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Abstract—Sequences are used for achieving non-linearity in a cryptosystem, and they are important in Code Division Multiple

Access (CDMA) to ensure a proper communication. In this study, we show a method for obtaining cryptographic functions from

p-ary sequences with s consecutive zero-symbols of type (γ1, γ2). In fact, most of the cases we obtain functions with the highest

non-linearity, i.e. generalized bent functions. In CDMA, instead of distributing time and frequency sources to users, each user is

given a unique sequence to transmit data at the same frequency and time. In this study, we examined the bit-error-rate (BER)

performance of p-ary sequences with s consecutive zero-symbols of type (γ1, γ2) on CDMA.
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1. Introduction

Sequences are applied in many practical areas, for
example, satellite telecommunication, cryptographic
function design, wireless networks, radar systems,
and modern cell phones (see [1], [5], [6], [7], [8]).

In cryptography, non-linearity is satisfied by sub-
stitution boxes (s-boxes) because they confuse a
message into a cipher-text. Maximum non-linearity
is obtained by so called bent functions used in the
s-boxes. It is well known that one can get a gen-
eralized bent function from a perfect sequence (see
[1] or Theorem 1 below). In this study, we use this
connection and convert a nearly perfect sequence
of type (γ1, γ2) to a generalized bent function in

Section 4 and also we tabulate the examples of
Walsh spectrum of functions obtained from nearly
perfect sequences of type (γ1, γ2) (see Table 1). It is
seen that generalized bent functions can be obtained
from nearly perfect sequences, and we obtain a
larger set of cryptographic functions with the similar
properties of generalized bent functions.

In Code Division Multiple Access (CDMA), se-
quences with ideal autocorrelation are important
because a signal should not be affected by other
signals in order to provide high-quality communi-
cation. For this reason, sequences with the ideal
autocorrelation have been studied by many authors
[9]-[11]. Initially, binary sequences were widely
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studied, but complex sequences were started to be
studied over time due to the lack of binary se-
quences with the ideal autocorrelation. In this study,
p-ary sequences with s consecutive zero-symbols of
type (γ1, γ2) and their applications to the bit-error-
rate (BER) on CDMA are presented. The simulation
results on BER analysis of CDMA with almost
p-ary nearly perfect sequence is given in Section
5. It is seen that although almost p-ary nearly
perfect sequences don’t have better simulation re-
sults than perfect sequences, they serve a large
set of sequences with almost ideal autocorrelation
coefficients.

The rest of this paper is organized as follows. In
Section 2, we give some of the necessary definitions
of p-ary sequences. In Section 3, we define (γ1, γ2)-
near Butson-Hadamard (resp. Conference) matrix
(see Definition 2). In Section 4, the equivalence
between an almost p-ary nearly perfect sequence of
type (γ1, γ2) and a (γ1, γ2)-near Conference matrix
and a cryptographic function is studied and some
examples of cryptographic function are presented
(see Table 1). In Section 5, we study CDMA
structure on the Rayleigh channel under additive
white Gaussian noise (AWGN) as a communication
application (see Figure 1), and we use the almost
p-ary sequences in this scenario. On this structure,
bit-error-rate is calculated and simulation results are
given (see Figures 2-5).

2. Preliminaries

Let ζp ∈ C be a primitive p-th root of unity
for some prime number p. A sequence a =

(a0, a1, . . . , an−1, . . .) of period n with ai = ζbip for
some integer bi, i = 0, 1, . . . , n − 1 is called a p-
ary sequence. If aij = 0 for all j = 1, 2, . . . , s

where {i1, i2, . . . , is} ⊂ {0, 1, . . . , n − 1} and
ai = ζbip for some integer bi, i ∈ {0, 1, . . . , n −
1}\{i1, i2, . . . , is}, then we call a an almost p-ary

sequence with s zero-symbols. For instance, a =

(ζ33 , ζ
2
3 , ζ

4
3 , ζ

2
3 , 1, . . .) is a 3-ary sequence of period 5

and a = (0, ζ37 , 1, ζ
3
7 , 0, 0, ζ

5
7 , ζ

6
7 , ζ

6
7 , ζ

5
7 , , . . .) is a 7-

ary sequence with 3 zero-symbols of period 10. It is
widely used that a sequence with one zero-symbol
is called an almost p-ary sequence [4]. But in this
paper we use this notation for a p-ary sequence with
s zero-symbols, for s ≥ 0.

