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Abstract—In multilevel secret sharing, a secret is shared among a set of hierarchically organized participants in a way that
the members of the superior compartments are more powerful and can replace the participants of an inferior one to form an
authorized coalition during secret reconstruction. In this work, we first show that the only existing multilevel threshold secret sharing
scheme based on the Chinese Remainder Theorem (CRT) is not secure and fails to work with certain natural threshold settings
on compartments. As the main contribution, we propose a secure CRT-based scheme that works for all threshold settings. In
the proposed scheme, we employ a refined version of Asmuth-Bloom secret sharing with a special and generic Asmuth-Bloom
sequence called the anchor sequence.
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1. Introduction

The concept of secret sharing is being used in
many cryptographic protocols such that group key
aggreement and multi-party computation schemes
which have many important applications in practice.
As independently proposed by Shamir [20] and
Blakley [4], a secret-sharing scheme (SSS) involves
a dealer who has a secret s, a set of participants U
that the secret is shared amongst, and a collection
A of the authorized subsets of the U which is called
the access structure. In a SSS, the dealer distributes
the shares to the participants such that only the
subsets in A can reconstruct the secret from the
corresponding shares. Furthermore, a SSS is called

perfect if all the subsets not in A will have the
same probability of guessing the secret as if they had
no shares. We refer the reader to a comprehensive
survey [2] for practical applications of secret sharing
such as building authentication protocols which
stay secure even under the leakage of a number
of servers’ data. In threshold secret sharing, the
access structure is defined by a threshold on the
cardinality of authorized subsets: a (t, n)-SSS refers
to a scheme in which any t out of n participants can
recover the secret.

Given the universal participant set U , a partition of
U into disjoint subsets, i.e., compartments, is used to
define a multipartite access structure on U . Unlike
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traditional threshold secret sharing that has only one
threshold, different thresholds and conditions may
be imposed for different compartments to define the
access structure. Although there exist methods for
general access structures, e.g., [12], [11], [5], the
schemes designed for specific access structures are
almost always more efficient and hence, more prac-
tical. Such an access structure which has applica-
tions in practice is the multilevel/hierarchical access
structure, a special form of the multipartite case,
that employs a hierarchy between the compartments
where the members of a superior compartment are
more powerful and can replace the participants of
an inferior one following the hierarchy definition of
Simmons [21] that is further studied in [7].

CRT-based secret sharing schemes and their vari-
ants have been popular in recent years; for example,
in 2014, Kaya and Selçuk [15] proposed a CRT-
based joint-random SSS, and Guo and Chang [8]
proposed an authenticated group key distribution
protocol based on the generalized CRT. Later,
Liu et al. [16] pointed out the security problems of
Guo and Chang’s protocol and proposed a simpler
scheme based on CRT. Moreover, there have been
several proposals for CRT-based verifiable secret
sharing scheme [17], [13], which are analyzed in
[6].

In a recent work of Harn and Fuyou [9], the
first CRT-based (disjunctive) multilevel threshold
SSS is proposed for an access structure involving
a hierarchy of compartments as in the definition
of Simmons. In this work, we focus on the same
problem and propose a novel CRT-based multilevel
threshold SSS. Our contribution is four-fold:

1 We show that the Harn-Fuyou scheme cannot
be applied (i.e., is not well-defined) for all the
access structures A in the multilevel setting.
Furthermore it is not secure, i.e., the secret can
be reconstructed by an unauthorized coalition

that is not in A.
2 By using anchor Asmuth-Bloom sequences,

we propose a simpler and novel CRT-based
threshold SSS for the multilevel, disjunctive
access structures which does not suffer from
these drawbacks.

3 By using anchor sequences, we propose the
first CRT-based threshold SSS for the multi-
level, conjunctive access structures.

4 We show that the proposed schemes can be
adopted to build function sharing schemes
which have many applications such as mul-
tiparty encryption and digital signatures.

After covering some preliminary definitions and
schemes in Section 2, we point out some shortcom-
ings of the Harn-Fuyou scheme in Section 3. We
present our conjunctive and disjunctive multilevel
secret sharing schemes in Section 4. Section 5
concludes the paper.

