
INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
R. Karataş et al., Vol.9, No.4, pp.213-229

Self Sovereign Identity Based E-petition Scheme

Rıdvan Karataş1 and Isa Sertkaya1,2

1Cybersecurity Engineering, Graduate School of Natural and Applied Sciences, Marmara University, Turkey.
2MCS Labs & BCLabs, TÜBİTAK BİLGEM UEKAE, Kocaeli, Turkey,

e-mail: karatasrdvan@gmail.com, isa.sertkaya@tubitak.gov.tr

ORCID iD: 0000-0001-9921-9536, 0000-0002-4739-0515

Research Paper Received: 15.04.2020 Revised: 26.09.2020 Accepted: 29.12.2020

Abstract—Electronic petitions are one of the important tools used for democratic participation. Citizens can express their support
or dissatisfaction with government investments or regulations. Citizens can also provide sufficient feedback to organizations or
government institutions through electronic petitions. In this paper, we have designed an electronic petition scheme using blockchain
as a source of trust for protecting e-petition’s users’ privacy and security. With our e-petition system, citizens can anonymously
participate an e-petition and expresses their support or dissatisfaction with a social and political issue freely. We have used
Sovrin blockchain as source of trust by using registry for Decentralised Identifiers (DIDs) and their associated public keys and
communication endpoints. We have also used other Sovrin components such as verifiable credentials, proofs and agents for
implementing our privacy and security preserving e-petition scheme. Lastly, we have analyzed security, privacy and performance
of our e-petition system.

Keywords—electronic petition, e-petition, self sovereign identity, identity management, anonymous credentials, verifable creden-

tials, blockchain, security, privacy.

1. Introduction

The usage of technology is increasing day by day
in our daily lives. As an example, technology has
become a part of democratic participation such as
electronic voting. Replacing the traditional pen and
paper scheme with a new election system has the
potential to limit fraud while making the voting
process traceable and verifiable [17].

Blockchain that is a database which is tamper-
resistant and distributed and is not controlled by
a single entity, but can be accessed and shared by
all people has potential as a tool for implementing
a new modern voting process such as blockchain
based election [8].

Electronic petitions are also one of the important
tools used for democratic participation. Electronic
petition is a form of petition which is signed on-
line, usually through a form on a website. Citizens
can express their support or dissatisfaction with
government investments. Citizens can also provide
sufficient feedback to government institutions or
organizations through electronic petitions. On the
other hand, e-petitions may lead to security and pri-
vacy risks. Because mostly petitions deal with social
and political issues such as abortion, gay marriage,
immigration law, issues related to religious freedom.
In other words, they may leak sensitive information
about users such as individual’s political ideology,
religious beliefs or sexual preferences. Therefore,

213



INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
R. Karataş et al., Vol.9, No.4, pp.213-229

any e-petition system must be designed not to
allow such personal information leakages. At this
step, blockchain providing suitable components can
be ideal choice for designing privacy and security
based electronic petitions. As known, blockchain
technology can be used many different areas such
as healthcare, IoT security and asset management.
Recently, blockchain as a decentralized and dis-
tributed public ledger technology in peer-to-peer
network has received considerable attention in iden-
tity management systems especially self-sovereign
identity management systems which provides called
"self-sovereign identity" which is not dependent on
any online centralised registry, identity provider, or
certificate authority in order to make authentication.

This paper presents an electronic petition scheme
using Sovrin Ledger as source of trust by using
registry for Decentralised Identifiers (DIDs) and
their associated public keys and communication
endpoints.

The paper is structured as follows. Section 2
includes related works. Section 3 expresses the main
technologies we have used. Section 4 expresses
the actors and their interactions in our petition
design, privacy and security assumptions as well
as requirements, protocol details and also attacker
model of our petition design. Section 5 discusses
evaluation. Section 6 presents privacy, security and
performance analysis. Section 7 includes the im-
plementation overview of our petition scheme and
lastly section 8 includes future works.

2. Related Works

In this section, we present some blockchain based
e-voting and e-petition systems that we have inves-
tigated for designing our e-petition scheme.

Agora [11] provides voting features designed
for institutions and governments. After purchasing

Agora token for each individual voter, governments
and institutions can use Agora for voting purposes.

Netvote [1] is a decentralized blockchain-based
voting network on the Ethereum blockchain.
Netvote provides decentralized apps (dApps) for
the users for interacting with the network. Users
are divided into two groups admins and voters in
Netvote. Admin users determines election policies,
create ballots, establish registration rules and open
and close voting by using their Admin dApp. The
Voter dApp is used for for registration and voting
by individual voters.

Another blockchain based e-voting solution pre-
sented in [13]. In this work, they present a internet
voting protocol with maximum voter privacy using
the Blockchain, called The Open Vote Network
(OVN) which is written as a smart contract on the
public Ethereum blockchain.

Diaz et al. in [5] presents a privacy preserving
electronic petition using Belgian e-ID as source of
authentication, and anonymous credentials used for
sign petitions. In this e-petition system, petition
users authenticate to credential issue server using
their Belgium e-ID card and then receive required
credentials to sign a petition. After obtaining cre-
dentials, users contact to petition server to sign a
petition. But this work provides neither a description
of the underlying protocols, nor a thorough evalua-
tion.

Another privacy preserving e-petition system was
proposed in [23]. In this work, they use the Belgian
eID card in a registration procedure and they also
use Idemix credential system for anonymity of a
user and unlinkability of a user’s signature. One
of the good aspect of this e-petition system is
that PetAnon allows petition organizers to provide
potential signers with multiple choices. Today, many
petitions only have one version: ’in favour’. But
using Belgian eID card for bootstrapping the users

214



INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
R. Karataş et al., Vol.9, No.4, pp.213-229

is not privacy preserving mechanism.

