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Abstract—Memory encryption has been an active research area in the recent decade. While the initial focus was on securing

data in pervasive applications, recent efforts by Intel and AMD has brought memory encryption to general purpose processors as

well. This has been mainly due to new threat models which necessitated securing real-time OS data inside RAM. The existing

approaches use dedicated crypto engines that act as a buffer between the memory and the processor. In this study, we propose a

novel approach where we combine a new paradigm in computing, in-memory processing, and cryptography to secure data inside

the memory. We propose an in-memory encryption engine capable of utilizing processing capabilities of dynamic random access

memories. We demonstrate the viability and efficiency of our proposal by implementing NSA cipher SIMON on our engine and

show that encryption of a 1 Gb DRAM module can be completed in under 20 ms.
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1. Introduction

In a perfect world, there would be no need for
securing data inside RAM, which is also known
as data in use. The operating system should keep
strong separation between processes and clear RAM
upon reallocation to another process. In case the at-
tack model allows analysis on the RAM, encrypting
the swap area or using no swap would be sufficient.
However, in real life applications, both operating
systems and system administration are inherently
imperfect human endeavors. It is always advisable
to add some safeguards. Storing data in encrypted
form in RAM is one of those safeguards, if not the

most important one.

In practice, there can be several cases where
memory can become visible to other processes, for
example:

• Once the original process using the memory is
completed, it returns the control to the operating
system. Unless the memory is cleared, a suc-
cessive process could perform a malloc() and
retrieve info belonging to a previously running
process [1].

• Pages swapped out to disk by the operating sys-
tem can become available to a process watching
the disk/storage [2].

126



INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
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It is possible to come up with several other attack
scenarios where unencrypted memory can be probed
by attackers. While, in general, this type of volatility
depends greatly on the computer in question, it is
safe to say that anonymous memory can persist for
long periods of time, especially if the computer is
idle. There has been several cases where passwords
and other precalculated data were easily recovered
from computers many days after being typed or
loaded into memory [3].

A cold boot attack – also known as a platform
reset attack [4],[5], for example, allows an attacker
to perform a memory dump of a computer’s random
access memory (RAM) after power removal due to
the phenomenon of computer data memory rema-
nence. The attacker can retrieve encryption keys or
other critical information from a running operating
system.

Malicious hardware devices, rootkits and bootkits
are other threats to memory [6]. They can directly
infect one of the boot-start drivers inside the mem-
ory, thereby causing the operating system to load
the modified driver upon start-up and causing the
malicious code to take control.

Intel and AMD both introduced what is known as
Hardware-Assisted Trusted Execution Environment
to combat against such treats. Both solutions from
the two major processor developers, namely Intel
Software Guard eXtensions (SGX) [7] and AMD
Memory Encryption Technology [8], rely on AES [9]
based encryption engines implemented in hardware.
In that sense, while they both offer proven-but-
classical solutions which require major software
changes and code refactoring (especially in case of
Intel).

With the emergence of In-Memory Processing
technology, in-memory encryption was discussed as
a possible replacement or supplement for memory
encryption. In [10] Seshadri et al proposed an in-

memory accelerator for bulk bitwise operations,
Ambit, and referred to memory encryption as one
of the potential applications. However the authors
did not further elaborate the idea.

In this study, we take where the authors left
in [10], modify the Ambit accelerator to make it
more suitable for memory encryption, and propose
a conceptual in-memory encryption engine, which
we refer to as Secbit. The proposed engine requires
minimal modifications on the existing commodity
DRAMs and memory controllers. It is also indepen-
dent of encryption algorithm to be applied, as long
as the target encryption algorithm relies on logical
bitwise operations.

We then demonstrate viability of our engine by
implementing NSA cipher SIMON [11]. We also
present the performance results on a commodity
1 Gb DRAM.

The rest of this paper is organized as follows: In
the next section, we summarize DRAM operation
and architecture. It is followed by a description of
our proposed in-memory encryption engine, Secbit.
We then summarize our implementation of SIMON
on Secbit together with performance figures. In
our implementation, we use the 32/64 variant of
SIMON, but also discuss extending our solution
to other variants with performance implications.
Finally, we discuss possible future directions and
conclude our paper.