2. Background and Preliminaries

Given the following system of congruences

x =s1mod p1,

x =s2mod p2,

...

x =snmod pn,

the Chinese Remainder Theorem states that there is
a unique solution x ∈ ZP such that

x =
n∑

i=1

P

pi
Iisi mod P,

where P = lcm(p1, p2, . . . , pn) and Ii is the inverse
of P/pi in modulo pi, i.e., P

pi
Ii mod pi = 1. Thus

when the pi values are chosen pairwise coprime (or
all prime) P becomes p1p2 . . . pn. The reason of
choosing pairwise coprime pi values is to guarantee
the uniqueness of the solution.
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Apart from Shamir’s Lagrange interpolation-
based scheme [20] and Blakley’s scheme utiliz-
ing the idea that any n nonparallel (n − 1)-
dimensional hyperplanes intersect at a specific
point [4], Chinese Remainder Theorem (CRT)-
based threshold schemes by Mignotte [18] and
Asmuth and Bloom [1] also exist. While Mignotte’s
(t, n) scheme is not perfect in the sense that less
than t shares reveal information about the secret,
Asmuth-Bloom’s scheme attains a better security
level with a careful choice of parameters. Here we
briefly define Mignotte’s and Asmuth-Bloom’s SSSs
and refer the reader to [19] for an extensive study
on the security of CRT based SSSs.

2.1. Mignotte’s secret sharing

In Mignotte’s SSS with n participants and a
threshold t ≤ n, given the sequence of pairwise
coprime positive integers p1 < p2 < . . . < pn, the
secret s is chosen s.t.

t−1∏
i=1

pn−i+1 < s <
t∏

i=1

pi.

Here the product on the left hand side is the
maximum CRT modulo an adversarial, unauthorized
coalition can obtain with less than t shares. The one
the right is the minimum such value an authorized
coalition can have.

The share of each participant ui is si = s mod pi.
Since s is greater than the product of the greatest
t − 1 primes, a set of t − 1 participants cannot
(uniquely) reconstruct the secret. On the other hand,
t or more participants can reconstruct s since it is
smaller than the product of the smallest t primes. As
all the parameters except the private shares si are
public, the secret reconstruction is a straightforward
application of CRT. It is important to notice that
the Mignotte (t, n)-threshold secret-sharing scheme
is not perfect in the sense that a set of less than

t shares reveals some information (w.r.t. a modulo)
about the secret.

2.2. Asmuth-Bloom’s secret sharing

Let p0 be a prime which defines the secret space
and s ∈ Zp0 be the secret. Let M be

∏t
i=1 pi, and

p0 < p1 < p2 < . . . < pn be a sequence of primes
such that

p0

t−1∏
i=1

pn−i+1 < M. (1)

To share the secret, the dealer first chooses a random
positive integer α such that 0 ≤ y = s+ αp0 < M .
The share of the participant ui is equal to si = y

mod pi. Let A ∈ A be a coalition of t participants
and let MA =

∏
i∈A pi. Then the shared integer y

can be uniquely reconstructed in ZMA
since y <

M ≤ MA. Hence, the secret s can later be obtained
by computing y mod p0.

Asmuth Bloom’s SSS has better security proper-
ties when compared to Mignotte’s. When a non-
authorized coalition A′ with t − 1 shares tries to
reconstruct the secret, due to (1), there will be at
least M

MA′
> p0 candidates for y. Furthermore, since

p0 is relatively prime with MA′ , there will be at
least one y candidate valid for each possible secret
candidate in Zp0 . Thus, t − 1 or fewer participants
cannot narrow down the secret space. However,
since the number of y candidates for two secret
candidates may differ (by one), the secret candidates
are not equally probable, resulting in an imperfect
distribution [14]. To solve this problem, Kaya et al.
proposed to use the equation

p0
2

t−1∏
i=1

pn−i+1 < M (2)

instead of (1), which forms a statistically secure
scheme with respect to the definition given in [2].
We will follow the same idea in this work. Even
with (1), the proposed scheme will be secure in the
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sense that the secret can be any of the candidates in
Zp0 from the adversary’s point of view. However, the
probability of a candidate being a secret may differ
slightly (depending on M

MA′
) for two candidates.

TABLE 1
Notation

Notation Explanation

U The set of participants.
A The collection of authorized subsets of U .
n The number of total participants.
m The number of levels\compartments.
uk The kth participant.
Li The ith level\compartment.
ni The number of participants in Li.
ti The threshold, the minimum number of users

required to construct the secret for level Li.
Ui

∑i
k=1 Lk.

s The secret to be shared.
sjk yj mod pk, the share of user uk ∈ Lj .
∆sik yi − hk(s

j
k, i) mod pk, the public information

of user uk for Li.
Mi The modulus of smallest ti ones,

∏ti
j=1 pj .

MA The modulus of coalition A,
∏

ui∈A pi.
p0 A prime; specifies the domain of s ∈ Zp0 .
pi The prime modulus for user i.
yi si + αi · p0, where αi is the blinding factor.

For the rest of the paper, we will use the notation
given in Table 1.

2.3. Multilevel threshold secret sharing

We employ Simmons’ multilevel threshold se-
cret sharing (MTSS) definition, which assumes a
multipartite access structure and a hierarchy on it
such that the members of the superior compart-
ments (higher-level members) can replace the ones
from inferior compartments (lower-level members).
Throughout the paper, the terms level and compart-
ment are used interchangeably for our context.

