
INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
Ö. Çoban et. al., Vol.9, No.2, pp.76-93

Towards the Design and Implementation of an
OSN Crawler: A Case of Turkish Facebook

Users

Önder Çoban†, Ali İnan∗, Selma Ayşe Özel∗∗

†,∗∗Çukurova University, Computer Engineering Department, Adana, Turkey.
∗Adana Alparslan Türkeş Science and Technology University, Computer Engineering Department, Adana, Turkey.

e-mail: †ocoban@cu.edu.tr, ∗ainan@atu.edu.tr, ∗∗saozel@cu.edu.tr

ORCID ID: 0000-0001-9404-2583, 0000-0002-3149-1565, 0000-0001-9201-6349
Research Paper Received: 27.02.2020 Revised: 04.04.2020 Accepted: 16.04.2020

Abstract—Online Social Networks (OSNs) are extremely popular services that allow users to interact with each other and share

content. Due to the large amounts of data shared by users, OSNs are also rich data sources for research in social network

analysis. Studying the usage of OSNs helps to understand users’ content-sharing behavior and privacy concerns. In order to do

so, collecting data is a necessary first step. However, Application Programming Interfaces (APIs) provided by OSN providers have

several limitations which make it difficult to access secured information. In this paper, we present the design and implementation

of an OSN crawler, discuss the challenges of this task and our workarounds towards accessing public OSN data. Moreover, we

perform analyses of the collected data to indicate users’ sharing behavior and give a detailed discussion of these analyses from the

perspective of individual privacy protection over OSNs. Our crawler overcomes most of the restrictions of OSN APIs and collects

all forms of OSN user interactions as well as every bit of public data posted on an OSN. Most of the existing studies collect

OSN data using focused crawlers and therefore are capable of collecting only the desired type of data. Our crawler, on the other

hand, provides a holistic view. On the popular Facebook OSN, our crawler captures user relationships like kinship, friendship and

attributes like profile items, events, posts, comments, replies, meta-data of activities (i.e., posting time, location, tagged users etc.).

To the best of our knowledge, ours is the most comprehensive OSN data collection effort and also the first study focused on the

behavior of OSN users in Turkey.

Keywords—Online social networks, Facebook, crawler, data collection, content-sharing analysis.

1. Introduction

Online Social Networks (OSNs) have become
popular platforms for users to connect with each
other, express themselves, and share other infor-

mation such as activities, photographs, favorites,
and posts [1], [2]. Popular OSNs like Facebook,
MySpace, and Twitter serve hundreds of millions
of users that are connected with each other through
more than a billion links. These OSNs are even said

76



INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
Ö. Çoban et. al., Vol.9, No.2, pp.76-93

to be able to reflect the real life [3]. Over the fourth
quarter of 2019, Facebook had over 2.50 billion
monthly active users (indicating an impressive 8%
yearly increase [4]. It should not be surprising that
OSNs are among the most visited websites [5]
rivalling many popular search engines.

As a result of this popularity of OSNs, the data
collocated with OSNs have attracted extensive at-
tention from both commercial, governmental, and
academic organizations. Governments, for example,
are considering OSNs as a means for informing,
engaging with and serving their citizens [6]. In
the academy, researchers of various fields, ranging
from sociology [7] to computer science [3], [8]
have shown interest in OSN data. Within computer
science, OSN research has focused on various prob-
lems such as extracting useful information [9], ana-
lyzing user behavior and social activity [10], finding
similar users [11], identifying fake profiles [12],
opinion trend analysis [6], content-sharing behav-
ior [13], OSN usage [14] to list a few examples.

Despite such abundance of work on OSN re-
search, publicly available OSN data is very scarce.
To the best of our knowledge, data sets provided by
the Stanford University under the Stanford Network
Analysis Project (SNAP) [15] is the only example.
These data sets are created by crawling different
OSNs including Google+, Facebook, and Twitter.
Compared to our crawled snapshot, majority of
these data sets contain more nodes and edges,
but they often focus social circles and some basic
attributes of users.

The reasons behind the scarcity of OSN data are
many-fold. We believe that the primary reasons are
privacy concerns, complexity and volume of the
OSN data, and the value of OSN data. These are
briefly discussed next.

Privacy concerns: OSN service providers are
obliged by laws and regulations such as the Gen-

eral Data Protection Regulation (GDPR) in Eu-
rope [16] and the “Kişisel Verileri Koruma Kanunu”
(KVKK) [17] in Turkey [18] to protect the individual
privacy of their respective users. As a result, direct
access to user data is limited only to public shares
by the users, or permission-based Application Pro-
gramming Interface (API) calls. Privacy concerns
also withhold researchers from sharing OSN data
for academic purposes - SNAP data sets [15] are
overly anonymized as a precaution against possible
privacy violations.

High complexity and large volume of unstructured
data contained in OSNs: by its nature, OSN data
needs to be modelled as a graph. Considering var-
ious possible forms of interactions between users
(e.g., friendship, kinship, wall posts, likes, etc.)
and the variety of the involved data types (e.g.,
text, emoticons, categorical, etc.), building a com-
prehensive yet efficient data model for the storage
and analysis of OSN data is an uneasy and time
consuming task [3]. Predicted size of the network
traffic needed to disclose the entire Facebook OSN
is roughly 750 Gigabytes [14].

Monetary value of the OSN data: the value of
many OSN service provider companies are rooted
in their customer base. Facebook has always been
a well-known example of this fact [19]. The rich
content within OSN interactions of users create
the value and the service providers prevent data
collection efforts partially due to this value.

Existing studies obtain OSN data in one of the fol-
lowing two rather different ways: (i) using API calls
provided by the OSN services providers (e.g., [11],
[20]), or (ii) using web crawlers that systematically
browse OSN profile pages to imitate a human user’s
HTTP interaction with the OSN servers (e.g., [1],
[11]). Each solution has its own strong and weak
sides. With the API approach, the data collector acts
as an OSN application developer and has to abide

77



INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
Ö. Çoban et. al., Vol.9, No.2, pp.76-93

by the provider’s strict access restrictions (e.g.,
limited view, query limits etc.) and limitations [20]
and unauthorized developers are unable to obtain
data [8], [14]. On the Facebook OSN, it is not
possible to obtain the data of more than 25 likes or
comments [11], [21] for a post. Other restrictions
involve posing maximum 600 queries every 10
minutes [20], obtaining at most 400 friends [22]
etc. In addition, Facebook frequently updates its
complex privacy policy and strengthen its API re-
strictions [3], [8].