For a sequence a of period n, its autocorrelation
function Ca(t) is defined as

Ca(t) =
n−1∑
i=0

aiai+t,

for 0 ≤ t ≤ n−1 where a is the complex conjugate
of a. The values Ca(t) at 1 ≤ t ≤ n−1 are called the
out-of-phase autocorrelation coefficients of a. Note
that the autocorrelation function of a is periodic
with n.

We call an almost p-ary sequence a of period n

a nearly perfect sequence (NPS) of type (γ1, γ2) if
all out-of-phase autocorrelation coefficients of a are
either γ1 or γ2. According to [3, Theorem 2], we
know that

Ca(t) =

{
γ1 if t = 1, n− 1,

γ2 if t = 2, 3, . . . , n− 2.

We write NPS of type γ to denote an NPS of type
(γ, γ). Moreover, a sequence is known as perfect
sequence (PS) if it is an NPS of type (0, 0), therefore
the concept of NPS is a generalization of PS. For
instance, a = (0, 0, ζ3, ζ3, ζ3, . . .) is an almost 3-ary
NPS of type (2,1). On the other hand, (1, ζ3, ζ3, . . .)

is a 3-ary NPS of type (0,0) and period 3, in fact
this is a PS.

3. Butson-Hadamard Matrices

We first give the definition of a Butson-Hadamard
matrix and a near Butson-Hadamard matrix.

45



INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
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A Hadamard matrix is an (v × v) matrix with
entries in Z2 such that HHT = vI . A square
matrix H = (hij) of order v is called circulant

if hi+1,j+1 = hi,j for all 0 ≤ i, j < v.

A =

[
1 1

1 −

]
, B =


− 1 1 − −
− − 1 1 −
− − − 1 1

1 − − − 1

1 1 − − −


In the above examples, the matrix A is a Hadamard
matrix of order 2 and the matrix B is a circulant
matrix of order 5, where − represents −1. Let p
be a prime and Ep = {1, ζp, ζ2p , . . . , ζp−1p } where
ζp = e

2iπ
p . The identity matrix is denoted by I and

all one matrix denoted by J1. Moreover, J2 and J3
are defined as

J2 =



0 1 0 0 0 . . . 0 1

1 0 1 0 0 . . . 0 0

0 1 0 1 0 . . . 0 0
...

. . . . . . . . . . . . . . .
. . .

...
0 0 0 1 0 . . . 1 0

0 0 0 0 1 . . . 0 1

1 0 0 0 0 . . . 1 0


,

J3 =



0 0 1 1 1 . . . 1 0

0 0 0 1 1 . . . 1 1

1 0 0 0 1 . . . 1 1
...

. . . . . . . . . . . . . . .
. . .

...
1 1 1 0 0 . . . 0 1

1 1 1 1 0 . . . 0 0

0 1 1 1 1 . . . 0 0


.

So, J1 = J2 + J3 + I .

Definition 1: A Butson-Hadamard matrix is a
square matrix H of order v with entries in Ep such
that HH̄T = vI , where H̄ denotes the complex
conjugation of each entries of H . It is denoted by
BH(v, p). BH(v, 2) is so called Hadamard matrix
of order v. A γ-near Butson-Hadamard matrix is an
(v × v) square matrix with entries in Ep such that
HH̄T = (v − γ)I + γJ1 for γ ∈ R ∩ Z[ζp] and
denoted by BHγ(v, p).

The analysis of γ-near Butson-Hadamard matrices
is given in [2].

Example 1: The following matrix H is an
BHγ(5, 5) for γ = −ζ35 − ζ25 + 2, where ζ5 is a
5-th root of unity,

H =


1 1 −ζ25 1 1

1 1 1 −ζ25 1

1 1 1 1 −ζ25
−ζ25 1 1 1 1

1 −ζ25 1 1 1

 .

We extend Definition 2 given for γ-near Butson-
Hadamard matrices to (γ1, γ2)-near Butson-
Hadamard matrices and near Conference matrices
in the following.