Another privacy preserving e-petition was pro-
posed by [24]. In this work, Wahab proposed
an electronic petition system which supports
anonymity and unlinkability by using Coconut se-
lective credential disclosure scheme. Coconut pro-
vides computationally efficient and short creden-
tials. Therefore, Coconut cryptographic primitives
take just a few milliseconds on average, with ver-
ification taking the longest time (10 milliseconds).
Coconut provides credential scheme supporting dis-
tributed threshold issuance. But as any threshold
system, Coconut is vulnerable if more than the
threshold number of authorities are malicious and
also adding and removing authorities is cumbersome
in Coconut.

3. Technologies

This section presents main components of Sovrin
Trust Framework used for implementing our e-
petition scheme.

3.1 Sovrin Network

The Sovrin Network is the public-permissioned
blockchain designed for self-sovereign identity for
people, organizations and other things in need of
identity they control and own. The Sovrin Network
includes servers nodes administered by a diverse
group of trusted entities called Stewards [20] re-
sponsible for operating other Sovrin nodes.

Sovrin Network consists of three layers [20].

Sovrin Ledger: This layer includes multiple pub-
lic permissioned ledger.

Agents: This layer provides interfaces for com-
municating client and ledger.

Clients: These are distributed identity owners.

3.1.1 Sovrin Ledger

Sovrin Ledger consists of several components.
These are several types of ledger, Plenum Consensus
protocol and several types nodes.

Sovrin ledger consists of multiple public permis-
sioned ledgers.

The Identity Ledger: This is the primary ledger.
All identity records are written to this ledger by
Sovrin user.

The Pool Ledges: This ledger provides records
of node’s actions like what Sovrin nodes are delete
or permitted are recorded on this ledger.

The Voting Ledger: Operations of consensus
process’ actors(trustees and stewards) are performed
on this ledger.

The Config Ledger: Network configuration trans-
actions created by Sovrin Foundation Technical
Governance Board [20] and approved by the Board
of Trustees [20] are recorded on this ledger.

3.1.1.1 The Plenum Consensus Protocol

Plenum Byzantine Fault Tolerant Protocol that
is a kind of Redundant Byzantine Fault Tolerance
(RBFT) [3] is the distributed consensus protocol
implemented in Hyperledger Indy. Plenum is one of
new implementations of RBFT. In addition to RBFT,
Plenum enhances a high-performance, fault-tolerant
communications protocol on top of UDP called
Reliable Asynchronous Event Transport (RAET)
Protocol [9]. RAET leverages Daniel J. Bernstein’s
Curve25519 [4], a highly-secure high-performance
Elliptic Curve Digital Signature Algorithm [10].

Unlike RBFT which uses Message Authentication
Codes Plenum Byzantine, Plenum uses Digitally
Signed messages using CurveZMQ [7].

In addition to RBFT which does not provide the
election process, Plenum protocol has added voting

215



INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
R. Karataş et al., Vol.9, No.4, pp.213-229

to selection of the primary process. This process is
pluggable meaning that could be shifted easily for
different security and performance requirements.

3.1.1.2 Sovrin Nodes

Two types of nodes are used in the ledger. Val-
idator nodes and observer nodes.

Validator Nodes: Validator nodes responsible for
writing new records to ledger. Validator nodes also
operate the Plenum consensus protocol and add new
Sovrin transactions to the ledger.

Observer Nodes: Observer nodes include a read-
only copy of the Sovrin ledger [18]. Observer nodes
are also necessary for scaling the network.

3.1.2 Sovrin Agents

Agents are in middle layer in Sovrin architecture.
Both Sovrin clients and agents are known as clients
in Sovrin architecture. But main difference between
them is that Sovrin agents also serve as servers
which has a addressable network endpoint.

Agents operate below operations in the Sovrin
Network.

Coordination endpoints for multiple clients:
From identity owner perspective, Sovrin agents are
the actors of managing messages and the status
across multiple Sovrin clients run on several edge
devices (laptops, smartphones, etc.)

Persistent P2P messaging endpoints: Sovrin
clients which does not have own endpoints run
on edge devices (smartphones, laptops, etc.). These
endpoints are known as network services (web
servers, email servers, domain name servers, etc)
are provided by Sovrin Agents.

Encrypted data storage and sharing: Sovrin
Agents are capable of sharing and storing data

which is encrypted and managed by the identify
owner [18].

Encrypted backup of Sovrin keyrings: Sovrin
agents provide encrypted backup service for recov-
ering keys easily [18].

3.1.3 Sovrin Clients

Sovrin Clients, the last layer of Sovrin architec-
ture, are vital for Sovrin Network.

Keychains

One of the most important tasks of the Sovrin
Client is to protect and manage the identity owner’s
identity key chain which provides self sovereign
identity for Sovrin users. Sovrin keychain architec-
ture is very similar to the OS specific architecture.
What makes Sovrin keychain special is that it is
based on self sovereign identity manner completely
[18] .

Local Containers

Sovrin Client can replicate portion or all of con-
tainer of identity owner’s data. Sovrin Client’s main
task here is to manage the physical storage of this
identity owner data by particular operating system.

Another task of Sovrin Client is to share these
identity owner’s data containers stored on that par-
ticular device to other Sovrin Clients synchronously
when needed.

First-Time Provisioning

Like other email server or file sharing client,
Sovrin Clients must first connect to the network
to perform some operation. In this step, called
provisioning, the Sovrin Client is authenticated to
the network.

Sovrin Client who does not yet have an identity
first connects to the trust anchor [18] which adds
new identities to the network.

216



INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
R. Karataş et al., Vol.9, No.4, pp.213-229

4. SSI Based E-Petition Scheme

This section includes our e-petition design based
on Sovrin self-sovereign identity framework men-
tioned chapter in 3.

4.1 Actors and Interactions

We have specified a single, Petition Regis-
tration Service (R) and several Petition Orga-
nizer (O1, O2, . . . , On) such as public institu-
tions or organizations, and several Petition Users
(U1, U2, . . . , Un) and a several Credential Issuers
(I1, I2, . . . , In). In our petition scheme, each peti-
tion user and petition organizer has one or more
credentials used for signing a petition or getting a
petition organizer role.

Main operations illustrated with figure 1 are per-
formed by these actors in our petition.