Crawlers can alleviate some of these restrictions
and collect more information for scientific pur-
poses [8]. However, with the crawler approach,
the data collector has to impersonate a real user.
Sending too many HTTP requests within a time
frame raises suspicion by the service provider and
the corresponding OSN account gets blocked tem-
porarily or permanently due to malicious activity.
Additional difficulties can be listed easily: masking
data requests behind click streams, extracting OSN
data from HTML responses, and dealing with web
browsers instead of a programming interface.

In this study, we focus on the problem of efficient
collection of large-scale, content-rich and accurate
OSN data while respecting the individual privacy of
the respective OSN users. We present an algorithmic
data collection methodology that is applicable to any
OSN. Our proposed solution in its simplest form is
a web crawler that operates in the application layer,
using HTTP.

Our proposed system has various advantages over
existing OSN data collection efforts. To summarize
the key differences, our solution

• supports multi-threaded data collection with
consistency guarantees,

• is resilient against access restrictions imposed
by the OSN service provider (i.e., limits on the
number of visited profiles, list of friends, post

or shares as well as blocking of the Facebook
account that is utilized),

• collects each and every bit of publicly shared
data (e.g., profile items, friendship links, emoti-
cons, wall shares, posts),

• respects bread-first traversal order from the seed
account,

• is independent of the frequent API updates
pushed by the OSN service provider, and

• respects individual privacy by limiting collected
data to publicly visible shares.

We utilize the Facebook OSN to exemplify the
advantages of our solution in collecting OSN data.
Over a period of roughly 2 months, we completely
profiled 20K accounts, disclosing over 2.35M users,
2.7M posts and comments. As summarized in Ta-
ble 1 of Section 2, these figures are better than al-
most all prominent work on OSN data collection de-
spite the increased efforts of OSN service providers
towards banning/blocking crawler accounts over the
years.

The primary contributions of this study can be
summarized as follows.

• We provide an algorithmic and systemic solu-
tion to the OSN data collection problem that
respects individual privacy of the OSN users.

• We discuss the particular challenges imposed
by the service providers and our solutions to
overcome these challenges.

• We present possible alternatives in the system
design and justify the choices we have made in
our solution.

• We analyze the crawled data in order to summa-
rize the sharing behavior of Turkish Facebook
users.

• Our analyses contain indicators on the amount
of accounts to be visited towards the collection
of a particular number of posts, links, etc.

• After proper privacy precautions are taken (e.g.,

78



INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
Ö. Çoban et. al., Vol.9, No.2, pp.76-93

anonymization), we plan to share the collected
data set with researchers.

In the rest of the paper, Section 2 reviews existing
work on OSN data collection. Section 3 presents
our proposed methodology towards modelling and
collection of public OSN data over the Facebook
OSN case. Section 4 outlines the OSN data analysis
results. Finally, Section 5 provides our conclusions
and possible directions for future work.

2. Literature Review

Obtaining high-quality OSN data is a challenging
task that has been faced by many researchers before.
Due to its high world-wide popularity, Facebook has
been one of the most heavily studied OSNs [14].
In this section, we present our review of literature
with a focus on studies collecting data by using
API approach and HTTP approach. We would like
to note that these studies were compiled through
careful analysis of prominent journals with the
keywords “online social networks”, “crawler”, and
“data collection”.

2.1. Studies which use the API Approach

This is the most common way to collect content
from OSNs [1] in which researchers have to tackle
with restrictions of related OSN API. Previous stud-
ies which are using this approach are summarized as
follows: Abdesslem et al. introduced a methodology
to collect more reliable data on sharing behavior
of OSN users [1]. Mfenyana et al. implemented a
focused Facebook crawler using RestFB (i.e., Face-
book Graph API client written in Java) and Jackson
libraries that are written in Java. They proposed
a system prototype to perform opinion monitoring
and trend analysis on Facebook [6]. Motamedi
et al. implemented three independent crawlers for
most popular OSNs (i.e., Facebook, Twitter, and

Google+) to analyze and compare users’ popularity
and activity which can provide insight to their users
in order to decide which OSN to use [20].

Mittal and Sahu, collected 70K tweets of their
pick of famous accounts from Twitter. They per-
formed language detection experiments on the col-
lected data [23]. Chen et al. collected posts and
interactions of 859 users with the help of Facebook
Graph API [24]. Passaro et al. crawled Facebook
pages of the most popular newspapers in Italy to
create a corpus that can be used for sentiment
analysis and emoticon detection [25]. Terrana et
al. used a Facebook crawler to analyze user rela-
tionships based on sentiment classification of user
generated contents such as posts, comments, and
likes [10]. Kastrati et al. used Facebook Graph
API to crawl only posts, feeds, and comments of
a user. The purpose was to discover social criminal
activity [21]. Kridalukmana crawled Facebook with
the Graph API and transformed data into attributed
graph to illustrate the object (i.e., user, page or pho-
tograph) interrelations [26]. Siwag et al. proposed
a crawler architecture for Facebook and clustered
crawled data by several criteria such as gender,
location, and hometown [9]. Terrana et al., crawled
different OSNs for the purpose of the comparison
of user profiles based on textual data (e.g., posts,
comments) posted by users [11]. Their crawler has
a separate module for each distinct OSN where
the Facebook crawler module uses Facebook Graph
API.

2.2. Studies which use the HTTP Approach

This approach requires implementing own crawler
that does not have permission requirements and
be able to access far more accounts. Crawlers are
also do not have to tackle with the challenges
imposed by the APIs developed by OSN providers.
Previous studies which are using this approach are

79



INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
Ö. Çoban et. al., Vol.9, No.2, pp.76-93

TABLE 1: Summary of research works crawling OSN(s) for different purposes.