Definition 2: A (γ1, γ2)-near Butson-Hadamard
matrix is a square matrix H of order n+ 2 with en-
tries in Ep such that HH̄T = (n+2)I+γ1J2+γ2J3,
and denoted by BH(γ1,γ2)(n + 2, p). Similarly, a
(γ1, γ2)-near Conference matrix is a square matrix
C of order n + 2 with entries in Ep ∪ {0} such
that CC̄T = nI + γ1J2 + γ2J3, and denoted by
C(γ1,γ2)(n+ 2, p).

In this paper, we study only circulant (γ1, γ2)-near
Conference matrices with two leading zero entries.
Please note that this kind of matrices are equivalent
to nearly perfect sequences of type (γ1, γ2) by
setting the first row of the matrix with the sequence
itself.

Example 2: The following matrix

C =


0 0 ζ5 ζ25 ζ5
ζ5 0 0 ζ5 ζ25
ζ25 ζ5 0 0 ζ5
ζ5 ζ25 ζ5 0 0

0 ζ5 ζ25 ζ5 0


is an C(γ1,γ2)(5, 5) for γ1 = ζ25 + ζ35 , γ2 = 1 with
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|γ1| ≈ 1.61, |γ2| ≈ 1. Therefore, it satisfies

CC̄T = 3


1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

 + (ζ25 + ζ35 )


0 1 0 0 1

1 0 1 0 0

0 1 0 1 0

0 0 1 0 1

1 0 0 1 0



+ 1


0 0 1 1 0

0 0 0 1 1

1 0 0 0 1

1 1 0 0 0

0 1 1 0 0


4. Generalized Bent Functions

In this section, we give a method for obtaining
a generalized bent function from an almost p-ary
NPS with two zero symbols. Before that we will
give the definition of a Walsh transform, because
the non-linearity of a function can be calculated
by its Walsh spectrum. Then we will give the
definition of generalized bent function. Let q be
power of a prime number p. For X, Y ∈ (Zp)n,
the dot product or scalar product of two vectors
X = [x1, x2, . . . , xn] and Y = [y1, y2, . . . , yn] is de-
fined by

∑n
i=1 xiyi mod p and denoted by 〈X, Y 〉.

The non-linearity of a Boolean function is the
minimum of its distance from all affine functions

nl(f) = min{d(f, An)},

where An is the set of all affine functions in all
Boolean functions of n variables. Let F (x) =

(−1)f(x), then

F̂ (x) =
∑

y∈(Z2)n

(−1)〈x,y〉(−1)f(x)

=
∑

f(x)=〈x,y〉

1−
∑

f(x) 6=〈x,y〉

1

= 2n − 2d(f, 〈x, y〉).

So, d(f, 〈x, y〉) = 2n−1− 1
2
F̂ (x) is obtained. Hence,

the nonlinearity of a Boolean function f on Z2 is
nl(f) = 2n−1 − 1

2
max{|F̂ (x)| : x ∈ Zn2}.

Definition 3: [1] Let F be functions such that F :

(Zq)n −→ C. The Walsh transform F̂ : (Zq)n −→ C
of F is defined by

F̂ (x) =
∑

y∈(Zq)n
ζ〈x,y〉q F (y)

for all x ∈ (Zq)n.

Definition 4: [1] Let f be a function such that
f : (Zq)n −→ Zq, and F : (Zq)n −→ C be defined by

F (x) = ζf(x)q

for all x ∈ (Zq)n. If |F̂ (x)| = qn/2 for all x ∈ (Zq)n

then f is called a generalized bent function (GBF).

In Theorem 1, a well known connection between
Butson-Hadamard matrices and generalized bent
functions is given.

Theorem 1: [1] Suppose f and F are defined
as above. Define the matrix Hf = (hx,y) and
hx,y = F (x − y) for all x, y ∈ (Zq)n. Then, f is
a generalized bent function if and only if Hf is a
Butson-Hadamard matrix.