Let U be a set of all participants composed of
disjoint subsets called levels, i.e, U =

∪m
i=1 Li

where Li ∩ Lj = ∅ for all 1 ≤ i, j ≤ m. Here
L1 is the highest level and Lm is the lowest one.
Thus, a participant in L1 can take place of all other
participants, and a participant in Lm can only take
place of the participants in Lm. Let the integers
0 < t1 < t2 < . . . < tm be a sequence of threshold
values such that tj ≤ |L1| + |L2| + . . . + |Lj| for
all 1 ≤ j ≤ m. When considered in the disjunctive
setting, the access structure is defined by using the
disjunction of the m conditions on m compartments
as described below1:

Definition 1. A (t, n) disjunctive multilevel thresh-
old secret sharing scheme assigns each participant
u ∈ U a secret share such that the access structure
is defined as

A = {A ⊂ U : ∃i ∈ {1, 2, . . . ,m} s.t. |A ∩ (

i∪
j=1

Lj)| ≥ ti}.

On the other hand, under the conjunctive setting, all
the threshold conditions of the compartments need
to be satisfied. We use the same access structure
definition as of [22].

Definition 2. A (t, n) conjunctive multilevel thresh-
old secret sharing scheme assigns each participant
u ∈ U a secret share such that the access structure
is defined as

A = {A ⊂ U : ∀i ∈ {1, 2, . . . ,m} s.t. |A ∩ (

i∪
j=1

Lj)| ≥ ti}.

1. Simmons gave the following example: In the disjunctive
setting, assume that a bank transfer requires authorization where
two vice presidents (VP) or three senior tellers (ST) are required
for authorization. In this example, there are two compartments (VPs
and STs) where a VP can replace an ST. That is a VP together with
two STs are able to approve the transfer as well. In the conjunctive
setting, suppose a bank transfer now requires the authorization of
two VPs and an ST. Unlike the disjunctive scheme, a coalition needs
to satisfy all the thresholds in the conjunctive form. Hence, with
this requirement, a VP and two STs or three STs cannot authorize
a transfer as they could in the disjunctive case. However, three VPs
can, since a VP has more authorization power than an ST and can
act as one.
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2.4. The Harn-Fuyou MTSS scheme

Assume that the participants are partitioned into
m levels Li, i = 1, 2, . . . ,m. Let |Li| = ni be the
number of participants in Li and let ti < ni define
a threshold on it. The threshold of a higher-level is
always smaller than the threshold of a lower-level
(i.e., tj < ti for j < i) consistent with the above
MTSS definition. The disjunctive MTSS of Harn
and Fuyou has two phases:

• Share generation: The dealer first selects a
prime p0, defining the secret space as s ∈ Zp0 .
For each subset Li having ni participants, she
selects a sequence of pairwise coprime positive
integers (or primes), pi1 < pi2 < . . . < pini

, such
that

p0

ti−1∏
j=1

pini−j+1 <

ti∏
j=1

pij

and gcd(p0, p
i
k) = 1, k = 1, 2, . . . , ni, where

pik is the public information associated with
participant ui

k, who is the kth member of the
subset Li. For each such sequence, the dealer
selects an integer αi such that the value s+αip0
is in the ti−threshold range [9]. That is, αi is
chosen such that

ti−1∏
j=1

pini−j+1 < s+ αip0 <

ti∏
j=1

pij

in order to prevent the recovery of the value
s+ αip0 with fewer than ti shares.
For each participant ui

k, the private share sik is
generated as sik = s+αip0 mod pik. This share
can directly be used within compartment Li. In
order to enable its use in a compartment Lj (j >
i), the dealer first selects a prime pik,j such that
pjtj < pik,j < pjnj−tj+2. She then computes

∆sik,j = (s+ αjp0 − sik) mod pik,j

and broadcasts it with pik,j as a public informa-
tion.

All selected pik,js during this phase must be
relatively coprime to all other moduli. At the
end of the phase, each participant ui

k ∈ Li keeps
a single private share sik ∈ Zpik

accompanied
with the public information (∆sik,j, p

i
k,j) for

j ∈ {i+ 1, i+ 2, . . . ,m}.
• Secret reconstruction: The secret can be recov-

ered by a coalition of participants if there are
at least tj participants in the coalition from
levels Li where 1 ≤ i ≤ j. By using the
corresponding shares, a system of equations
regarding CRT can be established on the joined
shares; if the participant ui

k belongs to Lj , i.e.,
i = j, she can use her share sik and the modulus
pik directly. Otherwise, i.e., if i < j, her share
needs to be modified as sik + ∆sik,j to be used
in the lower level Lj and the operations for
this modified share need to be performed in
modulo pik,j while constructing the system of
CRT equations. Using all these shares and a
standard CRT construction, a unique solution
y = s + αjp0 can be obtained. Then the secret
can be reconstructed by computing s = y

mod p0.

