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Abstract—Recommendation engines analyze ratings data to suggest individuals new products or services based on their past

experiences. However, the set of items that an individual has rated and the ratings on these items are critical for protecting individual

privacy. Existing work on the problem focus on overly complicated recommendation engines. In this study, we concentrate on the

case of a very simple engine protected with a very strong mechanism. Towards this goal, we incorporate differential privacy to

an item-based neighborhood predictor. Empirical analyses over large-scale, real-world rating data indicate the efficiency of our

proposed solution. Even at very high levels of protection, the rate of loss in prediction accuracy is below 5%, a reasonable trade-off

for privacy protection.
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1. Introduction

The widespread use of the Internet has resulted in
a major shift towards e-commerce. Most consumers
of today decide on the items to purchase and the par-
ticular provider of such items only after researching
their alternatives over the Internet. This behavior
is not limited to items and extends to services as
well. The range of items/services available through
e-commerce is very wide and range from hotel
reservations to car rentals, from books to movies
and music, and even the daily needs of their house-
holds. There exist websites whose sole purpose is to
provide past user experience and ratings over items

and services. Consider Booking.com [1] for hotel
reservations and The Internet Movie Database [2]
for movies.

Internet websites do not collect user ratings and
reviews only to increase their hit rates. The ability to
understand why an individual does or does not like
an item/service can be key to commercial success.
Let us visit the two scenarios below for motivation.

Scenario 1: Customer C is reviewing item I on
a website. If the website can successfully infer that
C will like I , the site may offer C a discount on
I to satisfy its customer. As an alternative, if C is
not likely to be content with I , then the same site
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can propose C another similar item I ′ that C is
expected to like. In both situations (whether C is
to like or dislike I), C leaves the website with a
good experience and will come back for the next
purchase.

Scenario 2: Customer C has so far rated items
{I1, I2, . . . , In}. Suppose that the website knows of
another customer C ′ that has rated similar items
similarly and this customer C ′ has also liked item
Iy where y /∈ [1, n]. The similarity of past scores
of C and C ′ together with the high rating of C ′ on
Iy suggests that customer C would like the not-yet-
experienced item Iy. By offering C the item Iy, the
site can help its customer discover new items and
increase its sales.

In both scenarios, the system that infers how a
customer will rate an item is called a “recommenda-
tion engine” [3]. Recommendation engines inspect
all ratings of all customers and use these data to
estimate how a customer will rate an item that
he/she has not rated before.

Recommendation engines take as input a two-
dimensional ratings matrix R. The ith row of R
contains the ratings of customer Ci . The jth column
of R contains the ratings for item Ij . Consequently,
R[i][j] will be the rating of Ci over Ij . Typically,
R[i][j] = 0 indicates that Ci has not rated Ij .

Despite its rather simple structure, ratings ma-
trix R is a potential threat to individual privacy.
Consider hotel reservations. Suppose R reveals that
customer C has rated hotel H . Having rated H

implies having visited the city/country H is located
in - which may contain in itself further implications.
If H is in Mecca, then it is heavily probable that
C is Muslim (the threat of Islamophobia). If H is
in Uganda, C might have gotten infected with the
Zika virus during the visit.

Similar examples exist for almost any type of

purchase. Having read “The Communist Manifest”
alongside many other books of the leftist literature
could indicate political view. A highly positive
rating on the movie “The Passion of the Christ”
could indicate religious belief as well as political
view (most individuals would tag the rater as a
conservative in the U.S.).

All of these examples reveal that the ratings
matrix R contains data that are sensitive to in-
dividual privacy. Therefore, R has to be pro-
tected against privacy leaks and recommendation
engines should be strengthened to support privacy-
by-design. Otherwise, not only privacy sensitive
customers will withhold from providing their rat-
ings over items/services, but also the above men-
tioned inferences against individual privacy cannot
be prevented. Various studies in the literature have
attempted to solve the privacy protection problem
during recommendation generation [4], [5].

In this study, we discuss how privacy protection
can be incorporated to a basic recommendation
engine. Our recommender system predicts the rating
that a customer C will give to an item I by first
locating neighbor items of I . A neighbor of I is an-
other item that has received similar ratings from the
same customer as I . Once neighbors are identified,
the predictor than takes a weighted average of the
votes of C over the neighbors of I .