Our main contribution is the introduction of Secbit
in-memory encryption engine, a modified version of
Ambit, and demonstration of full memory encryp-
tion on Secbit by means of a internationally stan-
dardized encryption algorithm, SIMON, which has
also been certified for use in US national security
systems for top secret communications. To the best
of our knowledge, this is the first study where a true
in-memory encryption solution is proposed.
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Fig. 1: DRAM cell and sense amplifier

2. DRAM Operation and Architecture

A random-access memory (RAM) that uses a
single transistor-capacitor pair for each bit is called
a dynamic random-access memory or DRAM [12].
Fig. 1 shows a single RAM cell together with the
bit and word line, and the sense amplifier.

Data is stored inside the capacitor, where a fully
charged capacitor represents logic-1 and a fully
discharged capacitor represents logic-0. However,
these capacitors are not perfect devices, and they
leak charge. Therefore, they must be periodically
refreshed (i.e., read and rewritten), making them
dynamic in nature.

Furthermore, read and write operations involved
in a DRAM cell are rather complicated compared
to a static RAM. It has to go through several
states in order for a read or write to be executed.
Fig. 2 illustrates states involved during DRAM read
operation.

These states can be summarized as follows:

1 Initially, the DRAM bitlines are in precharged
state, i.e. kept at a constant voltage of 1

2
VDD,

and both wordline and bitline sense amplifiers
are disabled.

2 For read, first, the wordline is enabled. This
initiates a charge sharing between the DRAM
capacitor and the bitline. Depending on the
charge stored in the DRAM capacitor, the volt-
age on the bitline either increases (if capacitor
was fully charged) or decreases (if capacitor
was fully discarged) by a small amount, i.e.
1
2
VDD + δ or 1

2
VDD − δ, respectively.

3 Then the sense amplifier is enabled. The sense
amplifier is basically a pair of back-to-back
connected inverters. Any change (either in
the positive or negative direction) from the
precharge value (which is also the equilibrium
value for both inverters) will initiate an inver-
sion operation on the inverter whose input is
connected to the bitline. As its output goes low
(or high), this will trigger the other inverter
and cause its output to go high (or low) at an
accelerated speed, thereby pulling the voltage
on the bitline to either a full logic-1 or full
logic-0. Once the inverters reach their steady
state, not only will they have amplified the
small change on the bitline to a full swing,
but they will also fully charge or discharge the
DRAM cell capacitor, whose wordline is still
active.

4 The write operation will also follow a similar
sequence. In that case, first the sense amplifiers
will be enabled, transferring the full swing
voltage sent to them for write to the bitline.
The wordline will then be activated causing
the target DRAM cell capacitor to be fully
charged, or discharged.

5 Upon completion of a read or write sequence,
both the wordline and sense amplifier will
be disabled, and the bitline will return to its
precharged state of 1

2
VDD, ready for the next

read or write.
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Fig. 2: DRAM read operation

A DRAM chip is a 2-dimensional array of these
cells and sense amplifiers, organized in banks. For
example, consider a 1 Gb DRAM with 8 banks.
Each bank contains 128 Mb cells organized in
16384 rows (wordlines) and 8192 columns (bit-
lines). Wordline and bitline selection is done by the
row and column decoders (see Fig. 3).

However, implementing large row and column
decoders adversely affects the overall performance
of DRAMs both in terms of speed and power con-
sumption. Therefore, each bank is further divided
into tiles (or mats), smaller arrays of 512× 512 or
256 × 256 cells. Each group of tiles on the same
row constitutes a subarray as shown in Fig. 4.

In addressing a row inside a bank, the mem-
ory controller splits the row address bits into two
groups, one for selecting and precharging the sub-
bank, the other for addressing the rows within
all subarrays. This way, only the subarray bank
which has the row to be read from or written to
is activated, saving power. Column selection also
occurs in a similar way. Columns only inside the
target subarrays are selected and the outputs are

sent to (or received from) the local row-buffer of
the corresponding subarray. The global row-buffer
communicates with the active row-buffer in order to
transfer read or written data between the memory
controller and the subarray.

Although, DRAM arrays have very wide widths
and heights, their I/O bandwidth is rather limited to
8 or 16-bit words. In other words, from a 8192 cell
column, we can only read 8 bits at a time. In order
to read a full 64-bit word, 8 consecutive read op-
erations have to be performed. The same applies to
write operations as well. This, in fact, is one of the
bottlenecks for encrypting DRAM data via external
security engines. We refer the interested readers to
[12] and [13] for further detailed information on
DRAMs.

