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Abstract—Maximum Distance Separable (MDS) matrices are used as the main part of diffusion layers in block ciphers and
hash functions. MDS matrices derived from MDS codes have the maximum differential and linear branch number, which provide
resistance against some well-known attacks like differential and linear cryptanalysis together with the use of a nonlinear layer
(e.g. S-boxes) in a round function of a block cipher. In this paper, we introduce generic methods to generate lightweight 4 × 4

involutory/non-involutory MDS matrices over F2m and present the lightest involutory/non-involutory 4 × 4 MDS matrices over F24

(to the best of our knowledge) by considering XOR count metric, which is defined to estimate hardware implementation cost. Also,
the results are obtained by using a global optimization technique, namely Boyar-Peralta algorithm.
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1. Introduction

Maximum Distance Separable (MDS) matrices
are used as the main part of diffusion layers in the
design of cryptographic primitives such as block ci-
phers and hash functions. MDS matrices are derived
from MDS codes and provide maximum diffusion.
Diffusion is one of the cryptographic properties
(the other property is confusion) defined by Claude
Shannon [1] and these two properties need to be
satisfied for the overall security of symmetric key

schemes. In most block ciphers, confusion and
diffusion are satisfied by using Substitution boxes
(shortly S-boxes) and linear transformations, respec-
tively. In this respect, MDS matrices are used as
the main part of diffusion layers (linear transforma-
tions). They have also the maximum branch number,
which is an important cryptographic property and
provide resistance against some well-known attacks
like differential [2] and linear cryptanalysis [3]
provided that they are used together with a nonlinear
layer, e.g. S-boxes.
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In the literature, generally, there are three con-
struction methods to obtain MDS matrices: direct
construction methods, search based methods and
hybrid methods combining direct construction meth-
ods and search based methods. Direct construction
methods include methods such as Cauchy matrices
[4], companion matrices [5], [6] and Vandermonde
matrices [7], [8]. Recently, in [9], a new direct
construction method has been introduced to generate
all 3 × 3 involutory and MDS matrices. Search
based methods include using recursive structures
[10], [11], hybrid structures [12] and some special
matrix forms such as circulant matrices, Hadamard
matrices circulant-like and Toeplitz-like matrices
[13]. In [14], a new matrix form, namely Gener-
alized Hadamard Matrix (shortly GHadamard) has
been introduced. This matrix form is, in fact, a
hybrid construction method and combines search
based methods and direct construction methods.
In addition to these studies, a new complemen-
tary method for all construction methods based on
ground field structure to generate new (isomorphic)
MDS matrices has recently been introduced in [15].

XOR count [16] is a metric used to evaluate
the number of XOR operations required for hard-
ware implementations or lightweightness of a given
matrix. This metric can also be grouped into two
groups: d-XOR (naive one) and s-XOR. The main
difference between them is based on the usage of
temporary registers. On the other hand, there are
two different techniques to optimize MDS matrices
in view of required number of XOR operations:
local optimization and global optimization. In local
optimization, every element of a k × k matrix over
F2m (finite field with 2m elements) is considered,
whereas, in global optimization a k×k matrix over
F2m is first transformed into its corresponding mk×
mk binary matrix, and then this binary matrix is
optimized. Shortest Linear Programs (SLP) [17] for

MDS matrices are one of global optimization tech-
niques and are heuristic techniques. In this paper,
we obtain MDS matrices by using the techniques
and ideas given in [9], [14] and obtain the lightest
involutory/non-involutory MDS matrices (to the best
of our knowledge and comparing the other MDS
matrices in the literature) in view of XOR count
after optimizing these matrices by SLP algorithm
given in [18], namely Boyar-Peralta algorithm.

This paper is organized as follows. The notation
and some background related to MDS matrices are
given in Section 2. Then, in Section 3, we introduce
our approach for generating new MDS matrices.
Experimental results for lightweight MDS matrices
are presented in Section 4 and we conclude with
Section 5.