3. A First Analysis of Harn-Fuyou
MTSS Scheme

Although the Harn-Fuyou scheme employs inter-
esting and useful mini-mechanisms resulting in the
first MTSS scheme employing CRT, the proposed
scheme is not applicable in a generic setting and
not secure. The weaknesses of the scheme can be
summarized as follows:

• Access Structure: The first problem is its mis-
match with the multilevel access structure of
Simmons.

• Prime Generation: It is not suitable for the
cases where the compartment threshold com-
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poses at least one more than the majority of the
participants.

• Unauthorized Secret Recovery: Due to the pub-
lic information, an adversarial coalition can
narrow down possible secret candidates, even
to a unique value.

Here, we formulate each problem in a technical
way with its proof. The examples in the Appendix
illustrate the problems in a real implementation.

Remark 3. The Harn-Fuyou scheme is not generic
since there are practical cases for which it cannot
be employed. In general, the range of the threshold
values ti are given such as 1 ≤ ti ≤

∑i
j=1 |Lj|

for i = 1, 2, . . . ,m. Hence, ti can be greater than
ni = |Li| as

∑i
j=1 |Lj| > |Li|. Nonetheless, in the

Harn-Fuyou scheme, the specified primes pi1 < pi2 <

. . . < pini
cease at the index ni, resulting in the

condition

p0

ti−1∏
j=1

pini−j+1 <

ti∏
j=1

pij

being unclear for large enough ti that exceeds ni.

We refer the reader to Example 10 in the Ap-
pendix which illustrates this problem in a toy set-
ting.

Lemma 4. The Harn-Fuyou scheme is not suitable
for the cases where the compartment threshold
composes at least one more than the majority of
the participants, i.e., tj ≥ ⌈nj

2
⌉+ 1.

Proof: In the share generation phase, there are
additional pik,j values associated with each partici-
pant ui

k for each level Lj lower than her’s. These
numbers need to fulfill the condition pjtj < pik,j <

pjnj−tj+2 and hence, the scheme implicitly compels
the dealer to initially select the primes pj1 < pj2 <

. . . < pjnj
with a gap allowing sufficient number of

primes in between pjtj and pjnj−tj+2 so that pik,js can
fill in. In addition to the gap, pjtj < pik,j < pjnj−tj+2

explicitly states that tj < nj − tj + 2.

Hence, placing the primes pik,j between pjtj and
pjnj−tj+2 requires a condition which is not guaran-
teed to hold in a generic setting; it simply may be
the case that pjtj > pjnj−tj+2, i.e., tj > ⌈nj

2
⌉+1. That

is, the existence of some interval in between the
primes is not ensured since there is no order what-
soever among the primes of different compartments.
We refer the reader to Example 11 in the Appendix
which illustrates this problem. To show that even a
basic fix for this problem does not make the scheme
secure, we propose the following straightforward
modification.

3.1. A straightforward (yet insecure) modifica-
tion

One can make the Harn-Fuyou MTSS scheme
suitable for any number of participants and thresh-
old values by removing the necessity of the addi-
tional primes: In the share generation phase, instead
of using a sequence with ni primes pi1 < pi2 <

. . . < pini
for compartment Li, the dealer can use

a sequence with Ui primes pi1 < pi2 < . . . < piUi

where Ui =
∑i

j=1 nj . For security, the condition to
be satisfied for this prime set is

p0

ti−1∏
j=1

piUi−j+1 <

ti∏
j=1

pij (3)

that is well defined for any valid value of ti. Here,
the first ni primes can be used for the participants
in Li and the extra primes piℓ for ℓ > ni can be used
for pik,js for the participants in higher compartments.
The random integers αi, 1 ≤ i ≤ m are chosen
such that 0 ≤ s + αip0 < pi1p

i
2 . . . p

i
ti

. The share
sik for participant ui

k is generated as sik = s+ αip0
mod pik,j as before.
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This approach indeed eliminates the need for pik,j
to fill in to a possibly non-existing gap in between
pjtj < pik,j < pjnj−tj+2. As this is the only distinction
we describe herein, the rest of the share generation
phase and the secret reconstruction phase remains
essentially intact, and can be performed in a similar
fashion as described before.

Unfortunately, the modified scheme does not pro-
vide security as the following theorem and practical
example illustrate. Although the example is given
for the modified version, the same weakness also
exists in the original MTSS scheme of Harn-Fuyou
since the public information with different prime
modulos for a certain participant reveals extra in-
formation as we show in the following theorem.