E-Petiton Registration Service: Petition Reg-
istration Service has two important task. These
are registering Petition Organizer and User. In or-
der to do that, Petition Registration Service issues
some credentials to Petition Organizers and Petition
Users. For example, Petition Registration Service
issues petition detail (Petition Organizer Creden-
tials) credentials to Petition Organizer. A petition
organizer acts as Petition Organizer role with these
credential and creates several petitions. Also Peti-
tion Registration Service issues unique number for
each petition to Petition User for registering users.
Also this credential is used for preventing double
signing. In other words, Petition Registration Ser-
vice registers petition users and petition organizers
by issuing some credentials to these entities.

E-Petition Credential Issuers: These actors are
responsible for issuing credentials to petition users.
These actors can be organizations, universities or
institutions. These actors can generate their specific

schema definitions and then credential definition
that depends on these scheme definitions. When Pe-
tition User contacts to obtain a credential, Credential
Issuer issues this credential to Petition User using
Sovrin schema definition and credential definition.
For example, petition user wants to participate a
petition requested driver licence from petition users.
In this case, petition user contacts to Driver Licence
Department credential issuer. Then Driver Licence
Department issues these credentials to users.

E-Petition Credential Organizer: These actors
are responsible for creating petition namely proof
request in Sovrin. Organizers firstly request proof
from e-petition users. Petition users generate proofs
by using Sovrin ledger and their credentials in their
wallet.

Petition Users present their proofs to Petition Or-
ganizer namely verifier in Sovrin Trust Framework.
And then Petition Organizer verifies or rejects the
proofs by querying Sovrin ledger. For example, an
public institutions can be e-petition organizer.

E-Petition Users: Anyone has identity number
can be an-e petition signer in our design. These
actors can participate and sign an e-petition. Be-
fore signing petition, e-petition users may have to
hold some credentials such as over 18 year old or
driver licence. Petition Users receive these creden-
tials from Credential Issuers. Shortly, Petition Users
receive these credentials from Credential Issuers
and stores these credentials on their wallet. And
then these credentials are used for signing step by
generating proof.

For example : Disabled persons (Citizens) may
participate a petition about traffic fines. In this
scenario, these actor can be defined as follows.

Citizens: prover and credential holder

Driver Licence Department: credential issuer

Petition Registration Service: credential issuer

217



INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
R. Karataş et al., Vol.9, No.4, pp.213-229

Fig. 1: SSI Based E-Petition Scheme

Petition Organizer : credential verifier.

These actors mainly perform following opera-
tions.

Registration of Petition Organizer

In this step, petition organizers are received peti-
tion information credentials from petition registra-
tion service. In other words, Petition Registration
Service registers any Petition Organizer. In order to
do that, Petition Registration Service issues some
credentials to Petition Organizers. These informa-
tion could be petition name, id, petition definition
and potential petition users or conditions etc.

After getting required credentials for being Peti-
tion Organizer, Petition Organizer can create peti-
tion.

Getting Credentials from Credential Issuers

In this step, petition users obtain required petition
credentials from credential issuers. For example,
a petition can request driver licence from petition
user. In this case, petition user interacts with driver
licence department and then obtains driver licence
credentials and stores in his/her wallet. Then peti-
tion user can use these credentials for creating proof,

in other words, signing a petition.

Registration of Petition User

In this step, Petition Registration Service registers
a petition user for participating a petition. In order
to do that, Petition Registration Service issues some
credentials to Petition User. In this step, Petition
Users contact to Petition Registration Service for
registering, in other words, for getting registration
credential namely unique number credential in our
system. Petition Registration Service sets this value
for each user individually. This value controlled by
Petition Organizer in privacy preserving way using
zero knowledge proof for preventing double signing.

Signing and Counting Petition

After Petition Organizer receiving signatures
(proofs) from petition users, it counts and publishes
them in a way that users can check whether their
votes have been counted or not.

4.2 Security and Privacy Assumptions

The following assumptions are made.

Secure connections

218



INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
R. Karataş et al., Vol.9, No.4, pp.213-229

Connections preserve integrity and confidential-
ity. Each actor builds a pairwise, peer to peer
secure connection by using their endpoint DIDs,
pairwise pseudonymous DID and agents. In our
petition design, each actor has a DID. This DID
has a corresponding private agent which has own
pseudonymous network address from which the an
e-petition actors can exchange verifiable e-petition
claims and any other data with other actor over an
encrypted private channel.

We assume that this private channel is secure.

Enhancing Anonymity:

Each actor can use different DID for different
connection to enhance anonymity and preventing
correlation.

4.3 Protocol

The implementation of the methods in section 4.1
are discussed in more detail.

Registering Petition Organizers and Creating
a Petition

Petition Organizer builds a pairwise peer to peer
connection between Petition Registration Service
by using their endpoint DIDs and agents. And
then Registration Service creates Petition Organizer
Credentials such as unique petition name for this
petition organizer and then sends credentials to the
organizer. After receiving these credential, Petition
Organizer acts as Petition Organizer. Also Petition
Registration Service sends unique number list that is
used for preventing double signing and controlling
registered user through this private channel. And
then Petition Organizer prepares petitions known
as "proof request" in Sovrin. Petition Registration
Service determines required conditions (known as
requested attributes and requested predicates) for
any specific petition. Petition Registration Service
sends these information via these private channel

or other means of communications such as https
etc. After that Petition Organizer creates a petition
(proof request) and publishes it on site.

Registering Petition User

In this case, any Petition User contacts to Petition
Registration Service for registering, in other words,
getting unique number credential. Petition Users
build a pairwise peer to peer secure connection with
Petition Registration Service by using their endpoint
DIDs and agents. Petition Registration Service sets
this value for each user individually. This value
controlled by Petition Organizer in privacy preserv-
ing way using zero knowledge proof for preventing
double signing.

Getting Credentials from Credential Issuers

In this step, Petition Users build a pairwise, peer
to peer connection with a Credential Issuer by
using their endpoint DIDs and agents. Petition Users
obtain required petition credentials from Credential
Issuers. For example, an petition can request driver
licence from petition user. In this case, Petition User
interacts with driver licence department and then ob-
tains driver licence credentials and stores in his/her
wallet. Then Petition User can use these credentials
for creating proof. In other words, signing a petition.

