
INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
Mesnager et al., Vol.8, No.4, pp.77-87

Minimal Linear Codes with Few Weights and
Their Secret Sharing

Sihem Mesnager1, Ahmet Sınak2, Oğuz Yayla3
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Abstract—Minimal linear codes with few weights have significant applications in secure two-party computation and secret sharing
schemes. In this paper, we construct two-weight and three-weight minimal linear codes by using weakly regular plateaued functions
in the well-known construction method based on the second generic construction. We also give punctured codes and subcodes
for some constructed minimal codes. We finally obtain secret sharing schemes with high democracy from the dual codes of our
minimal codes.
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1. Introduction

There are several applications of minimal linear
codes such as secure two-party computation and
secret sharing schemes (SSS). Constructing linear
codes with perfect parameters is an attractive re-
search topic in the literature. A number of con-
struction methods for linear codes were proposed,
one of them is based on some good functions over
finite fields. Recently, some functions were used to

The first version of this work [13] was presented at the 2IWCA’19.

obtain new linear codes with few weights in the
second generic construction method (see [6], [7],
[20], [21], [24]). Especially, bent functions (mostly,
quadratic and weakly regular bent functions) were
extensively employed to obtain linear codes with
good parameters (see [7], [20], [24]). Very recently,
weakly regular plateaued functions have been em-
ployed in [12], [14], [19] to construct minimal linear
codes with few weights. In this paper, we construct
further two- and three-weight minimal linear codes
with good and flexible parameters. In addition to
the codes constructed in [13], we here study the
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subcodes of the constructed codes and obtain new
classes of minimal codes with good parameters. We
note that the dual of a subcode is expected to be
more optimal as the dimension of the dual subcode
is greater than that of the original dual code.

The content of the paper is organized as follows.
The notation and some previous works related to
plateaued functions are given in Section 2. Then, in
Section 3, we construct two- and three-weight linear
codes by using weakly regular plateaued functions
in the second generic construction method. We
also record the punctured codes and subcodes for
some constructed codes. Section 4 shows that all
constructed codes are minimal codes, which are
used to construct the SSS with high democracy.

2. Preliminaries

Let p be a prime and n be a positive integer.
We use Fpn to denote the finite field with pn

elements. We sometimes see Fnp as an n-dimensional
vector space over Fp. The support of a vector
a = (a0, . . . , an−1) ∈ Fnp is described as supp(a) =

{0 ≤ i ≤ n − 1 : ai 6= 0}. The Hamming weight
of a, symbolized by wt(a), is defined as the size of
supp(a). A k-dimensional linear subspace C of Fnp is
called linear code, and each of its element is called
a codeword. The minimum Hamming weight of the
nonzero codewords of C is said to be the minimum
Hamming distance of C. A linear code C over Fp
with length n, dimension k and minimum Hamming
distance d is represented by [n, k, d], and its dual
code C⊥ = {b ∈ Fnp : b · a = 0 for all a ∈ C} is
denoted by [n, n− k, d⊥].

Let Aw denote the number of codewords with
Hamming weight w in C of length n. Then, the
weight distribution of C is (1, A1, . . . , An) and its
weight enumerator is the polynomial WC(y) =

1 + A1y + · · · + Any
n. Besides, C is called a t-

weight code if WC has t nonzero coefficients. A

k × n matrix G whose rows form a basis for C
is said to be a generator matrix of C. Note that
a codeword a in C covers another codeword b

in C if supp(b) ⊆ supp(a) holds. If a nonzero
codeword a ∈ C does not cover any element in
C \ {cj = ja : j ∈ Fp}, then a is called the minimal
codeword. A linear code C is called minimal linear
code if all nonzero codewords of C are minimal.
The class of such codes is a very special subclass
of linear codes.