Theorem 5. An adversarial coalition can narrow
down possible secret candidates, even to a unique
value, by using the public information.

Proof: While extending a share of a participant
into another level, a new prime is generated and
public information is computed for that prime. Since
different primes have been used for the same par-
ticipant, an adversary can extract some information
about the secret.

Let sik be yi mod pik. For a lower level Lj , the
corresponding public information is ∆sik,j = (yj −
sik) mod pik,j . The equation can be rewritten as

yj ≡ ∆sik,j + sik mod pik,j.

At this point, anyone can observe that yj mod pik,j is
between ∆sik,j and ∆sik,j+pik. If pik < pik,j , some of
the possible yj mod pik,j values can be discarded by
using the public information. In other words, anyone
will acquire critical information about yj .

In addition to public leakage above, an adversarial
coalition A in Lj also knows yj mod MA, thereby
they can reduce the number of possible candidates

into ∏ti
j=1 p

i
j −

∏ti−1
j=1 pini−j+1

MA

.

Without the public information, thanks to the (semi)
perfectness of Asmuth-Bloom SSS, the adversary
cannot obtain information on the secret. However,
with public information ∆sik,j , the adversary can
eliminate some of the remaining candidates if they
do not fall into ∆sik,j and ∆sik,j+pik in modulo pik,j .
The more public information, the less candidates
survive, and sometimes a unique value.

An basic threshold setting, where the set of secret
candidates is narrowed down to a unique value can
be found in Example 12 of the Appendix.

4. Proposed Multilevel Threshold Secret
Sharing Schemes

As described before, we are given a secret s ∈ Zp0

and a set of primes such that

p0
2

t−1∏
i=1

pn−i+1 <
t∏

i=1

pi, (4)

i.e., the Asmuth-Bloom condition holds. We will
refer to the prime sequence p0 < p1 < p2 <

. . . < pn satisfying the Asmuth-Bloom condition as
a (t, n)-Asmuth-Bloom sequence. As the fallacies of
the Harn-Fuyou scheme show, having the Asmuth-
Bloom condition for all the compartments indepen-
dently while keeping the level structure and being
secure is not an easy task. We solve this problem
by using a single anchor Asmuth-Bloom sequence as
defined below so that each participant of the MTSS
has only one prime modulus that can be used for
all the levels she can contribute to.

Definition 6. An anchor Asmuth-Bloom sequence
is a sequence of primes p0 < p1 < p2 < . . . < pn
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satisfying

p0
2

⌊n/2⌋−1∏
i=1

pn−i+1 <

⌊n/2⌋∏
i=1

pi. (5)

As one can notice, an anchor sequence is a valid
(⌊n/2⌋ , n)-Asmuth-Bloom sequence. We show that,
it can be used not only for t = ⌊n/2⌋ but also for
other t values:

Theorem 7. An anchor Asmuth-Bloom sequence
can be employed for any CRT-based (t, n) secret
sharing scheme. That is an anchor prime sequence
satisfies the Asmuth-Bloom condition for any 1 ≤
t ≤ n.

Proof: We will investigate the theorem in two
cases:

1 (t ≤ ⌊n/2⌋): To have (4) from (5) for a
threshold value t ≤ ⌊n/2⌋, one can remove
⌊n/2⌋ − t primes from each side of (5). For
each prime pi removed from the right side,
one needs to remove pn−i+2 from the left.
Since i ≤ ⌊n/2⌋ for all the primes removed,
n− i+2 > i which implies pn−i+2 > pi. Thus,
given the anchor inequality (5), the Asmuth-
Bloom condition (4) is also satisfied for a
threshold t ≤ ⌊n/2⌋ with the same set of
primes.

2 (t > ⌊n/2⌋): This case is similar to the former
case except that to have (4) from (5), we
need to add t − ⌊n/2⌋ primes to each side
of (5). For each prime pair (pn−i+2, pi) added
to the left and right of the anchor inequality,
respectively, pn−i+2 < pi since i > ⌊n/2⌋.
Thus given (5), (4) is also satisfied for a
threshold value t > ⌊n/2⌋ with the same prime
sequence.

4.1. A novel CRT-based multilevel threshold
(disjunctive) SSS

Let n =
∑m

i=1 ni be the number of total partici-
pants. Let hi : Zpi × Zm → Zpi for i ∈ {1, . . . , n}
be a family of efficiently computable one-way hash
functions. We employ an anchor sequence of n

primes as follows:

• Initialization: The dealer first generates an an-
chor prime sequence p0 < p1 < p2 < . . . < pn
satisfying (5) and assigns each prime pi to a
participant ui. In our scheme, this will be the
only prime modulus that will be used for the
participant2.