Participating a Petition

In this step, Petition Users build a pairwise, peer
to peer connection with a Petition Organizer by
using their endpoint DIDs and agents. A petition
known as proof request in Sovrin requests some cre-
dentials with using Sovrin proof request attributes
such as requested attributes or requested predicates.
Petition User receives proof request, and gener-
ates proofs depends on credentials she/he obtains
from Credential Issuers and Petition Registration
Service. The proof contains information such that
the requirement of the Petition Organizer’s proof
request can be satisfied. And then Petition Organizer

219



INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
R. Karataş et al., Vol.9, No.4, pp.213-229

receives the proof from Petition User. Inside the
proof, Petition Organizer sees the information and
condition required, and verifies that they are coming
from Credential Issuers and Petition Registration
Service (for unique number). Then Petition Orga-
nizer accepts this proof.

Counting and Publishing Signatures

After Petition Organizer receiving and accepting
signatures (proofs) from petition users, it counts
and publishes them in a way that users can check
whether their votes have been counted or not.

4.4 Functional and Threat Model

This section mentions the actors and their interac-
tions in our e-petition scheme. We have mentioned
privacy and security assumptions of our petition
design in this section. And then we have presented
also the attacker model and requirements of our
petition design.

4.4.1 Attacker Model

Attacks can be grouped in malicious actors or
revealing user signature.

Malicious actors: by a malicious Petition User,
Petition Organizer or Petition Registration Service.

1 Malicious User: Malicious User participates
the same petition several times by obtaining
multiple credentials,

2 Malicious Organizer: Malicious Organizer
tricks users to participate another petition.

3 Malicious Registration Service: A Malicious
Registration Service issues faked or altered
credentials.

Revealing user signature to the specific petition
user’s sign attribute (1) or to another signature (2).

1 To the signer’s sign attribute: Actors may come
together to reveal users’ sign attribute.

2 To another signature: Petition Organizer can
create votes of the same user on different pe-
titions. And then Petition Organizer can reveal
specific user by using user’s sign value.

4.5 Requirements

This section includes our e-petition scheme re-
quirements depend the attack model and actor inter-
actions. We have grouped into security and privacy
requirements.

Security Requirements

S1. A petition user can not participate a specific
petition multiple times.

S2. A petition can request only persons with spe-
cific population. So, the petition user has to
prove that he/she belongs to this population.

S3. A petition can request some qualification from
petition users. User has to prove that he/she
have required qualifications for specific petition.

S4. Petition issuers can revoke a user credential
during participating petition time.

S5. A user can verify his/her signature information
in the petition organizer database.

S6. Everyone can verify that counting of his/her
signature. No one is able to delete or alter the
petition records.

Privacy requirements

P1. The user’s identity should not be revealed from
the petition signatures. Moreover, signatures of
the same user for different petitions can not be
revealed.

P2. The user may or may not share some of his/her
identity’s attributes such as age and gender
with petition organizer when petition organizer
requests.

220



INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
R. Karataş et al., Vol.9, No.4, pp.213-229

5. Evaluation

5.1 Security and Privacy Evaluation

This section includes evaluating of the our petition
protocol mentioned 4.3 depends on attacker model
and the requirements in the section 4.4.1.

S1. For each petition, Petition User has a unique
number. Each petition requests this value using
Sovrin requested_predicates feature. The actual
unique number value is not revealed because
this method uses zero knowledge proof. Even
if the Petition Registration Service and Petition
Organizer come together, they can’t reveal Pe-
tition User unique number from the proof.

S2. Each user can prove whether he/she has spe-
cific credentials requested by the petition. In
order to do that, Petition User obtains several
credentials from different Credential Issuers.
Then Petition Users use these credentials for
creating proofs. For example, a petition requests
driver licence using Sovrin requested_attributes
and requested_predicates from Petition Users
(targeted population). Petition Users have driver
licence can create required proof and present to
Petition Organizer. And then Petition Organizer
validates these proofs using Sovrin Ledger.

S3. Petition User can prove certain personal prop-
erties requested by petition (proof request) such
as age, location. Also Petition User can disclose
additional properties.

S4 : We will implement this feature for our petition
scheme by using Sovrin revocation registries.

S5. Each Petition User can verify his signature in
the petition organizer database. Because each
user knows his/her signature information, Pe-
tition Users can verify that whether his/her
signature counted easily.

S6. In our petition scheme, we can not detect Peti-
tion Organizer’s database actions. We assume

that Petition Organizer, Credential Issuer or
Petition Registration Service are trust entities.
Because these entities are called trust anchor.
The Sovrin Trust Framework specifies the qual-
ifications for selection and ongoing verification
of trust anchors, and thereby establish the basis
for maintaining a sustainable, organic web of
trust of permissions on the Sovrin network [18].
We plan to move some tasks (such as stor-
ing signatures) of Petition Organizer to the
blockchain platform for benefiting its trans-
parency, immutability and security properties.
Because we assume that all actors are trusted
such as Petition Organizer. But this assumption
could lead to security or privacy problems.
Petition Organizer has many critical tasks such
as collecting signature information and pub-
lishing them. These tasks can be performed
by blockchain using smart contracts such as
Hyperledger Fabric.

P1. Petition Users create different signature infor-
mation for different petitions. Therefore, finding
correlation between Petition Users’ signature
information can not be possible.

P2. Petition User can prove certain personal prop-
erties requested by petition (proof request) such
as age, location and also Petition User may or
may not disclose additional properties.