For a set S, #S expresses the size of S and
S? = S\{0}. The symbols SQ and NSQ symbolize
the set of all squares and non-squares in F?p, respec-
tively. We denote by η0 the quadratic character of
F?p, and p∗ = η0(−1)p. The trace of β ∈ Fpn over
Fp is defined as Trn(β) = β+βp+βp

2
+· · ·+βpn−1 .

Given a function f : Fpn −→ Fp, its Walsh
transform is a function from Fpn to C defined as

χ̂f (β) =
∑
x∈Fpn

ξp
f(x)−Trn(βx), β ∈ Fpn ,

where ξp = e2πi/p is a complex primitive p-th root of
unity. Note that f is balanced over Fp if χ̂f (0) = 0;
otherwise, f is unbalanced.

The plateaued functions were first defined in 1999
by Zheng and Zhang [23]. For a prime p, f is called
p-ary s-plateaued if |χ̂f (β)|2 ∈ {0, pn+s} for all
β ∈ Fpn , where s is an integer with 0 ≤ s ≤ n.
Then, its Walsh support is defined as Sf = {β ∈
Fpn : |χ̂f (β)|2 = pn+s}, and #Sf = pn−s from
the Parseval identity. Indeed, the Parseval identity
implies the following lemma.

Lemma 1: Let f : Fpn → Fp be an s-plateaued
function. Then, the square of its Walsh transform
values takes pn−s times the value pn+s and pn−pn−s
times the value 0.

Very recently, Mesnager et al. [11], [12] introduced
subclasses of plateaued functions. An s-plateaued
f is said to be weakly regular if there exists a
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complex number u (indeed, u ∈ {±1,±i}) and a
p-ary function g over Fpn with g(β) = 0 for all
β ∈ Fpn \ Sf such that χ̂f (β) ∈ {0, upn+s2 ξ

g(β)
p } for

all β ∈ Fpn . Otherwise, f is said to be non-weakly
regular.

Lemma 2: [12] Let f : Fpn → Fp be a weakly
regular s-plateaued function. Then for all β ∈ Sf ,

χ̂f (β) = ε
√
p∗
n+s

ξg(β)
p ,

where ε = ±1 is the sign of χ̂f and g is a p-ary
function over Sf .

Lemma 3: [14] Let f : Fpn → Fp be a weakly
regular s-plateaued function. For j ∈ Fp, we de-
scribe the set {β ∈ Sf : g(β) = j}. Then, the size
of this set is equal to{

pn−s−1 + εηn+1
0 (−1)(p− 1)

√
p∗
n−s−2

, if j = 0,

pn−s−1 − εηn+1
0 (−1)

√
p∗
n−s−2

, if j ∈ F?p

when n− s is even; otherwise,
pn−s−1, if j = 0,

pn−s−1 + εηn0 (−1)
√
p∗
n−s−1

, if j ∈ SQ,
pn−s−1 − εηn0 (−1)

√
p∗
n−s−1

, if j ∈ NSQ.

3. Linear codes from weakly regular
plateaued functions

In this section, we apply the construction method
of binary linear codes from Boolean functions
proposed by C. Ding [5], [6] for weakly regular
plateaued functions in characteristic p.

Let f : Fpn → Fp. The support of f is defined to
be a set

Df = {x ∈ Fpn : f(x) 6= 0}. (1)

Assume nf = #Df and Df = {d1, d2, . . . , dnf}. A
linear code involving Df is defined as

CDf
= {cβ = (Trn(βd1), . . . ,Tr

n(βdnf
)) : β ∈ Fpn}, (2)

whose length is nf and dimension is at most n.
Here, the set Df is called the defining set of the
code CDf .

In the following subsections, we make use of
some weakly regular plateaued functions in order
to obtain linear codes, over the finite fields of
characteristic p.