• Share generation: Given a secret s ∈ Zp0 , the
dealer chooses αi’s for all 1 ≤ i ≤ m such that

0 ≤ yi = s+ αip0 < Mi = p1p2 . . . pti .

For level Li, the shares and the public infor-
mation are generated as follows: Let uk be a
participant in Li; the original share sik for uk is
generated as sik = yi mod pk.
If uk is a participant in a higher compartment
Lj , i.e., j < i; to enable the use of sjk in Li, the
dealer computes ∆sik = (yi−hk(s

j
k, i)) mod pk

and broadcasts it as the public information. This
information will be used if uk participates in the
secret reconstruction within Li.

• Secret reconstruction: Let A be a coalition gath-
ered to reconstruct the secret. A is an authorized
coalition if it has ti or more participants from Li

or higher compartments for 1 ≤ i ≤ m. If the
participant is from Li, her share sik can be used
as is. Any other share sjk of uk from a higher
level needs to be modified as (hk(s

j
k, i) +∆sik)

2. While describing the proposed schemes, we will denote the
primes and participants with a single subscript as opposed to the
notation in Harn-Fuyou scheme. We believe this is more clear thanks
to the compactness of the anchor sequence we employ.
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and is used with the modulus pk while con-
structing the system of congruences. Using the
standard CRT, a unique solution yi can be
obtained. Then, the secret s is recovered by
computing s = yi mod p0.

An authorized coalition can obtain the secret since
with the help of public information, the coalition
will have enough shares for a compartment Li.
Thanks to CRT, the corresponding yi value and
hence s = yi mod p0 can be computed.

4.1..1 Security analysis of the proposed MTSS

The security of the proposed MTSS solely de-
pends on the security of the Asmuth-Bloom scheme.
First, we show that, unlike the Harn-Fuyou scheme,
the proposed MTSS scheme does not reveal any
information on the secret with the public informa-
tion used. Then, we will prove that an adversarial
coalition cannot have any information on the secret.

Our security analysis is based on the random ora-
cle model (ROM) [3]. In this manner, hash functions
are replaced by random oracles, which outputs a
truly random value for each unique query to the
function.

To generate the public information, the proposed
MTSS scheme employs a hash function for each
participant. Let uk be a participant in Lj . If the
adversary corrupts uk she will have sjk and she can
compute the shares for all levels Lj , j ≤ i ≤ m.
If uk remains uncorrupted, the adversary will only
have the public information for uk. Let Li be a level
lower than j; the adversary will have

∆sik = (sik − hk(s
j
k, i)) mod pk (6)

Hence, assuming the hash function hk behaves like
a random oracle, ∆sik will be random. Thus the
adversary cannot learn anything on the shares of uk

for lower compartments. Furthermore, although the

same hash function hk is used to compute ∆sik and
∆si

′

k for two lower levels Li and Li′ , j ≤ i, i′ ≤ m,
these two values cannot be combined (as they could
be without the hash function), since hk takes i and
i′, respectively, as an input.

Theorem 8. Given that the hash functions used in
the MTSS scheme behave like random oracles, an
unauthorized coalition cannot obtain any informa-
tion about the secret.

Proof: Let A′ be the adversarial coalition hav-
ing ti − 1 participants from Li and higher com-
partments. Let MA′ be the product of the prime
modulus values assigned to these ti− 1 participants
and y′i = yi mod MA′ . Since p0

2
∏ti−1

j=1 pn−j+1 <∏ti
j=1 pj <

∏ti
j=1 pj = Mi, we have Mi/MA′ > p0

2.
Hence y′i+βMA′ is a valid candidate for yi < M for
all β < p0

2. Since gcd(p0,MA′) = 1, all (y′+βMA′)

mod p0 are distinct for ℓp0 ≤ β < (ℓ + 1)p0, for
each 0 ≤ ℓ < p0. Thus s can be any integer from
Zp0 and the secret space is not restricted from the
adversary’s point of view.

For each value s′ in the secret space, from
the adversary’s point of view, there are either
⌊Mi/(MA′p0)⌋ or ⌊Mi/(MA′p0)⌋+ 1 possible con-
sistent yi candidates consistent with s′. Considering
Mi/MA′ > p0

2, for two different integers s′ and
s′′ in Zp0 , the probabilities of s = s′ or s = s′′

are almost equal and the difference between these
two values reduces when p0 increases. More for-
mally, thanks to the modified Asmuth-Bloom SSS
we employed [14], the proposed MTSS scheme
is statistical, i.e., the statistical distance between
the probability distribution of the secret candidates
being a secret and an uniform distribution is smaller
than a given ϵ with a carefully chosen p0.
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4.2. A CRT-based multilevel threshold (con-
junctive) SSS

The ideas presented above for the disjunctive
scheme can also be employed to have a conjuctive
SSS. Here, we present the first CRT-based conjunc-
tive MTSS scheme which adopts Iftene’s CRT-based
compartmented SSS [10].