As we shall see in the next section, the suitability
of DRAM physical structure for bitwise operations
together with their subarray based hierarchical ar-
chitecture will allow us to perform row operations
with minimal delay inside the same subarray.
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Fig. 3: DRAM architecture
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Fig. 4: DRAM bank physical organization

3. Secbit In-Memory Encryption Engine

In [10] and [14], authors proposed an in-memory
accelerator capable of bitwise operations and fast
transfers on row data inside DRAM memories, with
minimal modifications on the memory array and the
controller.

In this work, we modify this architecture for in-
memory encryption operation. We propose to add
five application-specific rows (ASR) to the subarray
structure and modify the sense amplifier as shown
in Fig. 5.

Let’s briefly explain the functions of the additional
rows:

• SR and TR (with wordlines SX and TX) act
as source rows for bitwise operations. They can
also be used for temporary data storage (similar
to a general purpose in a processor).
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• aR is the AND row used for execution of AND
operation. In addition to the wordline (AX) that
connects the data capacitor to the bitline, it
has a second wordline (AP) that connects the
capacitor directly to GND line for precharging,
which is essential for AND operation, as we
shall see later.

• OR is the OR row used for execution of OR
operation. Like the AND row, it has two word-
lines, OX and OP for execution and precharging
(to VDD) for OR operation.

• IR is the INV row used for execution of in-
version operation. In addition to the wordline
(IX) to the bitline, its second wordline (IP)
connects the capacitor to the bitline of the sense
amplifier as in [10].

• The classical wordline structure of AR, OR and
IR further allow them to be used for temporary
data storage, as in a general purpose register
with special functionality.

The additional rows necessitate modification of
the row decoder. However, as they are independent
from the main array, the modifications are additive
only, such as activation of more than one wordline,
or activation of precharge wordlines, which have no
effect on the main row decoder. Therefore, these
additions can be embedded into the commands in
the memory controller, which will be needed for
memory encryption anyways.

Let’s now see how the bitwise operations are
executed on these additional registers.

3.1. Row Copy - RCP(WS,WD)

Although not a logical operation, row copy (RCP)
is an essential operation for memory encryption. As
we limit our focus on intra-subarray operations, we
will be implementing row copy within the same sub-
array only, which is in fact the RowClone operation
in [10].
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It is accomplished by the following sequence of
operations on any row inside the subarray, i.e. both
regular rows (RR) and application-specific rows
(ASR). Please note that, in the rest of this text
we shall assume that all our arrays are initially in
precharged state unless otherwise stated.

• Enable (activate) wordline of the source row
(WS). This will change the voltage value on
the bitlines.

• Activate sense amplifiers (SA). This will bring
the bitlines to full logic values.

• Activate wordline of the destination row (WD).
This will fully charge (or discharge) the capac-
itor of the cells on the destination rows to the
same value as in the cells of the source rows.

• Disable wordlines and sense amplifiers and
precharge the bitlines for the next operation.
This will bring the subarray bitlines back to the
initial value.

This scheme is illustrated in Fig. 6. The memory
controller must be modified to allow consecutive
activations of wordlines without precharge. The
average timing for RCP is equal to 2tRAS + tRP ,
which is less than 80 ns in modern DRAMs [15].

3.2. Row INV - RIV(WS)

Row inversion specifically uses the inversion row
(IR) as destination for its special structure together
with a source row. It is executed as follows:

• Activate wordline of the source row (WS). This
will change the voltage value on the bitlines.

• Activate sense amplifiers (SA). This will bring
the bitlines to full logic values.

• Activate precharge wordline of the IR (IP). This
will fully charge (or discharge) the capacitor of
the cells on IR to the inverse values of the cells
of SR.

• Disable wordlines and sense amplifiers and
precharge the bitlines for the next operation.
The inverted value is now inside IR, ready for
RCP.

The average timing for RIV is also less than 80 ns.

3.3. Row AND - RAN(S1,S2)

Row AND specifically uses the AND row (AR)
for its special structure together with SR and TR as
source rows. It destroys all data inside source rows,
therefore data in the original source rows has to be
copied to SR and TR prior to RAN. It is executed
as follows:

• Copy data on the first source row (S1) to SR
using RCP.