3.1. Linear codes from weakly regular
plateaued unbalanced functions

We first consider weakly regular plateaued unbal-
anced functions in the second generic construction
method. We recall from [14] that WRP denotes the
set of weakly regular p-ary plateaued unbalanced
functions satisfying the following two homogeneous
conditions. For a function f

• f(0) = 0 and
• there exists a positive even integer t with

gcd(t− 1, p− 1) = 1 such that f(ax) = atf(x)

for every a ∈ F?p and x ∈ Fpn .

The following lemma can be given as a natural
consequence of [14, Lemma 9].

Lemma 4: Let f : Fpn → Fp be an unbalanced
function with χ̂f (0) = ε

√
p∗
n+s where ε = ±1, and

let Df be given in (1). Then we have

#Df =

{
A, if n+ s is even,
(p− 1)pn−1, otherwise,

where A = (p− 1)(pn−1 − εη0(−1)
√
p∗
n+s−2

).

The following lemma can be directly derived from
[14, Lemma 16].

Lemma 5: Let f ∈ WRP. For β ∈ F?pn , describe

Nf,β = #{x ∈ Fpn : f(x) 6= 0 and Trn(βx) = 0}.

Then for all β ∈ F?pn \ Sf , we have

Nf,β =

{
(p− 1)(pn−2 − ε

√
p∗
n+s−4

), if n+ s is even,
(p− 1)pn−2, otherwise.
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For all β ∈ Sf ,

Nf,β =

{
(p− 1)(pn−2 − εη0(−1)

√
p∗
n+s−2

), if g(β) = 0,

(p− 1)pn−2, if g(β) 6= 0,

when n+ s is even; otherwise,

Nf,β =


(p− 1)pn−2, if g(β) = 0,

(p− 1)(pn−2 − ε
√
p∗
n+s−3

), if g(β) ∈ SQ,
(p− 1)(pn−2 + ε

√
p∗
n+s−3

), if g(β) ∈ NSQ.

These lemmas help to find the Hamming weights
of the codewords of CDf , whose weight distribution
follows from Lemmas 1 and 3. We collect its
parameters in the following theorems.

Theorem 1: Let f ∈ WRP and CDf be given
in (2). Assume n + s being an even integer.
Then, CDf is a three-weight linear [(p− 1)(pn−1 −
εη0(−1)

√
p∗
n+s−2

), n] code over Fp. The Hamming
weights are listed in Table 1.

Proof: By considering the definition of CDf ,
we clearly see that the length of CDf is equal to nf ,
which is given in Lemma 4. Similarly, the Hamming
weight wt(cβ) is equal to nf − Nf,β for all β ∈
F?pn , which are derived from Lemmas 4 and 5. We
can easily compute them. For all β ∈ F?pn \ Sf , we
get wt(cβ) = (p − 1)2(pn−2 − ε

√
p∗
n+s−4

), and the
number of such codewords cβ follows from Lemma
1. For all β ∈ Sf , we obtain

wt(cβ) =

{
(p− 1)2pn−2, if g(β) = 0,

B, if g(β) 6= 0,

where B = (p−1)((p−1)pn−2−εη0(−1)
√
p∗
n+s−2

),
and the number of cβ follows from Lemma 3.
Finally, its dimension is a direct consequence of its
weight distribution, completing the proof.

Notice that Theorem 1 is a partial extension of [6,
Corollaries 3 and 5] for weakly regular plateaued
unbalanced functions in characteristic p.

The following remark states a necessary condition
on the parameters of Theorem 1.

Remark 1: If εη(n+s)/2
0 (−1) = −1, then we have

the condition 0 ≤ s ≤ n− 4, and 0 ≤ s ≤ n− 2 for
n ≥ 3, otherwise.

When the parameters of Theorem 1 fail the condi-
tion in Remark 1, CDf may be a two-weight code.
For example, the following linear code has two-
weight.