5.2 Evaluation of Possible Security and Pri-
vacy Issues to Be Occurred in Petition Systems

Problem (Centralization): While PKI certificates
are widely used in online for specific purposes such
as secure connections or authenticating digital trans-
actions and more, they have some shortcomings.
From e-petition perspective, digital signatures are
used for several operations such as verification or
integrity e-petitions. These system depends on two
required keys. The first key called the private key

221



INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
R. Karataş et al., Vol.9, No.4, pp.213-229

or signing key is used to sign the document, and is
kept by the issuer secretly. The second key called the
public key or verification key is used to verify the
signature. Also this key ensures that the e-petition
has not been tampered with. This key is shared
publicly. It means that everyone knows this key. The
primary challenge in this architecture is verifying
that whether you have the correct public key for
the issuer or not. In PKI, several (a few hundred)
certificate authorities (CAs) are to be the roots of
trust.

The main problem with PKI is that the trust in
this system depends on a chain of CAs’ trust. Such
a centralization can lead to censorship and single
points of failure. CAs taking part in digital trust
infrastructure can lead to vulnerabilities. If a CA
makes a mistake on a digital certificate, if their
service may be unavailable or may have security
leakage, if they raise their prices, if their business
collapse, the whole system may be fall apart.

Prevention Method: Blockchain technology that is
decentralized root of trust can solve this problem.
It uses decentralized network and consensus algo-
rithm that is operating over many different nodes
(machines) and replicated by many different nodes
according to consensus algorithm in a decentralized
network, instead of relying on CAs, organizations,
or governments to be a cryptographic root of trust.

Every transaction in a blockchain requires a pri-
vate key for signing. Associated public keys are
stored on the blockchain. Every public key can
now have its own address and Decentralized PKI
(DPKI) [6] depends on this approach. This address
is called DID. This identity known as self-sovereign
identity, where every person, organization or thing
can have its own truly independent digital identity
that is not dependent to any person, company or
government. In this approach, blockchain serves as
registry for DIDs. For example, Sovrin Ledger acts

as registry for DIDs and corresponding public keys
and communications endpoints.

In our e-petition design, we have used Sovrin
DIDs for signing and verification e-petitions. In our
design, each DID associated with a DID document-
JSON-LD file-which is used for proving ownership
and control of a DID and also contains crypto-
graphic keys and resource pointers (endpoints) to
establish trusted peer to peer interactions between
Sovrin entities. Operations of DDIs such as regis-
tering, resolving, updating, and revoking of DIDs
on the Sovrin Network is determined by Sovrin
protocol.

Because Sovrin Ledger provides cryptographic
verification of the DID document which includes
verification key known as public key used by the
identity holder, e-petitions users can sign and verify
e-petitions without relying on any centralized au-
thority. In this approach, e-petition user completely
relies on Sovrin for the trust and solves one of
the biggest challenge with existing PKI (public key
infrastructure) depends on centralized authorrities.

Problem (Credential Revocation): There are some
credentials that lose your validity under certain
circumstances in real life. In other words, the cre-
dential issuer no longer entitles for the credential
and then credentials are revoked by other users.
Driver licence might be an example. In some cases,
user’s driver licence might be revoked by driver
licence department.

From this perspective, we assume that e-petition
user presents some attributes for participating an
e-petition. Before user participating the petition,
the credential issuer may want to revoke some
credentials. Issuer has ability to revoke any user
attributes before e-petition validity time expired. If
e-petition system are not capable of this function-
ality, e-petition user that does not have necessary
qualification may participate an e-petition.

222



INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
R. Karataş et al., Vol.9, No.4, pp.213-229

Prevention Method: In our design, Sovrin revo-
cation registry feature might be used for above
problem. A revocation registry is data structure
which contains a single (long) number called a
cryptographic accumulator and points the credential
definition and written to the Sovrin ledger by the
issuer like other data structure such as schema
definition or credentials definitions. When needed,
this value can be checked to whether data is valid
or not by the verifiers via using zero-knowledge
cryptography.

Only the credential holder can generate a zero
knowledge proof of non-revocation by using his/her
own credentials. A verifier that wants to determine
whether the credential is still valid or not, verifier
uses this proof which contains non-revocation with
the cryptographic accumulator issued by its issuer
on the Sovrin ledger. And then decides whether
credentials are valid or not. When an issuer needs
to revoke a credential, issuer subtracts the credential
hash from the cryptographic accumulator and sends
the new value to the Sovrin ledger. From that point,
the identity holder can not generate a valid proof of
non-revocation.

Problem (Losing or Compromising of Keys): Sup-
pose that e-petition user’s keys are compromised or
stolen by an attacker. In this case, user’s identity
or sensitive information can be used for malicious
purposes. For example, if any e-petition system
uses this certificate information, user’s opinions
about a political or social issue may be disclosed
by attacker. Therefore, users can revoke keys or
certificates as soon as stolen his/her keys. In cen-
tralized authority system, this process may be costly,
cumbersome and centralized.

Prevention Method: In Sovrin, key revocation is
as easy as the identity owner generating a new
Sovrin DID on Sovrin ledger. If any attacker stolen
someone’s key may attempt to revoke and replace

it with a new key or key set governed by attackers.

E-petition users may have lost his/her keys when
losing of a device (if the owner’s Sovrin keychain
only lived on a single device), or loss of an entire
set of devices. In this case, key recovery steps are
required for getting an key or key set. If identity
holder lost the key, thereafter identity holder can
not perform any interactions with Sovrin ledger.

In Sovrin, key management depends on a "web of
trust" architecture. Key recovery relies on trustees
specified by identity owner. Any identity owner
could specify their trustees as much as his/her want.
In order to start key recovery process, identity
holder asks for trustees for new keys set. But
identity owner waits for a while. This waiting period
is called timelock. The timelock period is required
for thwarting an attacker. Because an attacker may
want to immediately tries to change the owner’s
identity records, including her designated trustees,
thus preventing key recovery [18].

6. Security, Performance Analysis and
Legal Issues

6.1 Security and Privacy Analysis

Strong authentication: In our design, the initial
authentication of the citizen is achieved through the
his/her agent. Before participate e-petition, citizens
need to obtain required credentials. Citizens need
to interact with credentials issuers to get required
credentials for participating an e-petition. Citizens
may interact with credential issuer in different ways.
For example, some credential issuer may publish
their DID used for accessing this credential issuer
with email, another credential issuer issuer may
publish their DID on their website for interacting
with citizens. Some issuer may use 2 factor authen-
tication to communicate citizens.