Now we examine the functions corresponding to
almost p-ary NPS of type (γ1, γ2). Note that in
Theorem 1, only the first row of a BH matrix is
enough to obtain the truth-table of a function. Hence
we can convert a sequence into a function’s truth-
table. However, since we work p-ary sequence of
type (γ1, γ2) and period n+ 2 with two consecutive
zero-symbols, we can not directly obtain the truth-
table values. Thus, we first interpolate the function
f of largest degree from an almost p-ary NPS except
two zero symbols. Then we get the truth-table,
and so the Walsh transform of f is calculated by
Definition 3.

Example 3: We choose a NPS a =

(0, 0, ζ5, ζ
2
5 , ζ5, . . .). We look for a function

f : Z5 −→ Z5. We first set f(3) = 1, f(2) = 2

and f(1) = 1 by using the direction of Theorem
1. By interpolating the function f of degree 2, we
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TABLE 1
Examples of Walsh spectrum of some NPSs of type (γ1, γ2)

Sequence q γ1, γ2 f(x) Truthtable |F̂ | GBF

(0, 0, ζ25 , ζ
3
5 , ζ

2
5 ) 5 γ1 = −ζ35 − ζ25 − 1, γ2 = 1 4x2 + 4x+ 4 (4, 2, 3, 2, 4) (2.23, 2.23, 2.23, 2.23, 2.23)

(0, 0, ζ25 , ζ
4
5 , ζ

2
5 ) 5 γ1 = ζ35 + ζ25 , γ2 = 1 3x2 + 3x+ 1 (1, 2, 4, 2, 1) (2.23, 2.23, 2.23, 2.23, 2.23)

(0, 0, ζ35 , ζ
2
5 , ζ

3
5 ) 5 γ1 = −ζ35 − ζ25 − 1, γ2 = 1 x2 + x+ 1 (1, 3, 2, 3, 1) (2.23, 2.23, 2.23, 2.23, 2.23)

(0, 0, ζ35 , 1, ζ
3
5 ) 5 γ1 = ζ35 + ζ25 , γ2 = 1 3x2 + 3x+ 2 (2, 3, 0, 3, 2) (2.23, 2.23, 2.23, 2.23, 2.23)

(0, 0, ζ45 , 1, ζ
4
5 ) 5 γ1 = −ζ35 − ζ25 − 1, γ2 = 1 4x2 + 4x+ 1 (1, 4, 0, 4, 1) (2.23, 2.23, 2.23, 2.23, 2.23)

(0, 0, ζ5, ζ
2
5 , ζ5) 5 γ1 = ζ25 + ζ35 , γ2 = 1 3x2 + 3x (0, 1, 2, 1, 0) (2.23, 2.23, 2.23, 2.23, 2.23)

(0, 0, ζ45 , 1, ζ
4
5 ) 5 γ1 = −ζ25 − ζ35 − 1, γ2 = 1 4x2 + 4x+ 1 (1, 4, 0, 4, 1) (2.23, 2.23, 2.23, 2.23, 2.23)

(0, 0, 1, ζ5, 1) 5 γ1 = −ζ25 − ζ35 − 1, γ2 = 1 4x2 + 4x+ 2 (2, 4, 0, 4, 2) (2.23, 2.23, 2.23, 2.23, 2.23)

(0, 0, ζ5, 1, ζ5) 5 γ1 = −ζ25 − ζ35 − 1, γ2 = 1 x2 + x+ 4 (4, 1, 0, 1, 4) (2.23, 2.23, 2.23, 2.23, 2.23)

(0, 0, ζ25 , ζ
2
5 , ζ

2
5 ) 5 γ1 = 2, γ2 = 1 2 (2, 2, 2, 2, 2) (5, 0, 0, 0, 0)

(0, 0, 1, ζ27 , ζ
5
7 , ζ

2
7 , 1) 7 γ1 = ζ57 + ζ47 + ζ37 + ζ27 , γ2 = ζ57 + ζ27 + 1 4x2 + 4x+ 6 (6, 0, 2, 5, 2, 0, 6) (2.64, 2.64, 2.64, 2.64, 2.64, 2.64, 2.64)