2. Preliminaries

In this paper, we focus on MDS matrices over the
finite field F2m . The finite field F2m has 2m elements
and is defined by an irreducible polynomial p(x)
of degree m over F2. The finite field F2m can be
denoted by F2[x]/p(x) and any element of F2m

can be represented by cm−1α
m−1 + cm−2α

m−2 +

. . . + c1α + c0 with ci ∈ {0, 1}, where α is a
primitive element of F2m . In this paper, the finite
field F2m defined by irreducible polynomial p(x)
is denoted by F2m/p(x) (a finite field having 2m

elements) for simplicity. Hexadecimal notation is
also used when representing the elements of F2m

and when denoting the irreducible polynomial p(x)
in F2m/p(x). For example, 1001, which is a 4-
bit string and corresponds to the element α3 + 1

in the finite field F24 , can be represented by 0x9

in hexadecimal notation. Similarly, 0x13 represents
the irreducible polynomial p(x) = x4 + x + 1 in
F24/0x13.

If an [n, k, d] code C meets the Singleton bound
d = n − k + 1, where n is the length of the code
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C, k is the number of rows of generating matrix
of C and d is the minimum distance of the code
C, then the code C is MDS. MDS matrices derived
from MDS codes have the maximum differential and
linear branch number (k+1 for k×k MDS matrices)
[19] and MDS matrices help design block ciphers
resistant against differential and linear cryptanalysis.
MDS matrices have some important properties as
given below:

1 A square matrix A is MDS if and only if every
square submatrix of A is nonsingular.

2 The MDS property of a matrix is preserved
upon permutations of rows/columns. Similarly,
multiplication of a row/column of a matrix by
a nonzero constant c ∈ F2m does not affect
its MDS property. In general, the minimum
distance d of an [n, k, d] code C with generator
matrix G = [I|A], where A is a k × (n − k)
matrix, is preserved after applying of the above
operations to A [19].

3 The MDS property of a k × k matrix M is
preserved under the transpose operation

The metric XOR count is used in the estima-
tion of the required number of XOR operations or
lightweightness of a given matrix. It can be grouped
into two groups: d-XOR (naive one) [16], [20] and
s-XOR [21], [20].

Definition 1 ([9]): XOR (a) is the number of
XORs to implement the multiplication of a finite
field a ∈ F2m/p(x). It can be obtained by the
Hamming weight of its corresponding m×m binary
matrix minus m.

Example 1: Consider the finite field element α (or
0x2) over F24/0x13, which is a root and a primitive
element of the primitive polynomial p(x) = x4+x+

1. The 4 × 4 corresponding multiplication binary
matrix of the finite field element α can be obtained
by multiplying the element α with an arbitrary
element b ∈ F24/0x13 (b = b3α

3 + b2α
2 + b1α+ b0)

as follows:

(a
⊗

b) mod p(x) = (α
⊗

b) mod p(x)

= (b3α
4 + b2α

3 + b1α
2 + b0α) mod p(x)

= (b2α
3 + b1α

2 + (b3 + b0)α + b3) mod p(x)

which corresponds to the 4× 4 corresponding mul-
tiplication binary matrix of the finite field element
α ∈ F24/0x13 as follows:


b
′
0

b
′
1

b
′
2

b
′
3

 =


0 0 0 1

1 0 0 1

0 1 0 0

0 0 1 0

 .

b0
b1
b2
b3


Then, XOR (α) is obtained as 1(= 5 − 4) since

Hamming weight of the 4× 4 binary matrix is 5.

Definition 2 ([9]): s- XOR (a) is defined as the
minimum number of XORs needed to implement the
m×m multiplication binary matrix after performing
a sequence of XOR operations.

Local and global optimization techniques are the
two different techniques to optimize MDS matrices
in view of the required number of XOR operations.
In local optimization, every element of a k× k ma-
trix over F2m is considered, whereas, in global opti-
mization a k×k matrix over F2m is first transformed
into its corresponding mk ×mk binary matrix and
then this binary matrix is optimized. Global opti-
mization techniques can be grouped into two main
approaches: cancelation-free programs and heuris-
tic. In cancelation-free programs, the required num-
ber of XORs for a matrix is reduced by eliminating
common sub-expressions iteratively. Shortest Linear
Programs (SLP) [17] for MDS matrices are in the
category of global optimization techniques and use
heuristic. In this paper, we use a heuristic algorithm,
namely Boyar-Peralta algorithm [18], [17] (shortly
BP), to optimize MDS matrices and compare them
with the ones given in the literature.
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3. Our approach for generating MDS
matrices