223



INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
R. Karataş et al., Vol.9, No.4, pp.213-229

Authorization: Our system relies on Sovrin
Ledger as trust source given that public keys, cre-
dential and schema definitions are stored. In our
system, Steward is responsible for onboarding new
actors and assigns role to them in the system. Cre-
dential and scheme issuers called Trust Anchor [19]
are authorized by Steward. In real life, for a well es-
tablished Hyperledger Indy network, Stewards (and
Trustees) are responsible for maintaining the level
of trust and authorization of whole network.

Any organization that wants to run a node on the
Sovrin public blockchain can become a steward by
following the rules defined in the trust framework.
The first 24 stewards [22] span 11 countries.

Data Integrity: Data integrity is provided by
digital signatures in our system. Because Sovrin is
a DLT, Sovrin provides :

1. Each transaction in the blockchain is digitally
signed by its generator.

2. Each transaction in block is chained to previous
transaction’s digital hash.

3. Validated transactions are replicated across all
machines according to using a consensus algorithm.

Every transaction in Sovrin requires a private
key for signing. For example, credential or schema
definition are signed by public DIDs of credential
issuers. Credential verifiers use digital signatures
which is presented with proof by credentials holder
(citizens in our case) for verification.

Confidentially: In our system, each Sovrin DID
(such as citizen or credential issuer) has private
agent-with its own pseudonymous network address.
All the data exchanges between agents (for example
citizen and credential issuer) are transferred through
secure (encrypted) private peer to peer channel.

Signer anonymity: In our system, signer
anonymity is achieved by the zero- knowledge prop-
erties of the anonymous credential protocols and

privacy agents. Sovrin enables selective disclosure
of credential attributes. Selective disclosure lets e-
petition users control which user’s data is shared
in a specific context. For example, when you prove
that you are older than 18 at an e-petition. E-petition
user does not need to disclose date of birth.

Our system also provides separate agent point
for each identity. If all of those Sovrin identities
shared the same agent endpoint, attackers would
find correlation between them.

Multiple signing prevention: In our system, ev-
ery citizen connects to petition organizer via secure
peer to peer fashion. Duplicate signatures are de-
tected by petition server using DIDs of petition user
without compromising petition signer anonymity.

We have used unique number credential for pro-
viding this functionality. Every petition user re-
ceives a unique number credential from Petition
Registration Service. Using Sovrin predicates in
proof request, petition verifier validates this number
without revealing actual value of unique number
credential. However, unfortunately Sovrin is not
ready yet for any type of predicates at the time
of writing. We could only use one type predicate
for preventing double signing. But only one type
predicates does not provide necessary our privacy
requirements.

One time usage credential can be another solution
for multiple signing problem. Even if theoretically
it is possible, Sovrin has not provided yet required
APIs or wrapper to developers for implementing this
feature at writing this paper [12].

Public verifiability: In our e-petition system, the
e-petition organizer publishes petition information
of every signatures. This information can be used by
a citizen to verify that her own signature information
has been counted.

We have implemented this functionality by using

224



INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
R. Karataş et al., Vol.9, No.4, pp.213-229

Sovrin self attested attributes. Petition User can
create his/her own credential by using Sovrin self
attested attributes. Petition User creates a value
and sends to Petition Organizer when participating
a petition. Petition Organizer validates proof pre-
sented by Petition User. And then Petition Organizer
publishes this self attested value for verifying by
Petition User. Our system relies on only petition
verifier for collecting and publishing signature in-
formation. This approach could be lead to security
and privacy problem. In order to improve privacy
and security, the process of the collecting and
publishing of signature information can be moved
to blockchain supporting smart contracts such as
Hyperledger Fabric [2].

6.2 Performance Analysis

Sovrin network are capable of around 100 reads
10 writes per second [21]. These values can be con-
sidered as low for a permissioned blockchain. But
in Sovrin, many of network operations performed
by peer DIDs. This may reduce %99 of all network
reads and writes and provides better scalability with
perfect horizontalness. In other words, peer DIDs
don’t use the ledger directly [21]. They use required
bandwidth and storage from two parties that use
those DIDs. Many of network operations performed
by via peer message exchange. Network’s load
for the increased DID storage and communication
burden does not change even if the number of peer
DIDs increases considerably. The most important
part of is that using the ledger is only required
for defining credentials. The number of credentials
issued or the number of users of those credentials is
completely independent. For example, the millions
of credentials that they issued to different organiza-
tions performed only a few of ledger writes by The
Government of British Columbia.

The petition server basically has two tasks:

registering user and validating user creden-
tials(signatures). Based on the above-mentioned,
there is no ledger effect for these operations.
These operations are independent processes from
the ledger.

As might be expected, as with any messaging
application, there will be network delays due to
exchanging messages on the petition server accord-
ing to the increasing number of users. We have
analyzed these two operations according to different
number of users without considering network delays
mentioned above.

Setup

The infrastructure that the our experiments are
conducted on is a virtual machine with the Intel i5-
2450M 2 core CPU, 8GB RAM, 50GB SSD hard
drive and running Ubuntu 18.04.1.

Method

We have used Straight Line Fitting [15] method
for measuring code execution time to eliminate
systematic and random measurement errors [15] and
obtain more reliable results. The basic idea is to first
measure the time of one function call, then the time
of two, then the time of three, and so on.

Then fit a straight line through these measure-
ments. The slope a from the straight line y = a x
+ b gives the overall execution time of a function.
For example, assume that the straight line is y =
205.91 x + 29.56; therefore, the execution time
equals 205.91 millisecond

Performance Assessment of Registering Users

As we have explained in section 4, the petition
server issues unique number credentials for users
to register. The Petition server runs the issuerCre-
ateCredential() function provided by indy SDK to
create credentials. The execution of this function is
independent from the ledger. We have computed ex-
ecution times of this function according to different

225



INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
R. Karataş et al., Vol.9, No.4, pp.213-229

number of user(N=10, 100, 1000, 10000) according
to straight line method.