Research Work Crawled OSN(s) Collected Information Traversal
Method Crawling Based on Year

Works that use API approach

Abdesslem et al. [1] Facebook
Locations and ESM answers
of 866 candidates N/A

Facebook Graph API
& LocShare App. 2012

Motamedi et al. [20]
Facebook, Twitter,
Google+

Wall activities (posts,
comments etc.) N/A

Facebook Graph API
for Facebook 2013

Siwag et al. [9] Facebook Profile details & friend lists BFS Facebook Graph API 2014

Mfenyana et al. [6] Facebook
Last status updates
and associated comments BFS Facebook Graph API 2014

Terrana et al. [10] Facebook
Posts, comments, and
likes of 4 accounts N/A Facebook Graph API 2014

Kastrati et al. [21] Facebook 198 posts of 20 users N/A Facebook Graph API 2015

Terrana et al. [11] Facebook, Twitter
Posts, comments, and
likes of 4 accounts N/A

Facebook Graph API
for Facebook 2015

Kridalukmana [26] Facebook Public profile information N/A Facebook Graph API 2015

Passaro et al. [25] Facebook
Timeline activities of
8 newspapers

N/A Facebook Graph API 2016

Chen et al. [24] Facebook
Posts and interactions
of 859 users

N/A Facebook Graph API 2016

Mittal and Sahu [23] Twitter
70K tweets of selected
accounts

N/A Twitter API 2017

Works that use HTTP approach

Viswanath et al. [2] Facebook
Friendship links & timeline
activities of 90,269 users BFS

Web crawler (uses downloaded
HTML documents) 2009

Catanese et al. [22] Facebook Friend lists of 63.4K users
BFS &
Uniform
sampling

Web crawler (uses HTTP
requests) 2011

Xiao et al. [8] Facebook
Friendship links of
262,526 users BFS

Web crawler (uses interaction
simulation) 2012

Flores et al. [27] Facebook
Posts and comments of
1K users N/A

Web crawler (uses Selenium
API) 2013

Wong et al. [14] Facebook
Friendship links of
156,297 users BFS

Web crawler (uses headless
browser) 2014

Wani et al. [3] Facebook
Profile features and wall
activities of 10K users BFS

Web crawler (uses
iMacros browser extension) 2018

Abid et al. [28] Facebook
Friends, liked pages etc.
of 21,562 accounts
at total

Random
Walk

Web crawler (uses Selenium
API) 2018

Ours Facebook
Profile features and all text-
based public data of 20K users BFS

Web crawler (uses Selenium
API) 2020

summarized as follows: Catanese et al. implemented
a Facebook crawler using two different sampling
methods, namely, BFS sampling and uniform sam-
pling [22]. This work was the first to point to the
OSN provider limitation that allows obtaining at
most 400 friends of a user. Xiao et al. later designed
and implemented a Facebook crawler based on

interaction simulation that overcame this difficulty
and was able to retrieve the complete friends list of
a user [8]. Xiao et al. collected a total of 262,526
users. Viswanath et al. crawled 90,269 Facebook
users’ information to evaluate the activity between
users from the same regional network [2]. Their
two-step crawler starts from a single user and visits

80



INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
Ö. Çoban et. al., Vol.9, No.2, pp.76-93

all friends of the user according to Breadth First
Search (BFS) traversal order. Wong et al. designed
a Facebook crawler with a headless browser, mod-
eled the collected data as a graph, visualized the
graph and analyzed the graph [14]. Flores et al.
implemented a Facebook crawler with the Selenium
API and crawled public data [27]. This crawler was
seeded with the accounts of two politicians and
profiled 500 friends of these two accounts and then
their second level friends. The collected data was
analyzed with text mining techniques to investigate
how information and influence are spread through
an OSN for election purposes. Abid et al. imple-
mented a Facebook crawler with the help of the
Selenium API to explore the social network around
a user according to a user-user distance measure.
They proposed a tool, namely, SONSAI that pre-
dicts a user’s sensitive attributes [28]. Wani et al.
designed a Facebook crawler, namely, IMcrawler
and obtained the data of around 10K user profiles
from four metropolitan cities of India [3]. In their
work, they performed behavioral analysis of users
based on both profile features and wall activities.

2.3. Comparison of the API and HTTP Ap-
proaches

Even though different studies employ various dif-
ferent techniques (i.e., collecting manually, making
offline or online surveys, developing third-party
applications etc.) to collect OSN data, researchers
often prefer to use OSN API(s) or design their own
crawlers to collect data depending on the amount
and their purpose of use as summarized in Table 1.
As seen from the table, studies using API approach
often have permission requirements and limited
access to OSN data.

Studies using HTTP approach, on the other hand,
are capable of crawling far more accounts and do
not have to overcome challenges of OSN APIs.

Fig. 1: A sample Facebook post with relative com-
ments and folded replies.

However, these studies often use a crawler [2],
[3], [27], [28] that focuses on specific location
(e.g., same regional network), user (e.g., a politi-
cian) or group to collect friendship links together
with desired other data. Even though majority of
them crawled far more nodes and edges [2], [8],
[14], [22], we crawled more content-rich data that
includes profile attributes, friendship link, private
relationships, kinships, wall activities (i.e., posts,
comments, replies), likes, meta-data information of
activities, and so on.

Notice that, in this paper, we preferred to imple-
ment our own crawler using the HTTP approach to
reach our goals.

3. Data Modelling and Collection

We present our data model in Section 3.1, data
collection algorithms in Section 3.2, and implemen-
tation details in Section 3.3.

3.1. Data model

As of writing this paper, a Facebook user has five
sections in his/her account including Timeline (i.e.,
wall), About, Friends, Photos, and More. In this

81



INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
Ö. Çoban et. al., Vol.9, No.2, pp.76-93

paper, we collect friendship and all text-based pub-
lic data from Timeline, About, and Friends pages.
Timeline contains all posts of both account owner
and shared posts of his/her friends and other sources
such as liked pages. A Facebook post has a recursive
structure in which comments (i.e., a message posted
under a post) and replies (i.e., a message posted
under a comment) are placed at bottom of each other
like a stair.