Example 1: The function f : F34 → F3 defined
as f(x) = Tr4(ζ4x92) is 2-plateaued in the class
WRP, where ζ is a primitive element of F34 . Then,
we have χ̂f (β) ∈ {0, εη3

0(−1)33ξ
g(β)
3 }, where ε =

1. Thus, CDf is a two-weight [72, 4, 48]3 code with
WC(y) = 1 + 72y48 + 8y54, verified by MAGMA.

The case when n + s is odd can be similarly
proven.

Theorem 2: Let f ∈ WRP and CDf be given in
(2). Assume n+ s being an odd integer. Then, CDf
is a three-weight linear [(p − 1)pn−1, n] code over
Fp. The Hamming weights are tabulated in Table 2.

3.2. Linear codes from weakly regular
plateaued balanced functions

In this subsection, we obtain further linear codes
by using plateaued balanced functions from the
class WRPB, introduced in [19]. The class WRPB
consists of weakly regular p-ary plateaued balanced
functions satisfying the following two homogeneous
conditions. For a function f ,

• f(0) = 0 and
• there exists a positive even integer t with

gcd(t− 1, p− 1) = 1 such that f(ax) = atf(x)

for every a ∈ F?p and x ∈ Fpn .

As a consequence of [19, Lemma 9], we have the
following lemma.

Lemma 6: Let f ∈ WRPB. For β ∈ F?pn , describe

Nf,β = #{x ∈ Fpn : f(x) 6= 0 and Trn(βx) = 0}.
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Assume n + s being an even integer. Then for all
β ∈ F?pn \ Sf , we have Nf,β = (p− 1)pn−2, and for
all β ∈ Sf

Nf,β =

{
(p− 1)(pn−2 − ε(p− 1)

√
p∗
n+s−4

), if g(β) = 0,

(p− 1)(pn−2 + ε
√
p∗
n+s−4

), if g(β) 6= 0.

Remark 2: When n + s is odd, Nf,β , defined in
Lemma 6, is equal to that of Lemma 5.

Remark 3: If f : Fpn → Fp is a balanced
function, then nf = #Df = (p− 1)pn−1.

The following theorem collects the parameters of
the code CDf .

Theorem 3: Let f ∈ WRPB and CDf be given in
(2). Assume n+ s being an even integer. Then, CDf
is a three-weight linear [(p − 1)pn−1, n] code over
Fp. The Hamming weights are listed in Table 3.

Proof: The length of CDf is given in Remark 3.
From the definition of CDf , the Hamming weights
are wt(cβ) = nf − Nf,β , derived from Remark 3
and Lemma 6. For all β ∈ F?pn \ Sf , we compute
wt(cβ) = (p − 1)2pn−2, and the number of such
codewords cβ is equal to pn − pn−s − 1 by Lemma
1. For all β ∈ Sf , the Hamming weight of cβ is{

(p− 1)2(pn−2 + ε
√
p∗
n+s−4

), if g(β) = 0,

(p− 1)((p− 1)pn−2 − ε
√
p∗
n+s−4

), if g(β) 6= 0,

and the number of such codewords cβ follows
from Lemma 3. Finally, its dimension is a direct
consequence of its weight distribution, completing
the proof.

Notice that Theorem 3 is a partial extension of [6,
Corollary 5] for weakly regular plateaued balanced
functions in characteristic p.

Remark 4: When n+ s is odd, CDf has the same
parameters given in Theorem 2.

3.3. Punctured codes and subcodes

In this subsection, we present the punctured ver-
sions and subcodes for constructed codes.

We first consider a punctured code for each code
constructed above. The dimension of the punctured
code is the same as that of the original code while
its length and minimum Hamming distance are
smaller than the original ones. So they may be
optimal codes, and also they are used to construct
the democratic SSS.