The setting is the same as that of the disjunctive
MTSS scheme; compartment Li with threshold ti
has ni participants for 1 ≤ i ≤ m. Hence, the total
number of participants is n =

∑m
i=1 ni. There is a

hierarchy between the compartments; a member of
Lj can act as a member of a lower compartment Li

if i > j. The proposed conjunctive scheme shares a
given secret s ∈ Zp0 as follows:

• Initialization: The anchor prime sequence gen-
eration is the same. Let σ1, σ2, . . . , σm−1 be
random integers from Zp0 and σm ∈ Zp0 is
chosen such that

s = (σ1 + σ2 + · · ·+ σm) mod p0.

• Share generation: For all 1 ≤ i ≤ m, a random
αi is chosen such that 0 ≤ yi = σi + αip0 <

Mi = p1p2 . . . pti . The shares and public infor-
mation are generated similar to the disjunctive
case. Let uk be a participant in Li; the original
share sik for uk is generated as sik = yi mod pk.
For all uk who is from a higher level Lj to
enable the use of sjk in Li, ∆sik = (yi−hk(s

j
k, i))

mod pk is computed and broadcasted.
• Secret reconstruction: The secret s can be re-

covered if and only if all of the σi values for
1 ≤ i ≤ m are recovered. A partial secret σi

can be recovered if the number of shares from
level Li or from higher levels is greater than
or equal to ti. Let uk be a coalition member
participating in this task; if uk ∈ Li, her original
share sik can be used. Otherwise, if uk ∈ Lj

for j < i, h(sjk, i) + ∆sik is computed and
used as sik. After computing all σi values for
1 ≤ i ≤ m, the secret s is constructed by
s = (σ1 + σ2 + · · ·+ σm) mod p0.

4.2..1 Security analysis of the conjunctive
MTSS

The security analysis of conjunctive scheme simi-
lar to the disjunctive one given in Section 4.1.1. The
only difference between the proposed disjunctive
and conjunctive schemes is that all the threshold
conditions of the compartments need to be satisfied
in the conjunctive setting. For that reason, in our
conjunctive MTSS, the individual shares (sik) are
not directly generated from the secret (s) itself, but
an additive share of the secret (σi). Other than that,
they have a similar structure.

The public information of user uk for lower level
Li is computed in the same way as in disjunctive
case, ∆sik = (yi − hk(s

j
k, i)) mod pk. Since the

scheme uses exactly the same set of public infor-
mation, we can use the same claim: assuming the
hash function hk behaves like a random oracle, ∆sik
will be random. Therefore, under the random oracle
model, the adversary cannot learn any additional
information on the shares of uk for lower levels.

Theorem 9. Given that the hash functions used in
the conjunctive MTSS scheme behave like random
oracles, an unauthorized coalition cannot obtain
any information about the secret.

Proof Sketch: In the initialization phase of the
scheme, the secret s is shared using additive secret
sharing into σi values. In order to recover s, each of
the individual σi values needs to be obtained. In
addition, we showed that an adversary A′ cannot use
public information to learn share of a participant at
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a lower level. Therefore, the adversary is restricted
to the case where s/he tries to obtain each secret
of compartments σi separately. Each σi value
is shared using the modified Asmuth-Bloom SSS
presented in [14], which is shown to be statistical. In
other words, an unauthorized coalition cannot obtain
any information about the σi, thereby they cannot
obtain any information about the secret s.

5. Conclusion

The CRT-based multilevel threshold SSS of Harn-
Fuyou in the literature cannot be used for all thresh-
old settings. Furthermore, the scheme is not secure
and an adversary can extract the secret by using the
private shares of the participants she corrupted and
information revealed to the public during the secret
sharing phase. We proposed novel, compact, and
elegant disjunctive and conjunctive multilevel SSSs
based on a special prime sequence called anchor
sequence and showed that the proposed schemes
can be adopted for FSSs which have numerous
applications in applied cryptography.
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based on Asmuth-Bloom secret sharing. Information Sciences,
177(19):4148–4160, 2007.

[15] Kamer Kaya and Ali Aydin Selçuk. Sharing DSS by the chinese
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Appendix

Example 10. The Harn-Fuyou scheme is not well-
defined for a very basic setting with two com-
partments L1 and L2, where n1 = 3, n2 = 3,
t1 = 2 and t2 = 4 since there are only 3 users
in the second compartment. The threshold is 4 and
a (t, n)-Asmuth-Bloom sequence with n = 3 and
t = 4 does not exist.