An example Facebook post with unfolded com-
ments and replies is depicted in Figure 1. About
page includes basic attributes (i.e., gender, date of
birth etc.) and some other information about the
user such as important events, family members,
private relationships and so on. Friends page, on
the other hand, provides a detailed list of friends of
the account owner.

As seen from the Figure 1, Facebook posts have
a complex structure, especially if there are many
unfolded comments or replies under the related post.
This makes it much more challenging to extract
information from Timeline page compared to the
About and Friends pages. A detailed description of
the challenges faced during the data collection is
given in Section 3.3.

Considering the information on these three pages,
we created our data model as a star schema with the
user relation placed at the very center. The schema
contains 20 tables in total. We consider each data
object on a Facebook account as an entity in this
data model, but we use some extra (i.e., helper)
relations to store the data in a meaningful and
lossless way.

We decomposed our tables to eliminate data re-
dundancy and achieve data integrity as much as
possible. There is still some redundancy contained
in our model. For example, users may write their
education and work information with typos and
in different formats which makes it too hard to

group same information. For instance, users who are
studying in the department of Computer Engineer-
ing (“Bilgisayar Mühendisliği” in Turkish) disclose
this information in different ways, such as by typing
“bil. muh”, “bilgisayar müh.”, “comp. eng.”, and so
on. We left these cases of redundancy untouched in
order to reduce the number of table joins during the
analysis phase and improve the performance. This
is a common practice in relational database design
and is called, de-normalization.

Facebook assigns a unique username to each
account holder. We utilize this value to identify
references (i.e., foreign keys) to a user or a user’s
account. Friendship is a directionless relationship
in the Facebook OSN. That is, if user UA is friends
with user UB, then UB is also friends with UA. Yet,
our data model maintains direction of such links in
case that a future analysis might require explaining
how a user account has been discovered. After all,
the link (UA, UB) implies the existence of the link
(UB, UA) and such missing links can always be
added afterwards.

Notice that our data model is very comprehensive
and the only bits of data that are missing are
multimedia files. We would like to emphasize that
multimedia files are indeed within access of our
crawler and these files were excluded only to im-
prove the Database Management System (DBMS)
performance.

We use MySQL Workbench DBMS to design and
implement our data model. The corresponding star
schema of the designed relational database is given
in Appendix A.

3.2. Data collection

The general architecture of our 3-tiered system
design for the data collection phase is depicted in
Figure 2. The DBMS tier implements the data model

82



INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
Ö. Çoban et. al., Vol.9, No.2, pp.76-93

Fig. 2: Three-tiered system design.

that was presented in Section 3.1. The logical tier
will be detailed below. The user interface (i.e., UI)
tier allows us to follow the progress of the logical
tier and handle any exceptional cases manually.

The logical tier contains two important compo-
nents: the crawler and the profiler. The crawler is
responsible for discovering accounts that are pub-
licly reachable from the seed account s. The profiler
visits profile pages of these discovered accounts and
collects all relevant, publicly shared data. We prefer
a breadth-first traversal (BFS) [22] of the Facebook
OSN to ensure that every account is visited only
once, and give priority to discovered accounts that
are closer to s. That is, the crawler first inserts the
root account s in the database, then continues with
the direct friends of s, friends of friends and so
on. At each account u, the crawler checks whether
the friends list of u is public. If so, all discovered-
but-not-yet-visited friends of u are inserted into a
first-in, first- out (FIFO) queue. This BFS imple-
mentation stops only when all publicly reachable
in/direct friends of s are marked as visited. The
BFS nature of the crawler generate a visit-order for
the profiler. When visiting the next account u, the

profiler’s aim is to record all publicly shared content
in the corresponding OSN account.

We next present our algorithms towards the im-
plementation of the crawler and profiler compo-
nents. We employ a single threaded solution to
the crawler, and a multi-threaded solution to the
profiler. With these two design choices, our logical
tier solves an instance of the well-known “single
producer, multiple consumers” problem [29]. The
concurrency problems caused by the race condition
between these threads are resolved based on the
transaction management system of the data tier (i.e.,
the underlying relational DBMS).

Crawler module: The crawler relies on a helper
relation which is named as Crwlr. This relation
contains 4 simple fields: (1) the Facebook ID of
an account username (or fid) - a primary key, (2)
a boolean flag all visited indicating whether this
account’s friends list has been inserted into the table,
(3) a boolean flag tl visited indicating whether this
account’s profile page has been processed, and (4)
a field depth indicating how far the current account
is from the root user.

Our crawler’s pseudo-code is given in Alg. 1.
The crawler creates the Crwlr relation, inserts the
fid representing the seed account and visits its
friends list in the OSN (line 3). Then, the crawler
begins an infinite loop. At each iteration, the fid

of an unvisitied user from the current level/depth is
retrieved. This user is identified by vid. At line 8, all
friends of vid are retrieved from the OSN and these
friends are inserted with an incremented depth into
Crwlr at line 11. We assume that vid.frnds will
be null if the friends list is not public. At line 13,
vid will have been visited by the crawler, therefore
the table is updated accordingly.

Notice that the entire operation of visiting a
user’s friends list is enclosed packed into a database
transaction (lines 6, 14). This precaution ensures

83



INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
Ö. Çoban et. al., Vol.9, No.2, pp.76-93

consistency under possible failure scenarios. The
crawler can be stopped and restarted arbitrarily.

Algorithm 1 Crawler module
Require: The seed user’s fid (i.e., username)
Ensure: Traversal of the seed’s in/direct friends in

BFS order
1: if Relation Crwlr does not exist then
2: Create an empty relation with schema

Crwlr(fid, all visited, tl visited, depth)

3: Insert (fid, false, false, 0) into Crwlr

4: end if
5: loop
6: Begin transaction
7: vid ← fid of an unvisited user with

min(depth)

8: vid.frnds← getFriends(vid)

9: depth = depth+ 1

10: for all w ∈ vid.frnds do
11: Insert (w, false, false, depth) into Crwlr

12: end for
13: Set all visited for vid
14: End transaction
15: end loop

Profiler module: The profiler module supports
multi-threading and the threads are controlled with
a master-slave organization. The pseudo-code of the
profiler’s master thread is given in Alg. 2. The
master thread first creates the data model described
in Section 3.1 that will store the public profile
information. Then it invokes as many workers as
necessary within an infinite loop (lines 4-6).