In this paper, we follow the idea given in [9] and
[14] to generate new MDS matrices for lightweight
cryptography. This idea is based on the application
of some new parameters (dis) to MDS matrices,
which provides to keep both MDS and involutory
properties of these matrices. By using the idea, we
generate new MDS matrices, which have low XOR
counts. In this context, first, we generate new MDS
matrices by considering low naive XOR counts.
Then, we optimize these matrices and find MDS
matrices with the lowest XOR counts. In [9] and
[14], the idea was used only for 3 × 3 involutory
matrices and Hadamard matrices (4×4 and 8×8 ma-
trices) to generate involutory/non-involutory MDS
matrices. In these papers, the results were obtained
by evaluating these matrices in view of naive XOR
count. In addition to Hadamard matrices, one can
also use circulant and Toeplitz matrices [22] to
generate MDS matrices by search. By using our
approach, we aim to apply the idea to circulant and
Toeplitz matrices to generate MDS matrices with
the lowest XOR counts (to the best our knowledge).
In Theorem 1, the idea preserving both MDS and
involutory properties for 2× 2 matrices is given. It
can easily be proven that the idea is applicable to
any k × k MDS matrix.

Theorem 1: Let A =

[
a11 a12
a21 a22

]
be any 2 × 2

matrix over F2m . If the matrix A is involutory and
MDS, then there exists an element d0 such that
a11 = a22, a12 = (a11 + 1)d0, a21 = (a11 + 1)d0

−1.
Hence, the matrix form to generate all 2 × 2 invo-
lutory MDS matrices can be expressed as:

IM2×2(a11, d0) =

[
a11 (a11 + 1)d0

(a11 + 1)d0
−1 a11

]
where d0 ∈ F2m−{0} and a11 ∈ F2m−{0, 1}. Then,

the number of all 2 × 2 involutory MDS matrices
over F2m is (2m − 2) · (2m − 1).

Proof: Let A =

[
a11 a12
a21 a22

]
be any 2 × 2

involutory matrix with a11 6= 0. Let cij denote ele-

ments of A2 for i, j ∈ {1, 2}, i.e., cij =
2∑

k=1

aikakj .

Since A2 = I , if i = j then cij = 1 and if i 6= j

then cij = 0, we get the following equations:

a211 + a12a21 = 1 (1)

a11a12 + a12a22 = 0 (2)

a21a11 + a22a21 = 0 (3)

a21a12 + a222 = 1 (4)

By adding the equations (1) and (4) given above,
we have a211 = a222. Since the operations are per-
formed in the finite field F2m , the equality a211 = a222
can be rewritten as (a11 + a22)

2 = 0. Therefore,
a11 = a22. Moreover, from the equation (1), we have
a12a21 = a211+1 = (a11+1)2. Then, there exists an
element d0 ∈ F2m−{0} such that a12 = (1+a11)d0
and a21 = (1 + a11)d0

−1. In order to have a
2 × 2 MDS matrix form (in addition to involutory
property), the determinant of the 2× 2 matrix form
should be different from 0 by property 1 for MDS
matrices. Then, we have the restrictions for the
2 × 2 matrix form as follows: d0 ∈ F2m − {0}
and a11 ∈ F2m − {0, 1}. Hence, by using the 2× 2

matrix form and the given restrictions, we obtain the
number of all 2 × 2 involutory and MDS matrices
over F2m as (2m − 2) · (2m − 1).

Theorem 1 states that all 2 × 2 involutory MDS
matrices can easily be generated by using the given
matrix form IM2×2(a11, d0) and any 2×2 involutory
MDS matrix belongs to a class. If one generates the
representative matrices for each class, then other in-
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volutory MDS matrices can be generated easily (by
using the parameters dis). Hence, one can search for
better 2×2 involutory and MDS matrices from view-
point of XOR count after optimizing them. The 2×2

matrix form IM2×2(a11) =

[
a11 a11 + 1

a11 + 1 a11

]
with the given restrictions is the representative ma-
trix form and can be used to generate all 2 × 2

involutory and MDS representative matrices. This
representative matrix form is also a 2×2 Hadamard
matrix, where XOR sum of the elements of each row
and each column equals to 1.