We have created the equation y = ax + b according
to these execution times and different number of
users. Then we have found that average execution
time of registering users is 357,17 milliseconds.

Performance Assessment of Validating Proofs

As we have explained in section 4, the petition
server receives proofs from users then validate them.
The Petition server runs the verifierVerifyProof()
function provided by indy SDK to validate proofs.
We have computed execution times of this function
according to different number of user(N=10, 100,
1000, 10000) according to straight line method.

There is a linear relationship between the execu-
tion times and the number of users. We have plotted
this linear relationship with these values.

Then we have looked at the slope of this line, we
have seen that the average working time of validat-
ing proofs of petition server is 500,02 milliseconds.

6.3 Legal Issues

The most important issue needs to be exam-
ined in any privacy preserving petition system like
blockchain based ones is that whether e-petition
system requires the processing of personal data. And
also petition system has to be examined according
to the legal frame-work on data protection law of
the governments or institutions that organizes e-
petitions for a political or social issue.

The data protection legislation only applies when
the usage of personal data takes place according
to data protection laws. If the data are anonymous
and can not be related to a real person, their usage
does not to be included data protection legal frame-
works. Privacy risks in the blockchain based petition
implementation are related to the possibility of re-
identifying anonymous citizens by attacking system

or analyzing the system. Thus, any blockchain based
e-petition system does not allow any kind of re-
identifying and does not provide any mechanisms
for deanonymization like our petition system does.

Abusing of personal data obtained reidentifying
individuals to categorize, profile the people based
on their ideas, individuals are being targeted and ha-
rassed, or being subject to social pressures by their
family, friends, neighbors, or work environment.

7. Implementation

We have considered a scenario where only dis-
abled people with a driver’s license can participate
and implemented this scenario using Hyperleder
Indy.

In this case, our Indy network are consist of four
indy nodes. These nodes hold ledger and execute
consensus algorithm and communicate each other
for performing ledger operations. Also we have used
five Indy agents represents each actor. In our demo,
these are Petition User, Petition Registration Ser-
vice, Driver Licence Department (Credential Issuer
for driver licence), Health Department (Credential
Issuer for health status), and Petition Organizer(for
Petition Server). In this demo, we have roughly
divided them into various stages.

Preparation

All actors have a public Decentralized ID (DID).
This public DID (or endpoint DID) represents the
players in the ledger. Also each actor has Citizen-Id
as credential for knowing each other.

In this step, Credential Issuers create schema and
credential definitions and submit Sovrin Ledger. Our
issuers are Petition Registration Service, Driver Li-
cence Department and Health Department. Petition
Registration Service creates the Unique Number
Schema and Petition Organizer Schema definition.
Driver Licence Department creates Driver Licence

226



INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
R. Karataş et al., Vol.9, No.4, pp.213-229

Schema definition and lastly Health Department
creates Disabled Status Schema definition.

Driver Licence Department creates the Driver Li-
cence Credential Definition derived from the Driver
Licence Schema. Similarly, Health Status Depart-
ment creates the Health Status Credential Definition
derived from the Health Status Schema and Peti-
tion Registration Service creates the Unique Num-
ber Credential Definition derived from the Unique
Number Schema and Petition Organizer Creden-
tial Definition derived from the Petition Organizer
Schema.

Registering and Getting Credentials From Is-
suers

1 Peer to peer secure communication is estab-
lished between Petition User and Petition Reg-
istration Service, Driver Licence Department
or Health Status Department. This can be
requested by either side and accepted by the
other.

2 Petition Registration Service, Driver Licence
Department or Health Department sends Cre-
dential Offer to Petition User

3 Petition User accepts offer and requests cre-
dentials.

4 Petition Registration Service, Driver Licence
Department, Health Status Department sends
credentials to Petition User. Petition User
stores these credentials in his/her wallet.

Participating and Publishing a Petition

1 Peer to peer secure communication is estab-
lished between Petition User and Petition Or-
ganizer. This can be requested by either side
and accepted by the other.

2 Petition Organizer sends proof request to Pe-
tition User.

3 Petition User responds with proof based on the
credential she/he has.

4 Petition Organizer validates the proof and ac-
cepts the proof.

5 Petition Organizer publishes user’s sign values.

All the components mentioned above have im-
plemented as Docker [14] containers running in
localhost. We have used two docker images in our
demo. These are indy-node ve indy-agentjs from
bcgovimages/von-image [16].

indy-node: This Docker image is the software
that is used for initiating ledger nodes, generates
transaction and other ledger functions. Four contain-
ers are instantiated from indy-node. Also the ledger
explorer (called webserver) is also using this image.
This docker file for this image is pool.dockerfile.

indy-agentjs: This Docker image is the agent
software. Agent specific information is given
through environment variables. Our agents’ app is
web application and uses Node.js JavaScript runtime
for server side operations and REST APIs for re-
questing and receiving responses via HTTP protocol
such as GET and POST. We have also used indy-
sdk Nodejs API wrappers for implementing vari-
ous ledger operations such as creating schema and
credential definition, creating a wallet, connection a
pool or creating a DID etc.

In this demo, five agents have been instantiated.
We have used several ports for demonstration and
observation.

Port 9000: Ledger explorer

Port 3002: Driver Licence Department

Port 3003: Health Department

Port 3004: Petition User

Port 3005: Petition Organizer

Port 3006: Petition Registration Service

227



INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
R. Karataş et al., Vol.9, No.4, pp.213-229

8. Conclusion and Future Work

Citizens can express their support or dissatis-
faction with government initiatives, and provide
feedback to government institutions through elec-
tronic petitions. Mostly petitions deal with social
and political issues such as abortion, gay marriage,
immigration law, issues related to religious freedom.
In other words, they include sensitive information
about users such as individual’s political ideology,
religious beliefs, and sexual preferences. Abusing
of this information may influence users negatively
in their private life. For protecting these issues,
electronic petitions system provides required func-
tionality.

