339 malware representations as images from
25 distinct malware groups, is used for this
study. Malimg is in an image-based format,
and therefore the malware samples do not need
any pre-processing operations prior to performing
image-related analyses; furthermore, binary files
related to Malimg images really are not easy
to access. As expected, the dataset’s groups are
highly unbalanced: the largest Allaple.A family
includes 2949 images, whereas the smallest Al-
laple.B family includes just 80. For the creation
of training and test sets, the stratified sampling
method [38] was used, with 70% training set and
30% test set of all data. The proposed archi-
tecture in Figure 5 has been trained using the
ADAM optimizer [39] using the cross entropy loss
function given in Equation (6). In Equation (6),
yo,c shows the grand truth labels and po,c is the
output probability value of the CNN. By using
this loss function, backpropagation algorithm was
used to update the whole trainable parameters
for the architecture. For the training process,
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Fig. 5. Multimodal Deep Learning Architecture.

the learning rate 1e-4 was selected and the
architecture 1000 epochs were trained with 64
batch size. To prevent the model from being
overfitted, the early-stopping method was applied
and a value of 0.5 was used in the dropout
layers. ReLU activation function [40], and He
initialization method [41] were used for VGG-
16 and Pyramid CNN models included in the
proposed architecture.

Loss = −
M∑
c=1

yo,c log(po,c) (6)

The performance of the proposed architecture
has been measured with the accuracy, precision,
recall and F1 measure given in Equations (7),
(8), (9), (10) and (11). In these equations, TP,
TF, FP, FN are true positive, true negative, false
positive, false negative values of the model output
respectively.

Accuracy =
TP + TF

TP + TF + FP + FN
(7)

Precision =
TP

TP + FP
(8)

Recall =
TP

TP + FN
(9)

F1 =
2 ∗ Precision ∗Recall

Precision+Recall
(10)

F1 =
2 ∗ TP

2 ∗ TP + FP + FN
(11)

The model was trained with the previously
mentioned parameter values, and then its perfor-
mance was tested on a test data set that it had
never seen before. The results showing the success
of the proposed method with similar studies using
deep learning and classical methods on the same
data set in the literature are given in Table 4.
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TABLE 2
Overall Results with Comparative Studies.

Methods Accuracy Precision Recall F1 Measure

[42] ResNet + Softmax 98.62 - - -

[43] Google + Softmax 98.00 - - -

[44] Deep Learning Based 98.80 - - -

[45] CNN + Mul. Objective 97.60 88.40 - -

[46] Light-weight DL 94.00 - - -

[28] IMCEC 99.50 99.50 99.46 99.48

[1] Nataraj et al. (Gist-KNN) 97.18 - - -

[25] M-CNN 98.52 - - -

[47] CS. CNN-2 Layer-LSTM 95.50 95.50 95.50 95.50

[27] IMCFN 98.82 98.85 98.81 98.75

[48] AlexNet, Inception v3 99.30 - - -

Prosed Model (MM-DL) 99.72 99.72 99.60 99.66

It is seen from Table 4 that proposed method
has the best scores for each performance met-
ric. It has been observed that the proposed
architecture provides slightly better performance
than the IMCEC model obtained by combining
different deep learning architectures, and the
proposed method uses simpler architectures for
this. Although it is seen that the performance
of classical deep learning architectures is high
when compared to other methods, it is under-
stood that the proposed method yields better
results than classical methods and deep learning
architectures used in the literature, and classifies
packaged malware especially better. Based on the
experimental results, it can be deduced that the
main reason of this result is the benefit of teaching
texture-based features to the algorithm with the
intermediate fusion approach. Finally, when the
experimental results are examined, it is observed

that the more complexity of the architectures and
methods used, the better results are obtained, and
the performance does not improve when hybrid
architectures [47] (such as CNN + LSTM) are
used for classification.

5. Conclusion
In this study, a method is proposed to classify

binary files with artificial intelligence algorithms
by converting binary files to images for the classi-
fication of malware. The proposed method allows
obtaining more important and silent features
from malware images at different resolutions and
using texture information using intermediate fu-
sion without using any data approach. Two differ-
ent types of deep learning architecture were used
within the proposed approach. In this method, in
addition to the features that architecture can ob-
tain with the deep learning architectures used in
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the classical computer vision field, it is suggested
that the other architecture focuses on texture
information, extracting other valuable features
from it, and further improving the classification
performance with the fusion of all this informa-
tion obtained. The experimental results revealed
that the deep learning approach is more successful
than classical machine learning, deep learning
architectures widely used in the field of computer
vision, and other hybrid methods proposed for
the classification problem. However, as in the
proposed method, it has been observed that with
architecture, intermediate fusion approaches have
the ability to obtain more specific features more
effectively than other methods, thus improving
performance values more than other methods.
Data augmentation was not used in any way
within the scope of the proposed method [49]. As
a result, the experimental findings were obtained
to support the conclusion that approaches are
more successful than others, as the classification
studies conducted on the same in the literature.
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