
INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
Singh et al., Vol.7, No.3

100

Challenges of Malware Analysis: Obfuscation

Techniques

Jagsir Singh*, Jaswinder Singh*

*Department of Computer Science and Engineering, Punjabi University Patiala, India.

‡ Jagsir Singh, Punjabi University Patiala, India, Tel: +91-9592523807, email: erjagsirsingh18@gmail.com

ORCID ID: 0000-0003-0221-2691, 0000-0002-9201-4834

Research Paper Received: 19.08.2018 Revised: 14.09.2018 Accepted: 26.09.2018

Abstract - It is a big concern to provide the security to computer system against the malware. Every day a millions of new

malware are developed and the worse thing is that new malware are highly sophisticated which are very difficult to detect.

Because the malware developers use the various obfuscation techniques to hide the actual code or the behaviour of malware.

Thereby, it becomes very hard to analyze the malware for getting the useful information in order to design the malware

detection system because of anti-static and anti-dynamic analysis technique (obfuscation techniques). In this paper, various

malware obfuscation techniques are discussed in detail.

Keywords - Dynamic Analysis; Malware; Obfuscation Techniques; Static Analysis.

1. Introduction

Despite the enhancement in computer security,

still the malicious softwares are succeeding in their

destructive objectives. Nowadays, it became a big

challenge to keep the computer system secure from

malware infection. Malware executes the

malfunction in order to infect the computer system

or computer resources. It can delete the data, slow

down the system working or steal the important

information. There are two research communities

who are working parallel. One is developing

malware detection and protection software and

other is cracking the defensive system.

In the earlier, the concept of self-reproducing

automation was given by John Von Neumann in

1949[[1]]. However, at that time no proper detail

of implementation was feasible. The era of

malware has been started around the 1980s when

first actual computer “Brain” virus was created in

1986. It was created by the Pakistani brothers Basit

Farooq Alvi and Amjad Farooq Alvin. But now the

time has changed, millions of new malware are

written in a day. According to the latest report of

AV-test, the millions of new malware are

produced every year. Figure 1 shows the statistics

of new malware and total malware of last ten years

from 2008 to 2017 (AV-TEST, 2017).

Figure 1. Bar Graph of New Malware and Total Malware of

Last Ten Years.

Therefore, it very necessary to keep the system

secure from these malware. Computer systems are

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
Singh et al., Vol.7, No.3

101

compromised by malware for many reasons such

as:

 To harm the computer system.

 For financial gain.

 For stealing confidential or private data.

 For making the systems as bots.

 To make the services unavailable to the

system.

If we compare the traditional malware with

new the malware then we will get the idea how the

new malware are so hard to detect. Traditional

malware were broad, known, open and one time

but now malware are very targeted, zero-day,

stealthy and persistent as shown in Figure 2 [[6]].

Several types of new malware and their variants

are being programmed by attacker to compromise

the security of the computers systems.

Figure 2 Comparison between Traditional (past) and

Advanced Malware (present).

Today the malware are very specific for

achieving the particular goal either to disrupt the

working of system or any other like stealing

important data. In order to avoid malware detector,

new variants are created using various obfuscation

techniques. In addition to encoding (encryption,

base64) and packing techniques create the

complex malicious software like polymorphic,

metamorphic and packed malware [[7]] which can

overrun the malware detection. Therefore, to crack

or analyze such kind of malware is very time

consuming and also very hard.

The output of malware analysis system

must allow to the security organization for

updating the malware defending software which

can tackle the growth of malware and as a result to

thwart the new malware.

The rest of paper is prepared as follows: Section 2

describes the malware analysis methods. Section 3

introduces the anti-static malware analysis

techniques. Section 4 presents the dynamic

malware analysis obfuscation techniques. Section

5 discusses the countermeasures to some anti-

analysis techniques. Finally the paper is

concluded.

2. Malware Analysis

Malware analysis is categorized into two main

types of static and dynamic which are described as

follow:

2.1 Static Malware Analysis

It is very basic and powerful phenomenon

to analyze the malware without running the

malware. In this analysis process code of malware

are examined to find out the useful information.

On the basis of that information, the malware

detection software are designed (antivirus, IDSs

etc). The extracted information can be the

signature of malware file, program structure,

executable format, instruction opcodes etc. For

static analysis, code of the binary required.