• Copy data on the second source row (S2) to TR
using RCP. During the last activation step of
RCP, also activate precharge wordline of ASR
(AP). This will fully discharge AR capacitors.

• Activate wordlines of all three rows SR, TR
and AR. This will initiate a charge-sharing on
the bitlines in a manner similar to majority
voting. Only if both capacitors on SR and TR
are charged (logic-1), together with the zero on
AR, this will bring the bitline above 1

2
VDD, i.e.

a logic-1 result. Even if either of the SR or TR
capacitors is empty (logic-0), the average effect
of the three capacitors on SR, TR and AR will
be to pull the bitline voltage below 1

2
VDD, i.e.

a logic-0 result. Hence the AND operation.
• Activate sense amplifiers (SA). This will bring

the bitlines to full logic values. It will also fully
charge or discharge all three rows SR, TR and
AR.

• Disable wordlines and sense amplifiers and
precharge the bitlines for the next operation.
The AND value is now inside both SR, TR and
AR, ready for RCP or another logic operation.
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Fig. 6: RCP operation

Note that the memory controller has to be mod-
ified to allow simultaneous activation of the word-
lines of three ASRs, i.e. SR, TR and AR. The
average timing for RAN is equal to the timing of
two RCP and an AND operation (two activates and
a precharge), which is less than 240 ns.

3.4. Row OR - ROR(S1,S2)

Row OR is almost identical to row AND, except
OR row (OR) is used instead of AR and it is fully
charged during the last activate steps in the second
RCP by activating its precharge wordline (OP). At
the end of the ROR sequence, the OR result is
in all three registers SR, TR and OR, ready for
RCP or another logic operation. Also, as in the case
of RAN, memory controller has to be modified to
allow simultaneous activation of the wordlines of
these three ASRs. The average timing for ROR is
equal to that of RAN.

3.5. Row XOR - RXR(S1,S2)

There is no direct way of implementing Row
XOR operation, RXR. Instead all the row operations
above (RCP, RIV, RAN and ROR) are executed in
the following sequence in order to compute RXR of
data in two source rows, S1 and S2:

• Invert data on first source row (S1) using RIV.
Then copy the result to SR using RCP.

• Copy data on second row (S2) to TR, During
the last activation step of RCP, also activate
precharge wordline of AR (AP). This will fully
discharge AR capacitors.

• Perform AND operation by activating wordlines
of all three rows SR, TR and AR. Copy result
to OR (used as temp register) using RCP.

• Invert data on second source row (S2) using
RIV. Then copy the result to SR using RCP.

• Copy data on first row (S1) to TR, During
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the last activation step of RCP, also activate
precharge wordline of AR (AP). This will fully
discharge AR capacitors.

• Perform AND operation by activating wordlines
of all three rows SR, TR and AR.

• Copy previous result from OR to TR using RCP.
During the last activation step of RCP, also
activate precharge wordline of OR (OP). This
will fully charge OR capacitors.

• Perform OR operation by activating wordlines
of all three rows SR, TR and OR. The XOR
result is in all SR, TR and OR rows ready for
copy or a new operation.

The average timing for RXR is equal to the sum
of timings of two RIV, two RAN and one ROR,
which is less than 640 ns.

3.6. Row CLR - RCL(DS)

Row CLR clears the contents of a row by filling it
with logic-0 (i.e. by discharging all data capacitors
in that row) via AR:

• Activate precharge wordline of AR (AP). This
discharges its capacitors.

• Copy AR to destination row (DS) using RCP.

The average timing for RCL is equal to the sum of
tRAS and timing for RCP, which is less than 110 ns.

3.7. Row SET - RST(DS)

Row SET clears the contents of a row by filling
it with logic-1 (i.e. by charging all data capacitors
in that row) via OR:

The average timing for RST is equal to that of
RCL, i.e. 110 ns.

• Activate precharge wordline of OR (OP). This
charges its capacitors.

• Copy OR to destination row (DS) using RCP.

4. SIMON on Secbit

In this section, we will summarize our implemen-
tation of NSA cipher SIMON on our in-memory
encryption engine Secbit. Although of the two
NSA ciphers, SPECK is proposed as the “software-
friendly” and SIMON as the “hardware-friendly”
candidate, this only holds for conventional processor
architectures in which addition operation is sup-
ported by the arithmetic logic unit of the proces-
sor [16]. As explained in the text, the proposed
Secbit engine has support for only basic logic func-
tions such as Row Copy, Row INVert, Row AND
and Row OR.