As given in [9], one can also prove the existence
of the parameters d0 and d−1

0 in the matrix form
IM2×2(a11, d0) by applying a special combination
of both multiplication of rows and columns by
any non-zero element of F2m to IM2×2(a11) =[

a11 a11 + 1

a11 + 1 a11

]
, which also preserve the MDS

property of a given matrix. In this paper, we apply
these parameters preserving both involutory and
MDS property to 4 × 4 Hadamard, circulant and
Toeplitz matrices to generate new MDS matrices
with low XOR counts. Then, we optimize these ma-
trices to generate the lightest ones in the literature.

A 4 × 4 Hadamard matrix form H =

had(a0, a1, a2, a3) can be given as follows:

H =


a0 a1 a2 a3
a1 a0 a3 a2
a2 a3 a0 a1
a3 a2 a1 a0

 .

In this respect, a 4 × 4 Hadamard matrix with
3 more parameters (d1, d2, d3 and their inverses)
called Generalized Hadamard (GHadamard) matrix
form Ghad(a0, a1; b1, a2; b2, a3; b3) can be defined
as follows [14]:

GH =


a0 a1d1 a2d2 a3d3

a1d
−1
1 a0 a3d

−1
1 d2 a2d

−1
1 d3

a2d
−1
2 a3d

−1
2 d1 a0 a1d

−1
2 d3

a3d
−1
3 a2d

−1
3 d1 a1d

−1
3 d2 a0

 .

A 4 × 4 circulant matrix form C =

circ(a0, a1, a2, a3) can be given as follows:

C =


a0 a1 a2 a3
a3 a0 a1 a2
a2 a3 a0 a1
a1 a2 a3 a0

 .

In this respect, a 4× 4 circulant matrix form with
3 more parameters (d1, d2, d3 and their inverses)
CP (a0, a1; d1, a2; d2, a3; d3) can be defined as fol-
lows:

CP =


a0 a1d1 a2d2 a3d3

a3d
−1
1 a0 a1d

−1
1 d2 a2d

−1
1 d3

a2d
−1
2 a3d

−1
2 d1 a0 a1d

−1
2 d3

a1d
−1
3 a2d

−1
3 d1 a3d

−1
3 d2 a0

 .

A 4× 4 Toeplitz matrix form with seven parame-
ters T = Toep(a0, a1, a2, a3, a4, a5, a6) can be given
as follows:

T =


a0 a1 a2 a3
a4 a0 a1 a2
a5 a4 a0 a1
a6 a5 a3 a0

 .

In this respect, a 4× 4 Toeplitz matrix form with
3 more parameters (d1, d2, d3 and their inverses)
TP = Toep(a0, a1; d1, a2; d2, a3; d3, a4, a5, a6) can
be defined as follows:
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TP =


a0 a1d1 a2d2 a3d3

a4d
−1
1 a0 a1d

−1
1 d2 a2d

−1
1 d3

a5d
−1
2 a4d

−1
2 d1 a0 a1d

−1
2 d3

a6d
−1
3 a5d

−1
3 d1 a4d

−1
3 d2 a0

 .
In this paper, first, we obtain 4 × 4 involu-

tory/noninvolutory MDS matrices by search and
using the matrix forms Hadamard, circulant and
Toeplitz (namely H , C and T , respectively). Then,
we generate new MDS matrices directly by us-
ing the new forms defined (namely GH , CP and
TP , respectively). Note that involutory matrices
can only be obtained by using both Hadamard and
GHadamard matrix forms satisfying the condition
3∑

k=0

ak = 1 since we are in F2.

4. Experimental results for lightweight
matrices

In this paper, we generate MDS matrices by using
the defined forms in Section 3. By the defined
forms, one can generate totally 3375(= 153) 4 × 4

MDS matrices from one 4 × 4 MDS matrix over
F24 because these forms include additional 3 more
parameters/finite field elements of F24−{0} (namely
d1, d2 and d3) preserving the MDS property (and
also involutory property) of a given MDS matrix.
That means one can generate a huge amount of
MDS matrices that should be optimized by using
SLP. Therefore, we have identified a threshold based
on naive XOR counts MDS matrices have. In the
literature, it is known that the best naive XOR
counts are 64 [14] and 58 [22] for 4× 4 involutory
and noninvolutory MDS matrices, respectively. In
this context, we generated MDS matrices with naive
XOR counts between 64 and 80 for involutory
MDS matrices and naive XOR counts between 58