Example 11. Let there be two levels L1 and L2 in
the Harn-Fuyou scheme involving n1 = |L1| = 2

and n2 = |L2| = 3 participants and let the
thresholds be t1 = 2 and t2 = 3. The dealer selects
the primes p0 < p11 < p12 and p0 < p21 < p22 < p23
which need to satisfy

p0p
1
2 < p11p

1
2 and p0p

2
2p

2
3 < p21p

2
2p

2
3

to be secure. Recall that pik,j is the prime distributed
to kth user in ith level to be used for participation
in a lower compartment j. Since pik,j must be chosen
such that pjtj < pik,j < pjnj−tj+2, we have p23 < p11,2 <

p22 and p23 < p22 contradicts with the initial choice
of primes p22 < p23.

Example 12. Consider the following setting emerg-
ing from the scheme with modified Harn-Fuyou
scheme. Let p0 = 5 and s = 1 ∈ Z5. Suppose that
we have two compartments L1 and L2 with n1 = 4,
n2 = 2, t1 = 2 and t2 = 3. Let

p11 < p12 < p13 < p14
△
= 11 < 13 < 17 < 23

p21 < p22 < p23 < p24 < p25 < p26
△
= 29 < 31 < 37 < 61 < 67 < 71

be the primes which satisfies Equation (3) and t-
threshold range. p11,2 = p26 = 71, p12,2 = p25 =

67, p13,2 = p24 = 61, p14,2 = p23 = 37 be the
additional primes that will be used to enable the
share of the participants in L1 for L2. Let α1 = 5

and α2 = 952, then

y1 = s+ α1p0 = 1 + 5× 5 = 26,

y2 = s+ α2p0 = 1 + 952× 5 = 4761.

With these parameters, the shares and the public
information are computed as

s11 = 4, s12 = 0, s13 = 9, s14 = 3, s21 = 5, s22 = 18

s11,2 = 4, s12,2 = 4, s13,2 = 3, s14,2 = 25

∆s11,1 = 0,∆s12,1 = 4,∆s13,1 = 55,∆s14,1 = 22.

Suppose that the adversary corrupted u2
1 and

u2
2 hence obtained their shares. She knows that

y2 is bounded by 4757 < y2 < 33263 and she
also can compute y2 mod p21p

2
2 = y2 mod 899 =

266 by using these shares. There are ⌈(33263 −
4757)/899⌉ = 32 candidates for y2 all in form
266 + 899 × K where 5 ≤ K ≤ 36. Since, 899

is relatively prime with 5, each secret candidate in
Zp0 must be valid for around 7 of these values, i.e.,
for 266 + 899× 6 the valid secret candidate is 0.

The participant u1
1 has a public information pair

(∆s11,2, p
1
1,2) = (0, 71) and her prime is p11 = 11.

Hence, the adversary knows that the value s11,2 is
bounded by s11,2 = s11 + ∆s11,2 ∈ [0, 10] since
s11 ∈ Z11. Similarly, for u1

2, u1
3, and u1

4, the ad-
versary knows that s12,2 ∈ [4, 16], s13,2 ∈ [55, 60] ∪
[0, 10], s14,2 ∈ [22, 36] ∪ [0, 7].

As the Table 2 shows, there is only one y2 candi-
date in the form 51+899K, which yields s1{1,2,3,4},2
values within these ranges. Thus the adversary
knows that y2 = 4761 and the secret s = 1 is
recovered in an unauthorized manner by corrupting
only two participants from L2.
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TABLE 2
Secrets for each y2 candidate from adversary’s point of view for Example 2. The values consistent

with the ranges obtained by public information are shown in boldface.
candidate s11,2 s12,2 s13,2 s14,2 candidate s11,2 s12,2 s13,2 s14,2

4761 4 4 3 25 19145 46 50 52 16
5660 51 32 48 36 20044 22 11 36 27
6559 27 60 32 10 20943 69 39 20 1
7458 3 21 16 21 21842 45 0 4 12
8357 50 49 0 32 22741 21 28 49 23
9256 26 10 45 6 23640 68 56 33 34

10155 2 38 29 17 24539 44 17 17 8
11054 49 66 13 28 25438 20 45 1 19
11953 25 27 58 2 26337 67 6 46 30
12852 1 55 42 13 27236 43 34 30 4
13751 48 16 26 24 28135 19 62 14 15
14650 24 44 10 35 29034 66 23 59 26
15549 0 5 55 9 29933 42 51 43 0
16448 47 33 39 20 30832 18 12 27 11
17347 23 61 23 31 31731 65 40 11 22
18246 70 22 7 5 32630 41 1 56 33
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