(0, 0, 1, ζ37 , ζ
4
7 , ζ

3
7 , 1) 7 γ1 = −ζ57 − ζ27 − 1, γ2 = ζ47 + ζ37 + 1 6x2 + 6x+ 2 (2, 0, 3, 4, 3, 0, 2) (2.64, 2.64, 2.64, 2.64, 2.64, 2.64, 2.64)

(0, 0, ζ7, 1, ζ
2
7 , 1, ζ7) 7 γ1 = −ζ47 − ζ37 − 1, γ2 = −ζ57 − ζ47 − ζ37 − ζ27 5x2 + 5x+ 5 (5, 1, 0, 2, 0, 1, 5) (2.64, 2.64, 2.64, 2.64, 2.64, 2.64, 2.64)

(0, 0, ζ7, ζ
6
7 , ζ

3
7 , ζ

6
7 , ζ7) 7 γ1 = ζ57 + ζ47 + ζ37 + ζ27 , γ2 = ζ57 + ζ27 + 1 3x2 + 3x+ 2 (2, 1, 6, 3, 6, 1, 2) (2.64, 2.64, 2.64, 2.64, 2.64, 2.64, 2.64)

(0, 0, ζ27 , ζ
4
7 , 1, ζ

4
7 , ζ

2
7 ) 7 γ1 = ζ57 + ζ47 + ζ37 + ζ27 , γ2 = ζ57 + ζ27 + 1 4x2 + 4x+ 1 (1, 2, 4, 0, 4, 2, 1) (2.64, 2.64, 2.64, 2.64, 2.64, 2.64, 2.64)

(0, 0, ζ27 , ζ
4
7 , ζ

4
7 , ζ

4
7 , ζ

2
7 ) 7 γ1 = ζ57 + ζ27 + 2, γ2 = ζ57 + ζ27 + 1 x4 + 2x3 + 4x2 + 3x+ 6 (6, 2, 4, 4, 4, 2, 6) (2.1, 3.04, 3.04, 1.91, 1.91, 3.04, 3.04)

(0, 0, ζ37 , ζ
2
7 , ζ

2
7 , ζ

2
7 , ζ

3
7 ) 7 γ1 = −ζ57 − ζ47 − ζ37 − ζ27 + 1, γ2 = −ζ57 − ζ47 − ζ37 − ζ27 3x4 + 6x3 + 5x2 + 2x+ 1 (1, 3, 2, 2, 2, 3, 1) (5.49, 1.35, 2.39, 1.35, 1.35, 2.39, 1.35)

(0, 0, ζ47 , ζ
6
7 , ζ

2
7 , ζ

6
7 , ζ

4
7 ) 7 γ1 = ζ57 + ζ47 + ζ37 + ζ27 , γ2 = ζ57 + ζ27 + 1 4x2 + 4x+ 3 (3, 4, 6, 2, 6, 4, 3) (2.64, 2.64, 2.64, 2.64, 2.64, 2.64, 2.64)

(0, 0, ζ47 , ζ7, 1, ζ7, ζ
4
7 ) 7 γ1 = −ζ57 − ζ27 − 1, γ2 = ζ47 + ζ37 + 1 x2 + x+ 2 (2, 4, 1, 0, 1, 4, 2) (2.64, 2.64, 2.64, 2.64, 2.64, 2.64, 2.64)

(0, 0, ζ57 , ζ
2
7 , ζ

2
7 , ζ

2
7 , ζ

5
7 ) 7 γ1 = ζ47 + ζ37 + 2, γ2 = ζ47 + ζ37 + 1 2x4 + 4x3 + x2 + 6x+ 6 (6, 5, 2, 2, 2, 5, 6) (0.60, 4.31, 1.69, 1.69, 1.69, 1.69, 4.31)

(0, 0, ζ57 , ζ
2
7 , ζ7, ζ

2
7 , ζ

5
7 ) 7 γ1 = −ζ57 − ζ27 − 1, γ2 = ζ47 + ζ37 + 1 x2 + x+ 3 (3, 5, 2, 1, 2, 5, 3) (2.64, 2.64, 2.64, 2.64, 2.64, 2.64, 2.64)