and 80 for involutory MDS matrices (up to 80 for

GHadamard matrix type, up to 79 for circulant
matrices with 3 more parameters and up to 62

by fixing the first element a0 to 1 for Toeplitz
matrices with 3 more parameters). Then, we op-
timized these matrices by using BP. We present
one of the lightest MDS matrices for each form in
the Examples below. Nevertheless, MDS matrices
with better XOR counts after optimizing may be
obtained by searching through all candidates. In
Example 2, we present a 4 × 4 involutory MDS
matrix (GHadamard) with the naive XOR count 68.
This matrix can be implemented by 39 XORs after
optimizing with BP.

Example 2: Let F24 be generated by the prim-
itive element α which is a root of the primi-
tive polynomial x4 + x + 1 (0x13). Consider the
4× 4 Hadamard and involutory MDS matrix H1 =

had(0x1, 0x2, 0x5, 0x7) = had(1, α, α8, α10)

H1 =


1 α α8 α10

α 1 α10 α8

α8 α10 1 α

α10 α8 α 1


over F24/0x13. Then, GHadamard matrix GH1 =

Ghad(1, α;α2, α8;α7, α10;α8) corresponding to H1

with the parameters d1 = α2, d2 = α7 and d3 = α8

is given below:

GH1 =


1 α3 1 α3

α14 1 1 α14

α α5 1 α2

α2 α2 1 1


which is a 4 × 4 involutory and MDS matrix with
naive XOR count 68 and can be implemented by 39

XORs after using optimization technique BP (See
Appendix).

In Example 3, we present a 4× 4 non-involutory
MDS matrix (GHadamard) with naive XOR count

99



INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
F. Sakallı et. al., Vol.9, No.2, pp.94-103

80. This matrix can be implemented by 38 XORs
after optimizing with BP.

Example 3: Let F24 be generated by the primitive
element α which is a root of the primitive polyno-
mial x4+x+1 (0x13). Consider the 4×4 Hadamard
MDS matrix H2 = had(0x1, 0x4, 0x6, 0x9) =

had(1, α2, α5, α14)

H2 =


1 α2 α5 α14

α2 1 α14 α5

α5 α14 1 α2

α14 α5 α2 1


over F24/0x13. Then, GHadamard matrix GH2 =

Ghad(1, α2;α2, α5;α2, α14; 1) corresponding to H2

with the parameters d1 = α2, d2 = α2 and d3 = 1

is given below:

GH2 =


1 α4 α7 α14

1 1 α14 α3

α3 α14 1 1

α14 α7 α4 1


which is a 4 × 4 involutory and MDS matrix with
naive XOR count 80 and can be implemented by 38

XORs after optimizing with BP.

In Example 4, we present a 4× 4 Toeplitz MDS
matrix with 3 more parameters and naive XOR
count 62. This matrix can be implemented by 38

XORs after optimizing with BP.

Example 4: Let F24 be generated by the
primitive element α which is a root of the
primitive polynomial x4 + x + 1 (0x13).
Consider the 4 × 4 Toeplitz MDS matrix
T1 = Toep(0x1, 0x1, 0x6, 0x3, 0xd, 0xf, 0xa) =

Toep(1, 1, α5, α4, α13, α12, α9)

T1 =


1 1 α5 α4

α13 1 1 α5

α12 α13 1 1

α9 α12 α13 1



over F24/0x13. Then, the Toeplitz matrix T1 with
the parameters d1 = α13, d2 = α12 and d3 = α10

TP1 = Toep(1, 1;α13, α5;α12, α4;α10, α13, α12, α9)

corresponding to T1 is given below:

TP1 =


1 α13 α2 α14

1 1 α14 α2

1 α14 1 α13

α14 1 1 1

 .
which is a 4×4 MDS matrix with naive XOR count
62 and can be implemented by 38 XORs after using
optimization technique BP.

In Example 5, we present a 4× 4 circulant MDS
matrix with 3 more parameters and naive XOR
count 74. This matrix can be implemented by 38

XORs after optimizing with BP.