The code CDf given in (2) can be punctured into
a shorter code since the Hamming weights of its
nonzero codewords have a common divisor p−1. We
assume that f ∈ WRP. For all x ∈ Fpn , f(x) = 0

if and only if f(ax) = 0, for any a ∈ F?p. We now
take a subset Df of the defining set Df given in (1)
such that

⋃
a∈F?p

aDf is a partition of Df ,

Df = F?pDf = {ad̄ : a ∈ F?p and d̄ ∈ Df}, (3)

where we have d̄1
d̄2

/∈ F?p for each pair of distinct
elements d̄1, d̄2 ∈ Df . Clearly, #Df = (p−1)#Df .
Hence, CDf is punctured into a shorter code, CDf ,
which can be defined as in (2) for the defining set
Df . Hence, the parameters of Corollaries 1 and
2 are directly obtained from Theorems 1 and 2,
respectively.

Corollary 1: The punctured code CDf of Theorem
1 is a three-weight [pn−1 − εη0(−1)

√
p∗
n+s−2

, n]

code, whose Hamming weights are documented in
Table 4.

Corollary 2: The punctured code CDf of Theorem
2 is a three-weight [pn−1, n] code, whose Hamming
weights are documented in Table 5.

With the same definition above, the punctured code
of Theorem 3 can be given as follows.

Corollary 3: The punctured code CDf of Theorem
3 is a three-weight [pn−1, n] code, whose Hamming
weights are listed in Table 6.

We next present subcodes for some constructed
codes by limiting an element from finite field to the
Walsh support of function. To define a subcode of
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CDf , we are using an element of the Walsh support
Sf with order pn−s for f ∈ WRP and so consider a
linear code involving Df defined as

CDf = {cβ = (Trn(βd1), . . . ,Trn(βdnf )) : β ∈ Sf},

which has length nf and dimension at most n− s.
We collect the parameters of CDf , which are directly
derived from the corresponding original code CDf in
the following corollaries.

Corollary 4: The subcode CDf of Theorem 1 is a
two-weight [(p−1)(pn−1−εη0(−1)

√
p∗
n+s−2

), n−s]
code, whose Hamming weights are given in Table
7.

Corollary 5: The subcode CDf of Theorem 2 is
a three-weight [(p − 1)pn−1, n − s] code, whose
Hamming weights follow from Table 2.

Similarly, subcodes for the punctured codes in
Corollaries 1 and 2 can be given as follows.

Corollary 6: The subcode CDf of the punctured
code CDf in Corollary 1 is a two-weight [pn−1 −
εη0(−1)

√
p∗
n+s−2

, n − s] code, whose Hamming
weights are given in Table 8.

Corollary 7: The subcode CDf of the punc-
tured code CDf in Corollary 2 is a three-weight
[pn−1, n− s] code, whose Hamming weights follow
from Table 5.

We remark that the dimension of a subcode is
smaller than that of the original code while its length
and minimum Hamming distance are the same as
that of the original code. Hence, the minimum
Hamming distance of the dual subcode does not
change much while its dimension is greater than that
of the original dual code. So, the dual subcodes may
be more optimal codes.

We lastly find the minimum Hamming distance
of the dual codes. Clearly, the minimum Hamming
distance d⊥ of the dual code C⊥Df is greater than 1

because 0 /∈ Df . We know that d⊥ is equal to 2 if

and only if there are two distinct elements di, dj ∈
Df and two elements ai, aj ∈ F?p such that

aiTrn(xdi) + ajTrn(xdj) = 0 (4)

for all x ∈ Fpn . For di ∈ Df , we have −di ∈ Df

since f(x) = f(−x) for all x ∈ Fpn . Notice that
di 6= −di since p is an odd prime. For dj = −di
and ai = aj = 1, (4) holds for all x ∈ Fpn . Hence,
we have d⊥ = 2 for the dual codes of the codes in
Theorems 1, 2, 3 and Corollaries 4, 5.