In other words, it allows programming using only
four instructions. Even XOR operation needs to be
implemented using a sequence of these four in-
structions. With its several binary additions, SPECK
becomes an unsuitable choice for a Secbit imple-
mentation. This also applies to several Substitution-
Permutation (SPN) based block ciphers, where both
substitution (expressed as algebraic normal form)
and permutation heavily rely on XOR operations.

On the other hand, SIMON requires only logical
operations and hence is perfectly suited for Secbit.
Let’s start with a short reminder of how SIMON
works before going into details of the implementa-
tion.

4.1. SIMON Cipher

SIMON is a family of lightweight block ci-
phers developed by the National Security Agency
(NSA) [11]. It has been specifically optimized for
performance in hardware implementations. It is a
balanced Feistel cipher with an n-bit word, and
therefore block length of 2n, whereas the key length
is a multiple of n by 2, 3, or 4, which is the value m.
Therefore, a SIMON variant is denoted as SIMON-
2n/nm. For example, SIMON-32/64 refers to the
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Fig. 7: SIMON round

cipher with a 32-bit plaintext block (n = 16) and
a 64-bit key. The round operation of the cipher is
uniform between variants, while number of rounds
depend on n. Similarly, the key generation depends
on the value of m. Fig. 7 shows one round of
SIMON.

4.2. Bit-Sliced SIMON

As our subarray row operations do not allow shift
or rotate operations used in SIMON, we cannot
implement it on rows directly. Therefore, although
SIMON is a cipher optimized for hardware, we
will treat it as a cipher optimized for software and
implement it in a bit-sliced fashion. Not unlike con-
ventional implementations, where the wordlength of
bit-sliced implementation is limited to the width
of processor registers (words), we take our DRAM
rows as words and do our coding accordingly.

For our demonstration, we choose the smallest
variant of SIMON, i.e SIMON-32/64, with a total
of 32 rounds. This corresponds to a block size of 32
bits, whereas in our implementation it corresponds

to a DRAM block of 32 rows. Furthermore, we
leave the key generation out of the scope of this
implementation. For key generation, we propose the
following solutions:

• The key schedule can be pre-executed by the
main controller and sent to memory controller,
which can then turn it to a bit-sliced format
and store inside a predetermined location of
the memory. This solution will possibly be
problematic as the key is stored in un-encrypted
inside the memory leaving it open to attacks.

• The memory, upon power-up, can be used as
a physically unclonable function (PUF) and
generate its own encryption key. In this case,
key schedule does not need to be executed. All
the round keys can be extracted from PUF, and
stored like a one-time-pad inside the memory.
This scheme can in fact be applied on each
bank separately introducing additional security.
This will require major modifications on the
firmware (PUF initialization upon power-up)
and is likely to cause additional security prob-
lems. For once, the key or the keys extracted
from the PUF will be stored un-encrypted inside
the memory. One solution may be application
of a simplified key encryption scheme by the
memory controller.

• The key can be stored inside Secbit engine,
which will be an integral part of the memory
controller. This way, Secbit can incorporate the
key into its program execution. There may be
side-channel issues related to the execution of
the program. However, counter-measures for
such attacks are well-documented and fairly
easy-to-apply [17].

In our bit-sliced implementation, a 32-bit SIMON
block corresponds to 32 rows inside the subarray,
organized as 16 rows for each of the left and right
words. We will refer to each or these rows as Ri
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where i ∈ [0, 31]. In each subarray, we will dedicate
16 rows for temp data storage and refer to them as
Qi where i ∈ [0, 15].

One round of SIMON-32/64 can be written as

cl = ( (pl <<< 1)& (pl <<< 8) )

⊕ (pl <<< 2) ⊕ pr ⊕ kr

cr = pl

For our SIMON-32/64 variant, we can express the
first equation in bitwise form as:

cl [ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ]
=

( pl [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 ]
&

pl [ 8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7 ] )
⊕

pl [ 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 1 ]
⊕

pr [ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ]
⊕

kr [ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ]

We convert this to a row-based pseudo-code given
in Fig. 8, where the first two internal loops process
rows R0 to R15 as left plaintext word and rows R16

to R31 as right plaintext. The result written to temp
rows T0 to T15 are then copied back to rows R16

to R31. In the second two internal loops the roles
of the loops interchange and processing is done
accordingly. At the end of the iteration of all internal
loops, two rounds of encryption is completed, and
left and right plaintext words are back where there
belong. The outer loop is executed 16 times for 32
rounds.