The protection mechanism we utilize, namely
differential privacy, is one of the strongest mecha-
nisms known yet. The basic approach of differential
privacy is to conceal all access to the ratings matrix
R by allowing only aggregate statistical queries and
adding noise to the results of these queries. As
explained in [6] by Dwork, added noise ensures
that any possible violation despite such protection
is essentially unavoidable - even if the disclosed
sensitive data were not part of the R.

Primary contributions of our approach are as
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follows:

• Privacy of R is protected with the Laplace
mechanism of differential privacy. Unlike most
of existing work, we provide strong and quan-
tifiable protection.

• Our recommendation engine is one of the sim-
plest engines possible. Existing work on (espe-
cially differentially private) privacy preserving
recommendation systems focus on overly com-
plicated engines.

• We experiment with large-scale, real-world rat-
ing data. Our results indicate that strong privacy
guarantees can be provided easily and with little
compromises upon recommendation accuracy.

• In accordance with the privacy by design prin-
ciple [7], we promote item-based solutions in
contrast to customer-based solutions, and also
argue that sibling data sets should be built over
rows of R rather than cells of it [8].

• We review a wide range of different solutions
on the problem of privacy preserving recom-
mendation generation.

The rest of the paper is organized as follows.
We review existing work on privacy preserving
recommendation generation in Sec. 2. Then we
provide preliminaries on differential privacy and the
employed rating prediction method in Sec. 3. Our
proposed solution is presented in Sec. 4 and the
experimental results are presented in Sec. 5. We
conclude in Sec. 6.

2. Literature Review

Privacy of recommender systems has been studied
from different perspectives. We will first review
studies that show the need for privacy protection,
then, in order, the studies that propose utilizing
data perturbation and cryptography. In the literature,
there is only one study that employs differential

privacy protection with the Laplace mechanism [8].
The difference between the proposed approach and
this existing study will be detailed below. For a
general overview of recommender systems please
refer to [3]. Similarly, privacy over recommender
systems are surveyed in [4], [5].

Calandrino et al. [9] motivate the need for privacy
protection over recommender systems through an
attack scenario. The attack relies on basic informa-
tion about the individuals that give the ratings and
presents how the identity of the owner of a specific
row of the ratings matrix R can be disclosed. This
study shows that the recommendations reveal per-
sonal identity and motivates our proposed solution.

Gunes and Polat introduce another attack scenario
called the “shilling attack”, where the attacker adds
fake profiles in order to prevent accurate recommen-
dations and potentially discover private data about
relevant users [10]. Gunes and Polat propose detec-
tion methods against these attacks in [11]. Okkali-
oglu et al. show that if users provide confidential
data in an inconsistent manner, then their profiles
can be revealed and their rated items alongside
the ratings can be reconstructed [12]. These studies
motivate the need for a resilient privacy protection
mechanism such as our proposed solution.

In [13], Polat and Wu focus on yielding rec-
ommendations over distributed data. Their study
proposes adding noise to simple building blocks
such as scalar multiplication of a customer’s (resp.
an item’s) row (resp. column) of ratings. Added
noise is white, i.e., has 0 mean and its magnitude
can be adjusted by the participants. White noise
ensures that the results obtained after privacy protec-
tion do not deviate much from the original results.
Polat and Wu also study cases where the data is
vertically [14] or horizontally [15] distributed and
the recommendations are drawn in a hierarchical
manner. Okkalioglu et al. [16] test the effectiveness
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of the major solutions for vertically partitioned
rating data under 3 different attack scenarios. Their
results indicate that the collaborating parties learn
each other’s confidential data. In [17], it is claimed
that a clustering of users yield private data with
up to 70% accuracy. These results indicate that
rather than adding white noise empirically, adhering
to a strong privacy mechanism such as differential
privacy is therefore vital - as we try to achieve in
this work.

Yargic and Bilge extend single-criterion random-
ized collaborative filtering to multi-criteria collab-
orative filtering [18], where the customers produce
multiple ratings for an item/service in a diverse set
of dimensions. For hotel reservation, these could
be cleanliness, amenities offered etc. We leave this
harder problem definition for future work.

Boutet et al. [19] discuss a scenario that is sim-
ilar to Polat and Wu [13]. Multiple recommender
systems want to collaborate in order to increase
their prediction accuracy. Their solution is based on
sharing item similarity matrices under differential
privacy using the exponential mechanism. Li et al.
discuss the case of a peer-to-peer solution based on
local differential privacy [20]. Unlike these studies,
our problem definition assumes a centralized data
setting.