We also show that the minimum Hamming dis-
tance of each dual punctured code is at least 3. To
see this, we first recall from (3) that Df = F?pDf .
We know that d⊥ = 2 if and only if there are
two distinct elements d̄i, d̄j ∈ Df and two elements
ai, aj ∈ F?p such that Trn(x(aid̄i + aj d̄j)) = 0 for
all x ∈ Fpn; equivalently, aid̄i + aj d̄j = 0, which
contradicts to d̄i

d̄j
/∈ F?p. This says that d⊥ is greater

than or equal to 3. Hence, the dual codes of the
codes in Corollaries 1, 2, 3, 6 and 7 have minimum
Hamming distance at least 3.

We note that the projective two-weight code in
Corollary 6 can be employed to obtain strongly
regular graphs in [4] and the projective three-weight
punctured codes in Corollaries 1, 2, 3 and 7 can be
used to obtain association schemes given in [3].

4. Secret sharing schemes

In this section, we first show that all codes con-
structed in Section 3 are minimal codes, and then
introduce the SSS by using the dual codes of our
minimal codes.

4.1. Minimal linear codes

We start with the following lemma, which states
that all nonzero codewords of the code C are mini-
mal if their Hamming weights are too close to each
other.
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Lemma 7: (Ashikhmin-Barg) [1] A linear code C
over Fp is minimal if

p− 1

p
<
wmin

wmax

,

where wmin and wmax represent the minimum and
maximum weights of nonzero codewords in C, re-
spectively.

Lemma 7 implies that our constructed codes are
minimal codes, which are explicitly expressed as
follows.

Proposition 1: Let n + s be an even integer
with 0 ≤ s ≤ n − 4 and f ∈ WRP.
Then, the code CDf in Theorem 1 is mini-
mal code with the following parameters [(p −
1)(pn−1 − p(n+s−2)/2), n, (p − 1)((p − 1)pn−2 −
p(n+s−2)/2)] if εη

(n+s)/2
0 (−1) = 1; otherwise,[

(p− 1)(pn−1 + p(n+s−2)/2), n, (p− 1)2pn−2)
]
.

Proposition 2: Let n + s be an odd integer
with 0 ≤ s ≤ n − 3 and f ∈ WRP.
Then, the code CDf in Theorem 2 is
minimal code with the following parameters[
(p− 1)pn−1, n, (p− 1)((p− 1)pn−2 − p(n+s−3)/2)

]
.

Proposition 3: Let n+ s be an even integer with
1 ≤ s ≤ n − 4 and f ∈ WRPB. Then, the
code CDf in Theorem 3 is minimal code with the
following parameters [(p − 1)pn−1, n, (p − 1)((p −
1)pn−2 − p(n+s−4)/2)] if εη(n+s)/2

0 (−1) = 1; other-
wise,

[
(p− 1)pn−1, n, (p− 1)2(pn−2 − p(n+s−4)/2)

]
.

Remark 5: The punctured codes and subcodes
given in Corollaries 1, 2, 3, 4, 5, 6 and 7 are also
minimal codes for almost all cases.

4.2. Secret sharing schemes from the con-
structed minimal codes

In this subsection, we consider the construction of
SSS from linear codes. There are a lot of methods to
construct the SSS from linear codes (see [9], [10],
[15], [16]). Here we see the one described in [9].

Let C be a linear [n, k, d] code with a k × n

generator matrix G = [g0, g1, . . . , gn−1]. A secret
s ∈ Fp is shared among n group members as fol-
lows. A dealer, one of the group members, chooses a
random u ∈ Fpk such that s = ug0, and obtains the
shares t = (t0, . . . , tn−1) by getting the codeword
corresponding to u as t = uG. Each components of
t are distributed to group members, and ti is called
the secret shares. The secret can be only recovered
by a set of secret shares (ti1 , . . . , tim), where g0

is a linear combination of rows (gi1 , . . . , gim) of
G. In other words, if there is a codeword in C⊥
starting by 1 and nonzero at (i1, . . . , im), then one
can recover s easily. Indeed, if one can find the
vector (x1, . . . , xm) by solving

∑m
j=1 xjgij = g0,

then s =
∑m

j=1 xjtij .