Alg. 3 provides the pseudo-code for a worker
thread of the profiler. Upon invocation, basic at-
tributes (e.g., gender, phone, email) and wall activ-
ities of an unprofiled user are extracted. Then these
extracted information is stored in the schema. The
final step marks the related account as profiled (line
6). Notice that we assume that profile information

Algorithm 2 Profiler-MasterThread
Require: Crawler populating the Crwlr relation
Ensure: Traversal of discovered accounts in BFS

order
1: if Data model is not implemented then
2: Create the schema for storing the public data

of discovered profiles
3: end if
4: loop
5: vid ← fid of a user whose tl visited is

false

6: Fork into Profiler −WorkerThread(vid)

{a thread pool controls all live workers}
7: end loop

of vid is null if its wall is not public and entire
operation of a worker is enclosed within a database
transaction (lines 1, 7) to ensure resilience against
failures.

Algorithm 3 Profiler-WorkerThread
Require: ∃vid← fid of a non-profiled user
Ensure: Inserts all public data within the profile

page of vid
1: Begin transaction
2: Extract basic info: gender, phone, interest etc.
3: Extract places, work, education
4: Extract family members, relationships
5: Extract wall activities (posts, comments etc.)
6: Set tl visited for vid
7: End transaction

3.3. Implementation details

In this section, we present the details of our
implementation, the challenges we faced, and the
solutions developed to overcome these challenges.

Selenium API: The crawler imitates a real-world
OSN user with the help of the Selenium API [30],

84



INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
Ö. Çoban et. al., Vol.9, No.2, pp.76-93

which is a browser automation library and is most
often used for testing web applications. It may be
used for any task that requires automating interac-
tion with the browser and can help to replicate and
store human actions on a web page [27].

Information extraction: The crawler uses Doc-
ument Object Mapping (DOM) tree to identify the
data to be crawled. DOM provides the structured
representation of a web page where nodes denote
the HTML tags and the tree hierarchy represents the
organization of the nested elements [3]. To extract
information from accounts, we locate elements in
the DOM tree of each account’s HTML source.
We perform this task using the XPath query lan-
guage which is used for locating nodes in an XML
document. As HTML can be an implementation
of XML (XHTML), we use XPath selectors (e.g.,
//title[@lang=‘en’] selects all the title elements that
have a “lang” attribute with a value of “en”) to lo-
cate elements in HTML source of any page returned
by Facebook’s HTTP Server.

Dynamic content loading & browser interac-
tion: Facebook uses dynamic content loading to
show most of the data including friends list, com-
ments and replies under a post, posts in previous
and current year(s). For instance, in Friends page,
it initially loads 20 and shows at most 100 friends
at a time as the user scrolls the page down. As an
another example, if there are 3 or more messages
under a post or comment, Facebook folds them and
does not show all of them at once as depicted in
Figure 1. This is also true for content of Timeline
page. In such a case, someone who wants to see
the data has to click on the “show more” link
added automatically by the Facebook. Notice that
the user/crawler may have to do this one or more
times to see all relevant data.

This complicates the data collection task as the
information is not available as a whole in the HTML

source code of a web page [3], [14]. As stated
above, in Facebook, dynamic content on the web
page needs to be triggered by user interactions with
the page. Therefore, our crawler has a mechanism
to automate such interactions to load the dynamic
content into the parent HTML content.

We overcome the dynamic content loading by ex-
ecuting several JavaScript functions (e.g., scrolling,
link clicking etc.) through Selenium API to obtain
data from updated HTML content. We also use
some variables to control the completion of these
tasks. For instance, we use a boolean variable to
stop scrolling on friends page of a user. Initially, its
value is false, but if an image element (that is hidden
in HTML content, but only visible while loading the
rest of the list, if exists) in friends page is unvisible,
it takes true value and we stop the page scrolling.
This means that all of the friends of the related user
are loaded in that page.

Connection pooling: Connection pooling is a
mechanism to create and maintain a collection of
JDBC (i.e., Java Database Connectivity) connec-
tion objects. We implemented a connection pool to
ensure concurrent access of multiple threads that
simultaneously access our database. In this way, we
provide each thread the ability to borrow a separate
connection from the pool, use it, then return it to the
pool by closing it. This mechanism also improved
the performance of our crawler, as it allows re-
usability of the pool of connection object.

Challenges faced: Using a self-designed tool
(i.e., the crawler) that does not require permission-
based access to user data allows us to access far
more accounts than an API-based solution. In ad-
dition, this approach also facilitates by-passing the
limitations imposed by the OSN service providers
through the APIs. Although favorable in these as-
pects, this approach has its own challenges.

The following is a list of the important challenges

85



INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
Ö. Çoban et. al., Vol.9, No.2, pp.76-93

TABLE 2: Quantitative description of crawled pub-
lic Facebook data.

Attribute (Total # of) Count
Visited users 20,000
Users whose first neighborhoods are visited 261
Friends 3,980,270
Unique friends 2,350,454
Filtered users (user location outside Turkey) 1,079
Posts 2,762,023
Comments 2,743,513
Replies 466,995
Discovered family members 7,581
Discovered private relationships 4,660

Crawling period: 20/12/18-28/02/19

that we had to tackle during the data collection:

• To access dynamic content, we execute some
JavaScript functions which enable our crawler
to interact the browser. Unfortunately, the exe-
cution of JavaScript has negative effects as well,
because it takes time and slows our crawler.
To overcome these effects, we speed-up our
crawler by using multi-threaded implementation
which needs concurrency control between dif-
ferent threads.

• Facebook has run a dynamic HTML template in
the background and the attributes (e.g., id, class,
etc.) of the HTML elements (e.g., div, img, etc.)
are updated regularly. Therefore, we developed
a control mechanism that detects such updates
and warns the data collector through UI layer.
The warnings state that the XPath selectors
should be updated accordingly.