Example 5: Let F24 be generated by the primitive
element α which is a root of the primitive polyno-
mial x4+x+1 (0x13). Consider the 4×4 circulant
MDS matrix C1 = circ(0x1, 0xe, 0x2, 0xa) =

circ(1, α11, α, α9)

C1 =


1 α11 α α9

α9 1 α11 α

α α9 1 α11

α11 α α9 1


over F24/0x13. Then, the circulant matrix C1 with
the parameters d1 = α7, d2 = 1 and d3 = α8 CP1 =

CP (1, α11;α7, α; 1, α9;α8) corresponding to C1 is
given below:

CP1 =


1 α3 α α2

α2 1 α4 α2

α α 1 α4

α3 1 α 1

 .
which is a 4×4 MDS matrix with naive XOR count
74 and can be implemented by 38 XORs after using
optimization technique BP.
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Table 1
Comparision of XOR counts for matrices available in the literature

4× 4 Matrix over F24 Type XOR count
optimized with BP

[12] Hadamard 48 (given in [17])
[23] Circulant 44 (given in [17])
[24] Circulant 42 (given in [17])
[22] Toeplitz 43 (given in [17])
[20] 43 (given in [17])
[12] Hadamard (involutory) 48 (given in [17])
[22] Involutory 42 (given in [17])
[20] Involutory 47 (given in [17])

Example 2 GHadamard (involutory) 39

Example 3 GHadamard 38

Example 4 TP 38

Example 5 CP 38

In Table 1, we compare our results with available
matrices in the literature after optimizing with BP
given in [17]. The results show that our methods can
be used to generate 4× 4 involutory/non-involutory
MDS matrices with good implementation properties
in view of XOR count.

5. Conclusion

In this paper, we obtained the lightest 4 × 4

involutory/non-involutory MDS matrices (to the best
of our knowledge) in view of XOR count after
optimizing with BP by applying the idea given in
[9] and [14] to some special matrix forms such
as 4 × 4 Hadamard, circulant and Toeplitz matrix
forms. In [9], a direct construction method was
given to generate all 3 × 3 involutory and MDS
matrices, which uses 2 more parameters (because
of the dimension) applied to a 3 × 3 matrix form
that is basis matrix form and can be considered
as a representative matrix form. In the future, we
will concentrate on developing a new hybrid con-
struction method to generate all 4 × 4 involutory
and MDS matrices over F2m and try to find better

matrices in view of XOR count after optimizing
with BP than the matrices given in this paper.

By using the methods presented in this paper,
one can generate 4 × 4 MDS matrices with good
implementation properties easily. Moreover, these
methods can also be applied to generate 4 × 4

involutory/non-involutory MDS matrices over F28 .
But, we have not obtained MDS matrices over F28

because the presented methods generate a huge
amount of MDS matrices that should be evaluated
in view of XOR count after optimizing with BP. In
the future, we will focus on a more clever method
to find lightweight MDS matrices over F28 (also by
using methods presented in this paper) after optimiz-
ing with BP. Finally, the methods presented here are
generic and the ideas can easily be applied to any
k × k MDS matrices to generate new lightweight
MDS matrices.
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Appendix

The appendix presents the optimization result of
4× 4 involutory MDS matrix GH1 over F24 , where
[x0, x1, . . . , x15], [y0, y1, . . . , y15] and tis represent
input bits, output bits and temporary variables, re-
spectively.

t0 = x2 + x6 y14 = t15 + t18

t1 = x3 + x7 t21 = t1 + t3

t2 = x5 + x13 y6 = t18 + t21

t3 = x6 + x14 y8 = x8 + t21

t4 = x9 + t3 t24 = x13 + t4

t5 = x0 + x4 y1 = t10 + t24

t6 = x10 + x15 t26 = t0 + t2

t7 = x8 + x12 y5 = t24 + t26

y12 = t0 + t7 y11 = x11 + t26

t9 = x11 + x12 t29 = x0 + x8

t10 = x1 + x5 y0 = t2 + t29

t11 = x7 + t6 t31 = x4 + x12

t12 = x0 + x7 t32 = t10 + t31

y7 = t9 + t12 y4 = y0 + t32

t14 = x3 + x15 y10 = t11 + t32

t15 = t5 + t14 t35 = x11 + x15

y3 = y7 + t15 y15 = t10 + t35

y9 = t4 + t15 t37 = t0 + t21

t18 = x14 + t11 y13 = t24 + t37

y2 = t0 + t18
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