A set of group members is called minimal access
set if they can recover the secret; however, any
of its proper subsets can not. From the discussion
above we express that minimal codewords of C⊥
starting with 1 gives the minimal access sets. And
so, the minimum Hamming distance d of C gives
a lower bound on the size of a minimal access
set. On the other hand, d⊥ determines the extent
of democracy of SSS. It is a well-known fact that
d + d⊥ ≤ n + 2. Then there is a tradeoff between
the size of a minimal access set and the number
of minimal access sets. Indeed, it is hold only for
maximum distance separable (MDS) codes. Hence,
the SSS from MDS codes are interesting [15].

The dual codes of our minimal codes propose the
SSS with high democracy, described in [7, Theorem
12]. As an example, we construct the SSS from the
codes given in Theorem 1 and Corollary 2.

Proposition 4: Let CDf be the code [m,n, (p −
1)((p − 1)pn−2 − p(n+s−2)/2)] in Theorem 1 with
G = [g0, g1, . . . , gm−1], where m = (p − 1)(pn−1 −
p(n+s−2)/2). Then in SSS based on C⊥Df with d⊥ = 2,
the number of members is m−1 and there are pn−1
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minimal access sets.

• A member Pi is in all minimal access sets if gi,
i 6= 0, is a multiple of g0, and Pi is in (p−1)pn−2

minimal access sets, otherwise.

Note that some Pi’s are in all minimal access sets,
and such Pi is called a dictatorial member.

Proposition 5: Let CDf be the code [pn−1, n] in
Corollary 2 with G = [g0, g1, . . . , gpn−1−1]. Then in
SSS based on C⊥

Df
with d⊥ ≥ 3, the number of

members is equal to pn−1 − 1 and there are pn−1

minimal access sets.

• Every group of t members is involved in (p −
1)tpn−t−1 minimal access sets for any fixed t ≤
min(n− 1, d⊥ − 2).

We remark that each Pi in SSS constructed in
Proposition 5 is counted in the same number of
minimal access sets, and so this scheme is called
democratic.

From an application point of view, SSS is practi-
cally used in many areas. First of all, it can be used
in cryptography for secretly sharing an encryption
key [2], [18]. Second, it is used in cloud computing,
where the encryption key is secretly shared among
servers [22]. Third application is in secure multi-
party computation, where computation is based on
the secret sharing of all inputs of the corresponding
parties [8]. Another application of SSS is decen-
tralized electronic voting systems, where the vote
of each party is split into different vote-counters,
i.e. sharing secret among vote-counters [17]. One of
the very recent application of SSS is in blockchain
technology, where data in blockchain is altered by a
group having enough number of secret shares [25].

5. Conclusion

The main aim of this paper is to present minimal
linear codes with good and flexible parameters. To

do this, we constructed some classes of minimal
linear codes by using weakly regular plateaued func-
tions in the second generic construction method.
We next obtained the SSS with nice access struc-
tures from the dual codes of our codes. Such
SSS have a number of applications in the industry
including cryptography, cloud computing, secure
multiparty computation, electronic voting systems
and blockchain technology. To the best of our
knowledge, the minimal codes constructed in this
paper are inequivalent to the previous codes in the
literature.
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Appendix

The appendix presents in Tables 1-8 the Hamming
weights of the codewords and weight distributions
of the codes constructed in this paper.
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Table 1
The Hamming weights of CDf if n+ s is even and f ∈WRP

Hamming weight w Multiplicity Aw
0 1

(p− 1)2(pn−2 − ε
√
p∗
n+s−4

) pn − pn−s

(p− 1)2pn−2 pn−s−1 + εηn+1
0 (−1)(p− 1)

√
p∗
n−s−2 − 1

(p− 1)((p− 1)pn−2 − εη0(−1)
√
p∗
n+s−2

) (p− 1)(pn−s−1 − εηn+1
0 (−1)