• We use different time delays within the crawler
and profiler modules to avoid certain excep-
tions. For example, Firefox browser throws a
binding exception if more than 5 processes are
executed concurrently.

• Facebook restricts the number of user profiles
a single account or IP address can access in a
given time interval. To give an example, Face-

book thinks that a user may be a computer if the
corresponding IP address frequently accesses
accounts that are not in friends list of nei-
ther itself nor its friends. When the predefined
threshold is exceeded, Facebook temporarily
blocks the account with which the crawler or
profiler logs in. After an account is blocked,
the account holder should verify her identity
through a phone number or a personal photo-
graph. To avoid being blocked, we used multiple
accounts to connect to Facebook in short time
intervals and with fewer threads per process.

• Our crawler can not establish a consistent inter-
action with the browser and this either interrupts
(e.g., crawler can not login until the login page
is loaded completely) or slows down (e.g., page
and dynamic content loading take too much
time) the data collection process.

• Facebook has a rather complex HTML struc-
ture and this makes our crawler’s maintenance
difficult.

4. Analysis Results of Collected Data

In this section, we perform analyses of what kind
of information users tend to share about themselves
on Facebook and what type of content they mostly
post on their timelines. To reach this goal, we col-
lected public Facebook data by running our crawler
over the Firefox browser. We then analyzed this
public OSN data using aggregate statistical queries
of relational and graph DBMSs. Our analysis results
have been visualized with the JFreeChart [31] li-
brary developed for use with the Java programming
language.

During the crawling period from December 20th
to February 28th, we collected account information
and timeline activities (i.e., posts, comments, and
replies) of 20K users. Note that we only crawled
textual data from user accounts. Multimedia files

86



INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
Ö. Çoban et. al., Vol.9, No.2, pp.76-93

Fig. 3: Publicity ratios of revealed user attributes.

were excluded only to keep the relational database
compact and not due to an inherent incapability of
our data collection methodology.

We present the quantitative description of our
collected data (i.e., the public sub-network) in Ta-
ble 2. As seen from the table, we reached more than
2.35M unique accounts. We manually filtered 1,079
users who are not from Turkey by taking several pa-
rameters into consideration such as language (e.g.,
user’s posts are not written in Turkish), real name,
and place lived-in.

Note that among these 20K users, we only visited
the first neighborhoods of 261 users. That is, we
were able to discover 2.35M accounts by visiting
20K accounts, but there are still 19,739 users whose
all friends have not been visited yet. Upon com-
pletion of data collection, we performed detailed
statistical analyses of the data in terms of page
publicity, basic attributes, friendship and relations,
and timeline activities.

Following sub-sections present the most interest-
ing subset of our analysis results, but all of the
generated charts and graphs are accessible on the
web page (https://ocbn.bitbucket.io/web/index.html)
of our project.

TABLE 3: Distribution of users based on publicity
of their friends and wall pages.

Page Private Public Partially Public

Wall 1,421 18,579 NA

Friends 11,675 8,109 216

4.1. Publicity of Pages

Privacy-aware Facebook users are able to keep
their Timeline (i.e., wall) and Friends pages private.
Table 3 presents the numbers of users who make
their pages public, private or partially public in the
crawled portion of the OSN. As seen from the table,
users mostly tend to hide their friend lists but, the
same is not true for wall activities and only 7% (i.e.,
1,421) of users hide their timeline pages, whereas
58% (i.e., 11,675) of them completely hide friends
pages. Note that partially hidden means that one
can only see friends in common with the account
owner.

4.2. Basic Attributes

At sign-up, Facebook forces users to fill in certain
profile information (e.g., username, e-mail), while
other profile attributes are often disclosed willingly
by the users to polish their profiles. Figure 3 shows

87



INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
Ö. Çoban et. al., Vol.9, No.2, pp.76-93

TABLE 4: Age-gender distribution of users who
disclose gender and birth-date information.

Gender
Age-range

Total
11-20 21-30 31-40 41-50 51-60 61+

Male 13 107 216 92 38 12 478

Female 6 108 131 31 14 3 293

NA 1 30 58 10 5 4 108

Total 20 245 405 133 57 19 879

the summary of publicity ratios for basic attributes
among users in our crawled snapshot.

As seen from the figure, e-mail and phone number
are the least frequently shared attributes, while the
most frequently shared attributes are gender and
places. Only 18% (i.e., 3,714) of users do not share
their gender, 49% of all users are male and 32%
are female. 47% state that they have undergraduate
education and are interested in females.

English and Turkish are mostly disclosed lan-
guages with the rates of 39% and 33% respectively.
Among the users who reveal their religious view,
92% express themselves as Muslims. In addition,
users mostly share their Instagram accounts on
their Facebook profiles to stay connected on other
OSNs and phone and address attributes are usually
disclosed by accounts (e.g., a local company) which
are used for business purposes. 1,687 users disclose
their date of birth, but only 879 of them give this
information in dd-mm-yyyy format. For those users,
using birth date information, we also calculated the
ages of the users.

Table 4 provides the age-gender distribution. Ma-
jority of users are at age-range of 31 to 40 years.
An important point to mention here is that date
of birth attribute is one of the most important
personal identifier which may be used to imper-
sonate the target user over long distance service
(e.g., internet or phone) channels. In addition, our

simple analysis on usernames showed that 20% of
users select a username that is completely composed
of numeric values (i.e., “123456789”), while the
rest prefer to use a username with any string (i.e.,
“jack.sparrow.25”). Our analysis of users’ places
makes it clear that they mostly live in big cities
(e.g., Istanbul, Bursa, Ankara) and those living in
these cities mostly come from another city.

4.3. Friendship & Relations

Users share their family members and private
relations as well as friendships. When we explore
our data, we find out that users who have a private
relationship mostly state that type of this relation-
ship is marriage. As seen from Figure 4, on the
other hand, the most shared family membership (or
kinship) types are cousin and brother. Taking a
closer look into friendship links also shows that the
average number of friends for male users is 276,
while this value is 137 for female users. The users
who do not disclose gender information have an
average of 102 friends. Most importantly, 194 users
reveal their Mothers (see Figure 4) and this case
carries potential risk of being targeted by an adver-
sarial attack that aims to infer/learn mother’s maiden
name. Notice that if such an attack is successful it
may cause to serious privacy and security risks such
as identity theft, fraud, and cyber stalking.