Erkin et al. focus on the distributed rating data
problem as well [21]. They propose a secure multi-
party computation (SMC) solution that rely on
cryptographic primitives like secure sum and secure
product protocols executed between multiple partic-
ipants each holding a share of the distributed data.
Similar SMC-based solutions have been proposed
in [22], [23].

SMC solutions assume that performing all com-
putation over encrypted data ensures that only the
result will available to the involved parties after
protocol execution. However, such guarantees are

only applicable in distributed scenarios and even in
such cases, the heavy computational requirements
of SMC protocols are prohibitive.

McSherry et al. present the only work that em-
ploys global differential privacy in a centralized,
non-distributed case [8]. This solution defines the
recommendation generation process as a query set
and retrieves the “best” recommendations using
the exponential mechanism of differential privacy.
Consequently, the ordered list of items to be rec-
ommended are perturbed as well. In this study, we
restrict ourselves to the Laplace mechanism only.
Therefore, there is only one source of randomness
in our results, which involves rating prediction. We
consider the problem of obtaining an ordered list of
recommended items to be merely a budgeting issue
and leave this problem for future work.

Unlike our scenario, a limited number of studies
in the area consider the possible effects of and
remedies to an untrusted recommendation engine.
The only solution under such constraints appears
to be perturbing rating vectors of users before they
arrive at the recommender system. Existing work
rely on smooth sensitivity under local differential
privacy [24], exponential mechanism [25] and local
differential privacy [26], [27].

Solutions by Shen and Jin [24], [25] simply relax
the requirements of differential privacy to maintain
high accuracy predictions. Shin et al. correctly crit-
icize these approaches for they protect only against
disclosure of items rated by a user and not the rating
values [26]. Shin et al.’s solution is the state-of-the-
art in this line of work. We consider the untrusted
server scenario to be overly pessimistic and waive
the constraint for future work.

Zhang et al. propose another relaxation of dif-
ferential privacy called “personalized differential
privacy” [28]. In this setting, customers reserve a
privacy budget to each item they rate. A similar
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approach is taken by Xuying et al. in [29], where
customers mark their ratings as sensitive or non-
sensitive. We deem these approaches to be overly
impractical for the customers and unclear in terms
of its privacy implications.

Guerraoui et al. present an interesting solution that
involves replacing rated items of a user with similar
other not-rated items [30]. Their approach assumes
existence of distance-preserving items, which is
unrealistic. Even if such items were found, an
abled attacker could possibly invert the replacement
protocol [31].

In [32], Ren et al. propose a differentially private
solution using neural network based auto-encoders.
They discuss two separate solutions that rely on in-
put perturbation (i.e., local differential privacy) and
objective function perturbation (i.e., the exponential
mechanism).

Based on this review of the literature on preserv-
ing individual privacy in recommendation genera-
tion, our proposed solution stands out because (i)
we rely only and entirely on the Laplace mechanism
of global differential privacy, (ii) we show that
even very simple algorithms can attain reasonable
accuracy under excessive noise. Our work does not
suffer from high computational costs as in the case
of SMC solutions [21], [22], [23], and provides
rigorous privacy guarantees unlike the case of most
random perturbation solutions [17].

3. Preliminaries

This section introduces preliminaries on differen-
tial privacy in Sec. 3.1. We then discuss a basic,
yet very heavily used rating prediction method in
Sec. 3.2.

Fig. 1. Usage of differential privacy

3.1. Differential Privacy

Differential privacy prevents direct access to sen-
sitive data in its raw form. Instead of direct access,
the data analyst is provided with a statistical query
interface. The mechanism is outlined in Fig. 1.
According to the figure, (i) the analyst submits a
statistical query script to the differential privacy
(DP) protection layer, (ii) the DP layer computes the
sensitivity of the submitted query script, (iii) the DP
layer obtains true query results from the database,
and (iv) the DP layer adds noise to the original
results according to the query script’s sensitivity
computed in step (ii).

The magnitude of the noise added to true query
results depend on the “sensitivity” of the query
script. Sensitivity of a script is defined over pairs
of databases that differ in only one record. Such
databases are called sibling databases [6]. The sensi-
tivity of a query script is the maximum L1 distance
among any sibling databases for the given query
script. Please see Def. 3.1 for a formal discussion.
Computing the sensitivity of a query script is known
to be NP-hard [33].