(0, 0, ζ67 , ζ
2
7 , ζ

3
7 , ζ

2
7 , ζ

6
7 ) 7 γ1 = −ζ47 − ζ37 − 1, γ2 = −ζ57 − ζ47 − ζ37 − ζ27 6x2 + 6x+ 1 (1, 6, 2, 3, 2, 6, 1) (2.64, 2.64, 2.64, 2.64, 2.64, 2.64, 2.64)

(0, 0, ζ37 , ζ
4
7 , ζ

2
7 , ζ

4
7 , ζ

3
7 ) 7 γ1 = ζ67 + ζ57 + ζ27 + ζ7, γ2 = ζ67 + ζ7 + 1 2x2 + 2x+ 6 (6, 3, 4, 2, 4, 3, 6) (2.64, 2.64, 2.64, 2.64, 2.64, 2.64, 2.64)

(0, 0, ζ67 , 1, 1, 1, ζ
6
7 ) 7 γ1 = ζ67 , γ2 = −ζ57 − ζ47 − ζ37 4x4 + x3 + 2x2 + 5x+ 1 (1, 6, 0, 0, 0, 6, 1) (5.49, 1.35, 2.39, 1.35, 1.35, 2.39, 1.35)

(0, 0, ζ1011 , . . . , ζ
10
11 ) 11 γ1 = 8, γ2 = 7 10 (10, 10, ..., 10) (11, 0, 0, ..., 0)

get f = 3x2 + 3x, and so f(0) = f(4) = 0. Thus
the truth-table is (0, 1, 2, 1, 0), the Walsh spectrum
is (
√

5,
√

5,
√

5,
√

5,
√

5). Therefore the spectrum
is flat, it means that this function is a generalized
bent function. The matrix C obtained from a is
given below, which is the same matrix illustrated
in Example 2.

C =


0f(0−0) 0f(0−1) ζ

f(0−2)
p ζ

f(0−3)
p ζ

f(0−4)
p

ζ
f(1)
p 0f(0) 0f(4) ζ

f(3)
p ζ

f(2)
p

ζ
f(2)
p ζ

f(1)
p 0f(0) 0f(4) ζ

f(3)
p

ζ
f(3)
p ζ

f(2)
p ζ

f(1)
p 0f(0) 0f(4)

0f(4) ζ
f(3)
p ζ

f(2)
p ζ

f(1)
p 0f(0)


We did an exhaustive search for almost p-ary

sequences of type (γ1, γ2) and period n + 2 with
two consecutive zero-symbols for p ∈ {5, 7, 11}. We
tabulate our results in Table 1. The Boolean function
f obtained from the corresponding sequence, its
truth-table, Walsh spectrum and bentness are given
in this table. It is seen that we generally obtain
a bent function from a NPS. Moreover, we obtain

some other functions with 3 distinct Walsh coeffi-
cients. These functions come from the same class
of sequences, namely almost p-ary NPS with two
distinct autocorrelation coefficients, but they are not
bent.

5. CDMA Simulation

In this section, we explain how sequences are used
in CDMA. First, we examine the CDMA structure
(see Figure 1). At the transmitter side, we first
choose data from set Zp = {0, 1, . . . , p − 1}, and
convert the data to complex data obtained by taking
corresponding power of ζp. For example, when
p = 3 and the data is (0, 1, 2, 1, 1), the complex
data is (ζ03 , ζ

1
3 , ζ

2
3 , ζ

1
3 , ζ

1
3 ). In the next step of CDMA,

each term of the complex data is multiplied by
the sequence given to the user and then the spread
message is obtained, the spread messages of each
user are added to each other to obtain the trans-
mitted message. In the Rayleigh channel the signal
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Fig. 1. Structure of CDMA

is multiplied by the channel coefficient and AWGN
is added. So, the received message is obtained. At
the receiver side, the received message is multiplied
by the user’s sequence and cd′ is obtained. In the
decision process, for each component of cd′, the
element closest to any of the set Ep is chosen as
the corresponding component of the d′. We give an
example below.

Example 4: Let E3 = {1, ζ3, ζ23} ≈ {1,−0.49 +

0.86j,−0.5 − 0.86j} and cd′ = {−2.5 −
0.81j,−1.3 − 0.69j}. Now, we take the difference
between (−2.5−0.81j) and each element in A, and
calculate their norms.