4.4. Wall Activities

We explore wall activities of users regarding both
basic attributes and meta-data (i.e., time of posting,
via, place etc.) of activities. According to our basic
analysis, users prefer the like reaction with 98% to
express their feelings about a content. They often
share more content in the winter months (i.e., most
in January) and the most common time of account
inactivity is between 02:00 hours and 06:00 hours.

88



INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
Ö. Çoban et. al., Vol.9, No.2, pp.76-93

Fig. 4: Total numbers of disclosed family members with respect to their kinship types.

Fig. 5: Distribution of the number of posts in
different types.

Important events are shown as a post in the wall
page of a user. Considering events as posts, our anal-
ysis reveals that the most frequently shared event
types are starting a work and graduation among
users. We also found that male users have more
timeline activity than female users. Using titles and
contents of posts, on the other hand, we categorized
posts as depicted in Figure 5, which shows that users
mostly post contents which include raw text or any
photograph.

5. Conclusion and Future Work

OSNs provide privacy settings such that a user
gets to control which piece of data is shared with
whom. However, many OSN users do not suf-
ficiently leverage these settings and share public
information. The arguments that they have nothing
to hide or they do not understand how the privacy
settings really work are quite common. Such be-
havior threatens the individual privacy and security
of both the public sharers and those users that are
connected to them on some OSN.

The main reason behind this behavior is due to the
users often want to increase their digital existence
by providing more information about themselves.
Even though this is a risky matter, data provided
by users make OSNs a huge and rich source of
public data. As such, analyzing OSNs may produce
interesting findings and useful knowledge. However,
researchers face with different challenges to access
the data even there are APIs provided by OSN
service providers.

In this paper, we designed and implemented a
crawler that uses HTTP requests and responses to
reveal public data on Facebook. We analysed the
collected data and investigated the content-sharing

89



INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
Ö. Çoban et. al., Vol.9, No.2, pp.76-93

Fig. 6: Screenshot of our crawler for an arbitrary user’s basic information (not all). He/she does not
disclose his/her political view, but one can infer about this attribute by taking its work and important
event attributes into consideration.

behaviors and awareness of personal privacy of
users in Turkey. Based on our analysis results, we
conclude that users generally do not tend to disclose
their sensitive attributes either consciously or uncon-
sciously. However, sharing rates of some attributes
such as birth-date, family members, relationships,
place, and work are too high to be underestimated.

OSN users share information easily for any num-
ber of reasons and differences behind these reasons
are not clear. Learning and social engagement, on
the other hand, are found to be encouraging motiva-
tions for users to share information on OSNs [32],
[33]. Moreover, characteristics and features of the
OSN could also be one of the motivating reasons
in sharing information [32]. Therefore, it is chal-
lenging to detect main reasons behind why sharing
rates of these attributes are higher when compared to
the others. Nevertheless, we think that users are not
aware of the privacy risks that may arise when they
disclose such attributes. For instance, users often
keep their political view private, but many of those
disclose where they live. In addition, users may be
motivated themselves to share information for rea-
sons such as pleasure, sacrifice, social participation
and reciprocity.

An adversary that gains access to public data
due to insensible use of OSNs may infer (see
Figure 6) with high probability private information
about a target OSN user that he/she would prefer
to keep private and violate individual privacy. Such
attacks may reveal the user’s religious belief, race,
political opinion, residence address among many
others. For instance, if friends of a user post on
his/her timeline to celebrate his/her birthday, one
can learn this sensitive attribute about user by taking
the dates of related post into consideration. If the
attacker obtains personal identifiers such as mother’s
maiden name or exact date of birth of an individual,
he/she may use these data to impersonate the target
individual over long distance service channels (e.g.,
internet or phone). This threat also brings together
security risks. Primary cases of concern are identity
theft, fraud, and (cyber) stalking.

As a future work, we plan to transfer our data
into a graph database so as to perform attribute
disclosure and privacy and security analysis. We
will also try to extract online social footprint for
users who disclose their other OSN accounts (e.g.,
Instagram) using profile matching techniques.

90



INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
Ö. Çoban et. al., Vol.9, No.2, pp.76-93

References

[1] F. Abdesslem, I. Parris, and T. Henderson. Reliable online social
network data collection. London: Springer, 2012, Ch.8.

[2] B. Viswanath, A. Mislove, M. Cha, and K. Gummadi. “On
the evolution of user interaction in facebook”, The 2nd ACM
workshop on online social networks, Barcelona, Spain, pp. 37-
42, 16-21 August 2009.

[3] M. Wani, N. Agarwal, S. Jabin, and S. Hussai. “Design and
Implementation of iMacros-based Data Crawler for Behavioral
Analysis of Facebook Users”, Computer Science: Social and
Information Networks, February 2018.

[4] “Facebook Reports Fourth Quarter and Full Year 2019
Results”, https://investor.fb.com/investor-news/default.aspx, ac-
cessed: 2020-01-03.

[5] “The top 500 sites on the web”, https://www.alexa.com/topsites,
accessed: 2020-01-03.

[6] S. Mfenyana, N. Moorosi, and M. Thinyane. “Facebook Crawler
Architecture for Opinion Monitoring and Trend Analysis Pur-
poses”, Southern Africa Telecommunication Networks and Ap-
plications Conference (SATNAC), Port Elizabeth, Eastern Cape,
South Africa, 1-3 September 2014.

[7] Y. Modi, and I. Gandhi. “Internet sociology: Impact of Facebook
addiction on the lifestyle and other recreational activities of the
Indian youth”, SHS Web of Conferences, Jacarta, Indonesia, pp.
1-4, 14-16 October 2013.

[8] Z. Xiao, B. Liu, H. Hu, and T. Zhang. “Design and implementa-
tion of facebook crawler based on interaction simulation”, IEEE
11th International Conference on Trust, Security and Privacy
in Computing and Communications (TrustCom), Liverpool, Eng-
land, pp. 1109-1112, 25-27 June 2012.