Definition 3.1 (Sensitivity): Let Q be a query
script. The sensitivity of Q, denoted ∆Q is

∆Q = argmax
siblings D,D′

||SD(Q)− SD′
(Q)||1 (1)

In Eq. 1, SD(Q) (resp. SD′
(Q)) represents the true

response of database D (resp. D′) to Q. The vector
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difference of these responses in L1 norm over any
two siblings is the sensitivity of Q.

Based on Def. 3.1, sensitivity of Q is independent
of the database used in the analysis. This means,
sensitivity is a property of the query script and not
the queried data. Sensitivity measures how detailed
a query script is. If a single-record change between
two siblings can alter the true response heavily, then
the sensitivity of Q will be computed higher.

Let us discuss a sample query script and compute
its sensitivity: Q = {Q1, Q2}, where

• Q1: SELECT COUNT(*) FROM T

WHERE Sex LIKE "Male"

• Q2: SELECT COUNT(*) FROM T

WHERE Age > 40

Sibling databases D and D′ will differ in only
one record. Assume that these respectively are
D = {r1, r2, . . . , rk} and D′ = {r1, r2, . . . , r′k}. As
shown in Fig.2, depending on which region records
rk and r′k reside, 16 different cases can be generated.
Careful inspection of these is required:

• rk and r′k are in the same region: responses over
D and D′ would be the same.

• rk is in region 1, r′k is in region 2: responses to
Q2 would be the same. Q1 responses differ by
1. Total distance is 1.

• rk is in region 1, r′k is in region 3: responses to
Q1 would be the same. Q2 responses differ by
1. Total distance is 1.

• rk is in region 1, r′k is in region 4: responses
to both Q1 and Q2 would differ by 1. Total
distance is 2.

After analyzing all distinct cases, we conclude
that the maximum possible L1 distance, therefore
the sensitivity of the sample Q, is 2.

At this point, we are ready to define differential
privacy concretely. Please refer to Def. 3.2 [6].

Fig. 2. Query regions of the sample query script

Definition 3.2 (Differential Privacy): Let D and
D′ be sibling databases and T be the space of all
possible responses. Any randomized algorithm K

satisfies differential privacy if

Pr[K(D) ∈ T ] ≤ eε × Pr[K(D′ ∈ T ] (2)

Many mechanisms that satisfy this definition has
been proposed in the literature. In this work, we
use the first and also the most popular mechanism
by Dwork [6]. This mechanism, called the Laplace
mechanism, perturbs true query responses with ran-
dom noise picked from the Laplace distribution with
0 mean and at least ∆/ε magnitude. Higher levels of
∆ and lower levels of ε imply heavier perturbation.
Here, parameter ε represents the level of privacy
protection offered by the mechanism.

3.2. Rating Prediction

The problem of utilizing the ratings matrix R to
predict the possible rating a customer would give to
an item if he/she had experienced the item is called
“rating prediction”. A rating prediction method is
evaluated by its prediction error. Let us suppose that
the rating scale is the range [1-5]. If customer C
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rates item I as 3, whereas the predicted rating for
the pair (C, I) is 3.5; rating prediction is said to be
successful with |3.5 − 3.0| = 0.5 error. This value
is called the absolute error in predicting (C, I).

Given a large set of pairs of customers and
items, the prediction error accumulates. The mea-
sure “mean absolute error” (MAE) normalizes the
accumulated error by the number of predictions
made according to Eq. 3.

MAE =

n∑
i=1

|ria − rip|

n
(3)

In Eq. 3, ria denotes the actual rating given by the
customer on the corresponding item and similarly,
rip denotes the prediction for the same. Here, n
represents the number of predictions made during
the evaluation.

There are two basic approaches to producing rip
given the prediction task (C, I): customer-based,
or item-based. Customer-based approaches inspect
the rating row of customer C, denoted R[C], to
find k other customers that are close to C in their
own rating rows. These similar/close customers are
called neighbors of C. Customer-based approaches
then look at the ratings of the neighbors on item I

and return a weighted average rating based on the
similarity between C and his/her neighbor C ′. The
entire process involves accessing the rating matrix
R in row-order and yields customer similarities.
As a result, customer-based rating prediction is not
suitable for a privacy preserving solution. In this
study, we resort to item-based prediction.

In contrast to customer-based approaches, item-
based approaches rely on item-similarity scores. For
the pair (C, I), prediction first identifies neighbors
of item I and then takes a weighted average over the
ratings of C on the similar items. Notice that item

similarities are far less privacy sensitive compared to
customer similarities and the average is taken over
R[C], which resides with C him/herself.