In this paper, we have expressed our privacy pre-
serving electronic petition design which depends on
Sovrin self-sovereign identity framework. We have
introduced Sovrin Privacy by Design architecture
including pairwise pseudonymous identifiers, peer-
to-peer private agents, and selective disclosure of
personal data using zero-knowledge proof cryptog-
raphy. Citizens anonymously participate a petition
and express their support or dissatisfaction with any
social and political issue freely with our system
using Sovrin Trust Framework.

One of the future work is that moving some tasks
of petition organizer to the system implemented on
top of a blockchain platform in order to benefit
from its security, immutability, and transparency.
Because, we assume that all actors are trusted such
as petition organizer. But this assumption could lead
to security or privacy problems. Petition organizer
has many critical tasks such as collecting signature
information and publishing them. These tasks can
be performed by blockchain using smart contracts
such as Hyperledger Fabric. Some of petition server
tasks could be distributed to Hyperledger Fabric by
developing a custom Membership Service Provider

in Fabric for managing digital identities using
Sovrin decentralized identity management system.
Our petition system’s reliability can be increased
by incorporating two blockchain platforms.

During the implementation, we have realized that
one time usage Sovrin credential could be needed
for some cases. However, unfortunately Sovrin is
not ready yet for use at the time of writing [12].
We plan to use this feature on our petition system
when Sovrin(INDY-SDK) supporting required APIs
or wrappers.

Acknowledgment

We would like thank for the insightful comments
of the anonymous reviewers.

References

[1] J. Alexander, S. Landers, and B. Howerton. Netvote: A
Decentralized Voting Network, 2018.

[2] E. Androulaki, A. Barger, V. Bortnikov, C. Cachin, K. Chris-
tidis, A. De Caro, D. Enyeart, C. Ferris, G. Laventman,
Y. Manevich, et al. Hyperledger fabric: a distributed operating
system for permissioned blockchains. In Proceedings of the
13th EuroSys conference, pages 1–15, 2018.

[3] P.-L. Aublin, S. B. Mokhtar, and V. Quéma. RBFT: Redundant
Byzantine Fault Tolerance. In 2013 IEEE 33rd International
Conference on Distributed Computing Systems, pages 297–306.
IEEE, 2013.

[4] D. J. Bernstein. Curve25519: new Diffie-Hellman speed records.
In International Workshop on Public Key Cryptography, pages
207–228. Springer, 2006.

[5] C. Diaz, E. Kosta, H. Dekeyser, M. Kohlweiss, and G. Nigusse.
Privacy preserving electronic petitions. Identity in the Informa-
tion Society, 1(1):203–219, 2008.

[6] C. Fromknecht, D. Velicanu, and S. Yakoubov. A Decentralized
Public Key Infrastructure with Identity Retention, 2014. IACR
Cryptology ePrint Archive.

[7] P. Hintjens. ZeroMQ: messaging for many applications.
O’Reilly Media, Inc., 2013.

[8] F. Þ. Hjálmarsson, G. K. Hreiðarsson, M. Hamdaqa, and
G. Hjálmtỳsson. Blockchain-based e-voting system. In 2018
IEEE 11th International Conference on Cloud Computing
(CLOUD), pages 983–986. IEEE, 2018.

[9] S. Inc. The Reliable Asynchronous Transfer Protocol. (accessed
28.11.2019).

228



INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
R. Karataş et al., Vol.9, No.4, pp.213-229

[10] D. Johnson, A. Menezes, and S. Vanstone. The elliptic curve
digital signature algorithm (ECDSA). International Journal of
Information Security, 1(1):36–63, 2001.

[11] N. Kshetri and J. Voas. Blockchain-enabled e-voting. IEEE
Software, 35(4):95–99, 2018.

[12] J. Law and D. Hardman. Anonymous Credentials in Sovrin.
(accessed 14.12.2019).

[13] P. McCorry, S. F. Shahandashti, and F. Hao. A smart contract for
boardroom voting with maximum voter privacy. In International
Conference on Financial Cryptography and Data Security,
pages 357–375. Springer, 2017.

[14] D. Merkel. Docker: Lightweight linux containers for consistent
development and deployment. Linux J., 2014(239), Mar. 2014.

[15] C. Moreno and S. Fischmeister. Accurate measurement of
small execution times-getting around measurement errors. IEEE
Embedded Systems Letters, 9(1):17–20, 2017.

[16] B. G. V. O. Network. BCGov VON Docker Images. (accessed
04.12.2019).

[17] H. M. Patel, M. M. Patel, and T. Bhatt. Election Voting Using
Block Chain Technology. International Journal of Scientific
Research and Review, 7(05):1–4, 2019.

[18] D. Reed, J. Law, and D. Hardman. The Technical Foundations
of Sovrin. Technical report, Technical report, Sovrin, 2016.
Retrieved from: https://www. evernym. com/wp, 2016.

[19] Sovrin. Sovrin Board of Trustees. (accessed 29.11.2019).
[20] Sovrin. Sovrin Glossary V2. (accessed 14.11.2019).
[21] Sovrin. Sovrin Network Performance. (accessed 22.02.2020).
[22] Sovrin. Sovrin Network Stewards. (accessed 24.11.2019).
[23] K. Verslype, J. Lapon, P. Verhaeghe, V. Naessens, and

B. De Decker. Petanon: A privacy-preserving e-petition system
based on idemix, 2008.

[24] J. Wahab. Coconut e-petition implementation, 2018. arXiv
preprint arXiv:1809.10956.

229


	Introduction
	Related Works
	Technologies
	Sovrin Network
	Sovrin Ledger
	Sovrin Agents 
	Sovrin Clients


	SSI Based E-Petition Scheme
	Actors and Interactions
	Security and Privacy Assumptions
	Protocol
	Functional and Threat Model
	Attacker Model

	Requirements

	Evaluation
	Security and Privacy Evaluation 
	Evaluation of Possible Security and Privacy Issues to Be Occurred in Petition Systems

	Security, Performance Analysis and Legal Issues
	Security and Privacy Analysis
	Performance Analysis
	Legal Issues

	Implementation
	Conclusion and Future Work
	References