[9] T. Siwag, P. Sirohi, and N. Singhal. “Novel Architecture of a
Focused Crawler For Social Websites”, International Journal of
Computer Engineering and Applications, Vol.7, No.3, pp. 132-
144, September 2014.

[10] D. Terrana, A. Augello, and G. Pilato. “Facebook users rela-
tionships analysis based on sentiment classification”, IEEE In-
ternational Conference on Semantic Computing (ICSC), Newport
Beach, CA, USA, pp. 290-296, 16-18 June 2014.

[11] D. Terrana, A. Augello, and G. Pilato. “A system for analysis
and comparison of social network profiles”, IEEE International
Conference on Semantic Computing (ICSC), Anaheim, CA, USA,
pp. 109-115, 7-9 February 2015.

[12] M. Conti, R. Poovendran, and M. Secchiero. “Fakebook: Detect-
ing fake profiles in on-line social networks”, IEEE/ACM Interna-
tional Conference on Advances in Social Networks Analysis and
Mining, Istanbul, Turkey, pp. 1071-1078, 26-29 August 2012.

[13] B. Jansen, K. Sobel, and G. Cook. “Classifying ecommerce
information sharing behaviour by youths on social networking
sites”, Journal of Information Science, Vol.37, No.2, pp. 120-
136, April 2011.

[14] C. Wong, K. Wong, K. Ng, W. Fan, and K. Yeung. “Design of

a crawler for online social networks analysis”, WSEAS Transac-
tions on Communications, Vol.13, pp. 264–274, 2014.

[15] “SNAP Datasets: Stanford large network dataset collection”,
http://snap.stanford.edu/data, accessed: 2020-12-12.

[16] “EU General Data Protection Regulation (GDPR)”,
https://www.ingramflyhigher.com/assets/2018/gdpr/img/ingramm
icro-gdpr-1pp.pdf, accessed: 2020-04-01.

[17] “Personal Data Protection Law in Turkey”,
https://www.kvkk.gov.tr, accessed: 2020-04-01.

[18] “Kişisel Verileri Koruma Kurumu”. https://www.kvkk.gov.tr/,
2020-04-01.

[19] A. Gamboa, and H. Gonçalves. “Customer loyalty through
social networks: Lessons from Zara on Facebook”, Business
Horizons, Vol.57, No.6, pp. 709-717, November–December 2014.

[20] R. Motamedi, R. Gonzalez, R. Farahbakhsh, A. Cuevas, R.
Cuevas, and R. Rejaie. What osn should i use? characterizing
user engagement in major osns. Technical report. University
of Madrid. http://www.it.uc3m.es/ rgonza1/pubs/whatOSN.pdf,
2013.

[21] Z. Kastrati, A. Imran, S. Yildirim-Yayilgan, and F. Dalipi.
“Analysis of Online Social Networks Posts to Investigate Sus-
pects Using SEMCON”, International Conference on Social
Computing and Social Media, Los Angeles, CA, USA, pp. 148-
157, 2-7 August 2015.

[22] S. Catanese, P. De Meo, E. Ferrara, G. Fiumara, and A. Provetti.
“Crawling facebook for social network analysis purposes”, Inter-
national conference on web intelligence, mining and semantics,
Sogndal, Norway, pp. 52, 25-27 May 2011.

[23] S. Mittal, and G. Sahu. “Twitter Crawler with Multilingual
Text Classification”, International Journal of Innovations &
Advancement in Computer Science (IJIACS), Vol.6, No.6, pp.
77-83, June 2017.

[24] H. Chen, K. Hsu, and S. Chiu. “Event Detection in an ego
Network on Facebook”, Pacific Asia Conference on Information
Systems (PACIS), Chiayi, Taiwan, pp. 172, 27 June-1 July 2016.

[25] L. Passaro, A. Bondielli, and A. Lenci. “Fb-news15: A topic-
annotated facebook corpus for emotion detection and sentiment
analysis”, Third Italian Conference on Computational Linguistics
(CLiC-it), Napoli, Italy, pp. 228-232, 5-6 December 2016.

[26] R. Kridalukmana. “Generic social network data crawler using
attributed graph”, 2nd International Conference on Information
Technology, Computer, and Electrical Engineering (ICITACEE),
Semarang, Indonesia, pp. 138-142, 16-18 October 2015.

[27] G. Flores, A. Lorena, C. Penteado, and C. Kamienski. “Can
Social Network Influence Voters?”, Brazilian Symposium on
Computer Networks and Distributed Systems (SBRC), Brasilia,
Brazil, pp. 3-8, 6-10 May 2013.

[28] Y. Abid, A. Imine, and M. Rusinowitch. “Sensitive attribute
prediction for social networks users”, EDBT/ICDT 2018 Joint
Conference, Vienna, Austria, pp. 28-35, 26-29 March 2018.

[29] L. Higham, and J. Kawash. “Critical sections and pro-
ducer/consumer queues in weak memory systems”, International

91



INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
Ö. Çoban et. al., Vol.9, No.2, pp.76-93

Symposium on Parallel Architectures, Algorithms and Networks
(I-SPAN’97), Taipei, Taiwan, pp. 56-63, 20 December 1997.

[30] U. Gundecha. Selenium Testing Tools Cookbook. Packt Publish-
ing Ltd./Birmingham, 2012.

[31] D. Gilbert. The jfreechart class library. Developer Guide. Object
Refinery, 2002.

[32] S. Syn, and S. Oh. “Why do social network site users share
information on Facebook and Twitter?”, Journal of Information
Science, Vol.41, No.5, pp. 553-569, May 2015.

[33] K. Hew, and N. Hara. “Knowledge sharing in online envi-
ronments: A qualitative case study”, Journal of the American
Society for Information Science and Technology, Vol.58, No.14,
pp. 2310-2324, December 2007.

Appendices

Appendix A. Star schema of the our relational
database design is depicted in Figure 7.

92



INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
Ö. Çoban et. al., Vol.9, No.2, pp.76-93

Fig. 7: Star schema of our relational database

93