The inputs to rating prediction are as follows:
ratings matrix R, customer-item pair (C, I) to be
predicted, a measure of similarity across items S
and the number of neighbors to be involved, k.
Using these inputs, a baseline item-based rating
predictor would yield rp with Eq. 4.

rp(C, I) =

∑
k

S(I, Ik)×R[C, Ik]∑
k

S(I, Ik)
(4)

In Eq. 4, Ik represents a neighbor of item I .
Neighbors are items that are closest to I with respect
to the similarity measure S. Weighting is done
by multiplying the rating C has given to Ik (i.e.,
R[C, Ik]) by the similarity S(I, Ik) between I and
Ik. Then the weighted sum is normalized by the sum
of similarities of the neighbors.

There exist various alternatives for computing the
item-similarity scores. Among these, we focus on
the Cosine similarity because it has a geometric
interpretation and also it is easy to compute the
sensitivity of the Cosine similarity. Using our in-
troduced notation, Cosine similarity can be defined
as given in Eq. 5.

Cos(I, I ′) =

m∑
i=1

R[Ci, I]×R[Ci, I
′]

|RT [I]| × |RT [I ′]|
(5)

In Eq. 5, RT is the transpose of ratings matrix
R. Consequently, RT [I] and RT [I ′] represent the
ratings column of item I and I ′ respectively. If there
are m customers in total in R, then Cosine simply
computes the scalar product of the two columns,
normalized by the length.
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4. Proposed Solution

We start with the sensitivity analysis of the Cosine
similarity measure expressed in Eq. 5. A record
of our database corresponds to a single customer’s
data. Consequently, sibling databases differ in a
single row of ratings and not a single rating cell
- as falsely assumed in related work [8].

A single-row change across sibling data sets D
and D′ imply that for an arbitrary pair of items I
and I ′, the Cosine similarity between these items
differ by at most 1. This is the maximum allow-
able difference, as the range of values for Cosine
similarity is [0, 1]. Our formal analysis is detailed
next.

Let the sibling data sets be denoted with D and
D′, and the items whose Cosine is being computed
be denoted with I and I ′. We consider the case
where both siblings contain a single row, as this
scenario yields the maximum effect of a single-row
change.

In data set D, we set the ratings of both I and I ′

to be 5 - the maximum rating. Over D, the similarity
between the items will be calculated as 5×5

5×5 = 1.

In data set D′, we change the rating of I ′ from
5 to 0. The numerator of Cosine in Eq. 5 becomes
5 × 0 = 0. Over D′, the Cosine similarity between
I and I ′ will be calculated as 0.

Since the similarity can be 1 on D and 0 on D′,
we have shown that ∆ ≥ 0. Adding to this the
fact that Cosine is in the range [0, 1], we conclude
that the sensitivity of querying the Cosine similarity
between two arbitrary items is 1.

The pseudo-code of the proposed solution is given
Alg. 1 below. The rating prediction method ex-
pressed in Eq. 4 requires picking k neighbors of
the item I . This task of querying for neighbors
cannot be modelled as a numeric query and this part

of the solution requires employing the exponential
mechanism of differential privacy. We thwart this
problem by perturbing item-item similarity scores
according to the sensitivity analysis given above
and then picking the best k items for item I to
be predicted randomly based on perturbed similarity
scores. This solution essentially simulates the expo-
nential mechanism.

Algorithm 1 Pseudo-code of the proposed solution
Require: Ratings matrix R, differential privacy pa-

rameter ε, number of neighbors k, customer C,
item I

Ensure: Predicted rating of C on I according to
differential privacy

1: for Each item I do
2: for Each item J do
3: CosJ ← Cosine(I, J) over R
4: Perturb CosJ with Lap(0, 1/ε)

5: Sort items w.r.t. CosJ
6: Pick the best k items
7: return weighted average according to Eq. 4

4.1. Privacy Analysis

The proposed solution protects the ratings matrix
R very strongly according to differential privacy.
However, employing this solution requires a cus-
tomer to expose all previous ratings he/she has
given.

This restriction might cause concerns about indi-
vidual privacy. Future work will focus on exactly
this possible concern. A possible remedy could
be to collect all prediction requests of a group
of customers at an independent third party. Such
an aggregation would protect customers from pos-
sible privacy threats of the service provider by
disassociating item-similarity queries and customer-
identities. Another advantage of the same solution
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would be the buffering of item-similarity scores.
The third party could use the collective budget of
its member customers to allocate their query budget
much more efficiently.