√
p∗
n−s−2

)

Table 2
The Hamming weights of CDf if n+ s is odd and f ∈WRP

Hamming weight w Multiplicity Aw
0 1

(p− 1)2pn−2 pn + pn−s−1 − pn−s − 1

(p− 1)((p− 1)pn−2 + ε
√
p∗
n+s−3

) p−1
2

(pn−s−1 + εηn0 (−1)
√
p∗
n−s−1

)

(p− 1)((p− 1)pn−2 − ε
√
p∗
n+s−3

) p−1
2

(pn−s−1 − εηn0 (−1)
√
p∗
n−s−1

)

Table 3
The Hamming weights of CDf if n+ s is even and f ∈WRPB

Hamming weight w Multiplicity Aw
0 1

(p− 1)2pn−2 pn − pn−s − 1

(p− 1)2(pn−2 + ε
√
p∗
n+s−4

) pn−s−1 + εηn+1
0 (−1)(p− 1)

√
p∗
n−s−2

(p− 1)((p− 1)pn−2 − ε
√
p∗
n+s−4

) (p− 1)(pn−s−1 − εηn+1
0 (−1)

√
p∗
n−s−2

)

Table 4
The Hamming weights of punctured code CDf if n+ s is even and f ∈WRP

Hamming weight w Multiplicity Aw
0 1

(p− 1)(pn−2 − ε
√
p∗
n+s−4

) pn − pn−s

(p− 1)pn−2 pn−s−1 + εηn+1
0 (−1)(p− 1)

√
p∗
n−s−2 − 1

(p− 1)pn−2 − εη0(−1)
√
p∗
n+s−2

(p− 1)(pn−s−1 − εηn+1
0 (−1)

√
p∗
n−s−2

)

Table 5
The Hamming weights of punctured code CDf if n+ s is odd and f ∈WRP

Hamming weight w Multiplicity Aw
0 1

(p− 1)pn−2 pn + pn−s−1 − pn−s − 1

(p− 1)pn−2 + ε
√
p∗
n+s−3 p−1

2
(pn−s−1 + εηn0 (−1)

√
p∗
n−s−1

)

(p− 1)pn−2 − ε
√
p∗
n+s−3 p−1

2
(pn−s−1 − εηn0 (−1)

√
p∗
n−s−1

)
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Table 6
The Hamming weights of punctured code CDf if n+ s is even and f ∈WRPB

Hamming weight w Multiplicity Aw
0 1

(p− 1)pn−2 pn − pn−s − 1

(p− 1)(pn−2 + ε
√
p∗
n+s−4

) pn−s−1 + εηn+1
0 (−1)(p− 1)

√
p∗
n−s−2

(p− 1)pn−2 − ε
√
p∗
n+s−4

(p− 1)(pn−s−1 − εηn+1
0 (−1)

√
p∗
n−s−2

)

Table 7
The Hamming weights of subcode CDf if n+ s is even and f ∈WRP

Hamming weight w Multiplicity Aw
0 1

(p− 1)2pn−2 pn−s−1 + εηn+1
0 (−1)(p− 1)

√
p∗
n−s−2 − 1

(p− 1)((p− 1)pn−2 − εη0(−1)
√
p∗
n+s−2

) (p− 1)(pn−s−1 − εηn+1
0 (−1)

√
p∗
n−s−2

)

Table 8
The Hamming weights of subcode CDf if n+ s is even and f ∈WRP

Hamming weight w Multiplicity Aw
0 1

(p− 1)pn−2 pn−s−1 + εηn+1
0 (−1)(p− 1)

√
p∗
n−s−2 − 1

(p− 1)pn−2 − εη0(−1)
√
p∗
n+s−2

(p− 1)(pn−s−1 − εηn+1
0 (−1)

√
p∗
n−s−2

)
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