In actual execution, each update of Ti is much
more complicated. The pseudo-code in Fig 9. shows

for round = 0 to 15 do

for i = 0 to 15 do

Ti ← (Ri+1,16&Ri+8,16 )

⊕ Ri+2,16 ⊕ Ri+16 ⊕ K32·round+i

end for

for i = 0 to 15 do

Ri+1,16 ← Ti

end for

for i = 0 to 15 do

Ti ← (Ri+1,17&Ri+24,32 )

⊕ Ri+18,16 ⊕ Ri ⊕ K32·round+16+i

end for

for i = 0 to 15 do

Ri,16 ← Ti

end for

end for

Fig. 8: Pseudo-code for one round of SIMON-32/64

the execution steps for computation of T0 in the first
loop:

In this pseudo-code, we assume that the key bit
(stored in a full row) is set in advance to either
logic-0 or logic-1 via RCL or RST, respectively.
This way, the execution time of the loop is constant
as a counter-measure against timing attacks. In a
timing optimized code the RXR with key can be
replaced by RIV (if key bit is logic-1) or simply
skipped (if key bit is logic-0).

The code stream above only computes 1-bit of the
16-bit left ciphertext. It has to be repeated 16 times
for each round, and then 32 times for 32 rounds.
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RAN( R1 , R8 ) // AR ← R1 ∧R8

RCP( AR , T0 ) // T0 ← AR

RXR( T0 , R2 ) // OR ← T0 ⊕R2

RCP( OR , T0 ) // T0 ← OR

RXR( T0 ,R16 ) // OR ← T0 ⊕R16

RCP( OR , T0 ) // T0 ← OR

RXR( T0 , K0 ) // OR ← T0 ⊕K0

RCP( OR , T0 ) // T0 ← OR

Fig. 9: Pseudo-code for computation of T0 in the
first loop

5. Performance Results

Each row computation requires one RAN, three
RXR and four RCP, resulting in a total execution
time of 240 + 3× 640 + 4× 80 = 2480 ns. In each
round, this row computation is repeated 16 times,
followed by 16 row copies (RCP), resulting in a
total of 16× 2480 + 16× 80 = 40960 ns. Repeated
32 rounds, this results in 1.31 ms of encryption time
for 32 rows of data. In our 1 Gb DRAM example,
there exist a total number of 16384 rows organized
in 8 banks. This means that full memory encryption
will take (16384/32) × 8 × 1.31 = 5.37 s, which
corresponds to 5 ns/bit encryption time. Decryption
time will be equal to encryption due to the Feistel
structure of SIMON.

While internal architecture of DRAM chips do
not allow processing on different subarrays within
a bank, parallel processing in different banks is
possible. In an 8-bank DRAM, this will reduce the
encryption time to 0.625 ns/bit. This corresponds to
20 ns per 32-bit blocks. With a custom hardware
implementation of SIMON-32/64 as an off-chip
encryption engine, this would correspond to each
clock cycle being completed in 20/32 = 0.625 ns,

i.e. 1600 MHz operation. This is based on the as-
sumption that there would be no additional DRAM
read-write delays.

On the other hand, using an AES-128 based en-
cryption engine would be more favorable. It would
be able to process 128-bit blocks in 10 clock cycles,
corresponding to 80 ns which Secbit requires for
128-bit encryption. That is 8 ns per clock cycle,
i.e. 125 MHz operation – again without any addi-
tional RAM read-write delays taken into account.
It should also be noted that while SIMON-32/64
engine would require less than 700 GE for ASIC im-
plementation, a high performance parallel AES-128
would require above 13K GE [18], whereas Secbit
implementation requires no external hardware.

It is also worth mentioning other state-of-the-
art work reported in [19]-[22], even though none
of them target DRAMs as the memory platforms,
making them unsuitable for comparison with our
proposed engine and performance figures.

• AES in-memory (AIM) implementation in [19]
targets emerging non-volatile memory (NVM)
technologies such as resistance-based storage
and current sensing. It utilizes certain features
specific to NVMs, such as ability to implement
direct XOR operation, and can realize AES
algorithm rather effectively.