5. Experimental Results

As explained in Sec. 3.2, recommendation sys-
tems are evaluated by their prediction error. In our
experimental evaluation of the proposed solution,
we use mean absolute error (MAE) defined in Eq. 3.

Alg. 1 has two primary parameters. These are the
privacy parameter ε and the number k of neighbor-
ing items. The effects of k and ε to MAE in rating
prediction are presented in Sec. 5.1 and Sec. 5.2
respectively.

In our experiments, we used the Netflix data set.
This data set, commonly known in the literature as
the “Netflix Prize Data Set” [34], has been shared by
the media-services provider Netflix in a contest. In
the contest, the developer team that beats Netflix’s
rating predictor was offered 1 million U.S.D. We
believe the popularity of the contest and its large
prize attests to the importance of recommendation
engines. The Netflix data set contains 100,480,507
ratings from over 480,000 customers on 17,770
different movies.

It is very difficult to process a data set of this
scale in a relational database. For this reason, we
modelled the ratings matrix R as a graph over
the graph database Neo4J [35]. According to this
model, every customer and every item in the data
set is represented with a vertex and a weighted edge
connecting a customer with an item represents the
rating given by the customer on the item.

Our experimental setup was as follows. We used
the Netflix data set as our rating matrix R. In
each experiment scenario, we randomly selected
1,000 non-zero ratings from R. A non-zero rating ra

implies an actual rating assigned by a customer C to
an item I . Each such rating ra has been erased from
R. Then, we applied rating prediction according to
Alg. 1 to obtain the predicted rating rp and measured
the mean absolute error (MAE) according to Eq. 3.

In each experiment scenario, our proposed solu-
tion is compared against the case of “no protection”,
which produces predicted ratings without any pri-
vacy protection according to Sec. 3.2. This simply
means there is no perturbation (i.e., ε =∞), and no
added error due to privacy constraints.

Obviously, when there is no privacy protection,
there is no source of randomness and rating predic-
tion is a deterministic process. However, our pro-
posed solution is randomized. As a result, we repeat
all experiments 10 times and report the average
MAE measurements.

5.1. Effects of the Number of Neighboring
Items

Increasing the number of neighboring items af-
fects MAE in a couple of different ways. Firstly,
as more neighbors are involved, the chances of
picking the right neighbors (essentially, that of not
picking the wrong ones) increases. On the other
hand, as more and more neighbors are involved,
the predicted rating moves farther away from being
personal and tends to be closer to the respective
customer’s average rating value.

The results are depicted in Fig. 3. The series
named “no protection” represent the MAE over
original data, whereas the series named “DP” rep-
resents our proposed solution.

For the no protection case, notice that MAE first
decreases slightly but then starts to increase. The
initial decrease is due to having more neighbors
involved - more neighbors imply a more balanced
weighted average. However, once we exceed the op-
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Fig. 3. The effects of varying number of neigh-
bors k on MAE (ε = 0.5)

timal k, MAE increases because too many neighbors
are involved and the prediction gets too close to the
customer’s average rating. The proposed solution
is roughly 5% worse than the no protection case.
Notice that this gap closes as k increases. This is
because, prediction becomes insensitive to which
neighbors are involved in the process.

5.2. Effects of the Differential Privacy Parame-
ter

Recall that higher ε imply higher levels of noise.
Quite naturally, we expect MAE to improve as ε
increases. The results depicted in Fig. 4 verify this
expectation.

According to the results, at high levels of pro-
tection such as ε = 0.1, the difference in MAE is
considerable. However, as ε increases, the gap closes
and becomes almost unnoticeable. Obviously, MAE
of the no protection case does not depend on ε.

6. Conclusion

In this study, we developed a basic, differentially
private recommendation engine. Empirical results
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obtained over real-world data sets indicate that,
every step taken towards protecting individual pri-
vacy has an adverse effect on prediction accuracy.
However, such effects are limited: even with a very
strong protection mechanism such as differential
privacy, the rate of loss in prediction accuracy was
measured to be below 5%, which we believe is a
reasonable trade-off for privacy protection.

In future work, we plan to investigate the possible
gains to be obtained with other differential privacy
mechanisms such as the exponential mechanism.
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