{| − 2.5− 0.8j −Ai|}i=1,2,3 = {|3.5 + 0.81j)|, |2.01 + 1.67j|,

|2− 0.05j|}

= {
√

3.52 + 0.812,
√

2.012 + 1.672,√
22 + (−0.05)2}

≈ {3.6, 2.61, 2}

The minimum value is 2, obtained by the (−0.5 −
0.86j) ≈ ζ23 ∈ A. Hence, d′ = 2 for cd′ = (−2.5−
0.81j). Similarly, the d′ for cd′ = (1.3 − 0.69j) is
0. Therefore, cd′ = {−2.5− 0.81j,−1.3− 0.69j} is
easily converted to d′ = {2, 0}.

We simulated Figure 1 by using nearly perfect
sequences a1 = (0, 0, ζ23 , 1, ζ

2
3 , . . .) of type (−1, 1),

a2 = (0, 0, ζ23 , 1, ζ
2
3 , ζ

2
3 , ζ

2
3 , ζ3, ζ

2
3 , ζ

2
3 , ζ

2
3 , 1, ζ

2
3 , . . .) of

type (1, 3), a3 = (0, 0, 1, ζ2, 1, . . .) of type (−2, 1)

and a4 = (0, 0, 1, 1, 1, ζ2, ζ2, ζ2, 1, ζ2, ζ2, 1, ζ2, . . .) of
type (0,−1). We selected the number of users as
2, 3 and 4 in the simulations. We have simulated
by using Python program language where the data
length fixed to 10000 and each simulation repeated
11 times. The simulation results are given in Figures
2, 3, 4, 5. In the figures, we compare the bit-error-
rate (BER) performance of each sequence, where
BER is defined to be the ratio of the number of
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B. Özden et al., Vol.8, No.3, pp.44-52

errors to the number of bits. It is seen that the
larger period of sequence is chosen, the better BER
performance is obtained when p and the number of
users are fixed (see Figures 2 and 3 or Figures 4
and 5). On the other hand, the smaller p is chosen,
the better BER is obtained when the period of
sequence and the number of users are fixed (see
Figures 2 and 4 or Figures 3 and 5). The BER
performance is dependent on the number of users
for any fixed sequence. It is seen that an increase
in the number of users proportionally decreases
the BER performance. We see the best simulation
results is obtained by using a4 (see Figure 5). Note
that the increase in the number of users for this
sequence affects the BER performance very little.
As a result, for a multi-user case, if p is small,
choose the period of sequence as large as possible,
so that the better BER performance is obtained.
In [12, Section 5.5], the BER performance of
CDMA with M -sequence and orthogonal Gold se-
quence in AWGN or Rayleigh channel is given. In
both channels, orthogonal Gold sequences have bet-
ter results. The BER performance in our simulation
is not as good as in [12, Section 5.5] because we
used almost p-ary NPS of type (γ1, γ2). However,
for the a4 sequence we get approximately the same
BER performance as in [12, Section 5.5, Fig.5.20].
For instance, in [12, Section 5.5, Fig.5.20], for
dB = 8, BER ≈ 0.05 where the number of users
is 7. In Figure 5, for dB = 8, BER ≈ 0.05 where
the number of users is 4. It would be a good future
work to device an efficient method for recovering
the received message.

6. Conclusion

The main objective of this study is the application
of almost p-ary sequences to obtain cryptographic
bent functions and BER analysis on CDMA. By
using a modification of well-known conversion be-

tween sequences and boolean functions, we gen-
erally obtained generalized bent function from an
almost p-ary NPS except for some classes of se-
quences. On the other hand, we simulated BER
analysis on CDMA by devising some almost p-
ary NPS. According to these simulations, these
sequences are not perfectly proper for the CDMA,
but we consider that with a few adjustments, better
results can be obtained.
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Fig. 2. BER performance of CDMA with a1 and 2, 3, 4 users respectively

Fig. 3. BER performance of CDMA with a2 and 2, 3, 4 users respectively

Fig. 4. BER performance of CDMA with a3 and 2, 3, 4 users respectively

Fig. 5. BER performance of CDMA with a4 and 2, 3, 4 users respectively
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