• PIMA-Logic in [20] is implemented for Spin
Orbit Torque Magnetic Random Access Mem-
ory (SOT-MRAM) array. It can simultaneously
work as a non-volatile memory and a reconfig-
urable in-memory logic, making it very suitable
for AES encryption.

• MRIMA in [21] is an MRAM-based in-memory
accelerator. It is specifically designed with con-
volutional neural networks (CNNs) in mind.
Still, it can implement AES encryption much
more effectively compared to an off-memory
implementation.
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• In-memory computing architecture in [22]
based magneto-electric random access memory
(MeRAM), where precessional magnetism of
MeRAM is utilized to carry out XOR encryp-
tion of the device state with a key. However, it
does not present a full encryption solution (AES
or otherwise).

Another important point needed to be discussed
is the significance of 20 ms required for full mem-
ory encryption: In a real-time operation sysmtem
(RTOS), memory allocation-release times vary from
1 to 10 µs, depending on the process and mem-
ory block size. The new memory manager ERMM
in [23] requires 1.036 and 0.986 µs for alloca-
tion and release of 128 byte memory blocks, re-
spectively. With our in-memory encryption scheme,
1600 bits (200 bytes) can be encrypted/decrypted
in 1 µs, which more than matches these figures. We
expect our in-memory encryption scheme to have
little to no effect on RTOS performance.

6. Conclusion and Future Work

In this study, we have introduced an in-memory
encryption engine, Secbit, suitable for DRAMs and
demonstrated its efficiency by means of a proven
cipher, NSA’s SIMON. Our engine requires minimal
modifications on the existing DDR architectures
with an area overhead of < 1%. Using the smallest
variant of SIMON, it can encrypt 2 Mb of data
inside 8 banks of a 1 Gb DDR in less than 1.31 ms
at a cost of 3.125 % unusable memory (16 rows in
every 512 reserved for temporary data storage). Full
memory can be encrypted in less than 20 ms. For
additional security, other variants of SIMON can be
used, at the cost of additional unusable memory and
higher encryption times. For example, going with
SIMON-64 will double both the rows reserved for
temporary data and encryption time.

While these figures are encouraging, they are
far from being optimal. It is possible to further
minimize these numbers by carefully manipulating
the timings on the DDR row decoders. Several acti-
vations can be overlapped. Furthermore, the timings
figures presented in this study refer to DDR3 RAMs.
As the RAM technology is improved, they also get
lower. In a DDR4 RAM, these figures will lower by
at least 20 %. It is also possible to reduce timings by
carefully re-ordering the executing of instructions.

Moreover, we used a standard cipher here, one
which is in fact optimized for hardware imple-
mentation. With Secbit in mind, it is possible to
design ciphers optimized for in-memory encryption,
in a way similar to ciphers optimized for software
implementation [24]. We leave this as an open
research problem.

References

[1] A. Rubini and J. Corbet. Linux device drivers (nutshell hand-
books), 1998.

[2] D. Gruss, et al. Page cache attacks. In Proceedings of the 2019
ACM SIGSAC Conference on Computer and Communications
Security, pages 167–180, 2019.

[3] D. Farmer and W. Venema. Forensic discovery. Addison-Wesley
Professional, 2009.

[4] J. A. Halderman, et al. Lest we remember: cold-boot attacks
on encryption keys. Communications of the ACM, 52(5):91–98,
2009.

[5] R. Carbone, et al. An in-depth analysis of the cold boot attack.
DRDC Valcartier, Defence Research and Development, Canada,
Tech. Rep, 2011.

[6] A. Matrosov, E. Rodionov and S. Bratus. Rootkits and bootkits:
reversing modern malware and next generation threats. No
Starch Press, 2019.

[7] F. McKeen, et. al. Intel® software guard extensions (intel® sgx)
support for dynamic memory management inside an enclave.
In Proceedings of the Hardware and Architectural Support for
Security and Privacy 2016, pages 1–9. 2016.

[8] D. Kaplan. {AMD} x86 memory encryption technologies. 2016.
[9] V. Rijmen and J. Daemen. Advanced encryption standard.

Proceedings of Federal Information Processing Standards Pub-
lications, National Institute of Standards and Technology, pages
19–22, 2001.

138



INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
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