Therefore, reverse engineering is done to convert

the executable malware file into the assembly

code. Various disassemblers are used to transform

the binary files into assembly code such as

Ollydbg, IDA Pro [[4]], and Capstone. These

disassemblers convert the binary files into the

assembly language code, not in the same source

code in which the malware file was actually

contains. Then, the investigation is done on the

assembly code to find the structure or pattern of

malicious activity which can be used to detect the

malware file or variants of that malware file as

well. It is a tedious job to examine a thousand lines

of assembly code. To solve this problem various

alternatives are followed like the program is

broken into parts or grouped on the basis of

functioning. Additionally, code obfuscation

techniques make the analyst’s job harder. Malware

writers use various obfuscation techniques such as

code encryption, reordering the program

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
Singh et al., Vol.7, No.3

102

instructions and dead code insertion technique to

evade the malware analysis [[7]].

2.2 Dynamic Malware Analysis

Dynamic analysis is also known as

behavioural analysis. Dynamic analysis is based

upon running the malware file then the interaction

of malware with the computer system is monitored

or observed. For analysis purpose, the malware are

run in a controlled environment. In other terms

malware files are executed in the virtual

environment because if the malware file is run on

host system then it will harm the host system. A

virtual environment is created using virtualization

tools like the Virtual box or VMware. Also, the

dynamic analysis environment can be using

emulators and hypervisor [[14]]. When a malware

file is running in monitored environment various

activities are observed such as the creation of new

files, deletion of system or user files, new log

entries, registry entries, URL accessed, data

transmitted etc. Based on these activities, the file is

considered as a benign file or malicious file. In the

case of static analysis, the files which are not

disassembled or not examined properly then those

files can be analyzed in the virtual environment to

know their behaviour. Various approaches are

used in dynamic analyses which are explained as

follows:

2.2.1 Tracking the flow of information

When the malware programs are

investigated, it is necessary to know how

information is being processed by the malware

program. In the static analysis, the source code of

malware is examined to interpret the flow of

information from an instruction to another or from

one block to another. However, it is a tedious job

because a program file consists of thousands of

lines of code. Also, this interpretation is totally

based on the analyst capability to investigate the

flow of information statically without running the

malware. Therefore, running malware is analyzed

in the virtual environment (VirtualBox) or in

Sandbox (Cuckoo, Norman Sandbox,

CWSandbox) in order to get an adequate flow of

information. It is done in three basic ways such as

following:

 • Tainting the source and sinks

• Address Dependencies

• Control flow dependencies

In tainting approach, labels are assigned to

the registers or identifiers [[20]]. The data elements

which is assignment with the label is called tainted

source. The variables also become the tainted if

they are assigned from a tainted source. As shown

in Figure 3 below the variable k is tainted because

it may cause to call or trigger the suspicious

activity. If any instruction processes the tainted

register is detected as malicious action. On basis of

tainted information malware file is detected.

Figure 3. Variable k is tainted because it may cause to call or

trigger the suspicious activity.

While in address dependency, address tainting is

used to observe sensitive information leakage

[[21]]. Rather than tainting the data variable,

address dependency also tracks the flow of

information in an indirect way (using address by

pointer). As shown in Figure 4 example pointer k

is tainted. It is the base pointer to access array

here. To assign a 5
th

 element to variable C using

this tainted pointer. When a tainted pointer is

assigned with an address of a register then de-

referencing of the tainted pointer is detected as

malevolent action as shown in figure 4.

Figure 4. Pointer k is tainted.

Moreover, control flow dependency is also used to

track the flow of information. In the program

instructions depend on others instruction and also

other instruction depends on that instruction. On

the basis of execution of instruction, it is evaluated

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
Singh et al., Vol.7, No.3

103

the flow of data in order to get know about any

suspicious event.

2.2.2 Monitoring the function calls

Function call monitoring is second most used

dynamic analysis approach in which malware

programs are monitored to know what functions

are called [21]. A malware program can call

various types of functions related to API

(Application Programming Interface), systems

calls, window native calls [[21]]. For example,

malware calls the function such as CreateFile,

DeleteFile, GetProcAddress. It helps to identify

the malware files. On the basis of order of the

functions calls, malware detection systems are

designed to detect the malware and classify them

into proper categories. A process is used to

intercept the function calls are known as hooking.

3. Anti-Static Analysis Methods

Obfuscation means unclear or obscure which is

not understandable. Therefore, the malware writer

uses several obfuscation techniques to evade the

analysis. From the ancient time; various

camouflages have been used to hide the actual

information. For example when a king had to send

information to another king then they used to use

secret and hidden methods to keep the data

confidential. The purpose of these approaches was

to keep important information secret. In modern

computer era, various algorithms are used for

confidentially, integrity and authentication of data.

Similarly, the malware developers use obfuscation

techniques to conceal the malicious code to bypass

the malware detection system (Antivirus).

Obfuscation techniques can be divided into two

categories anti-static and anti-dynamic analysis

techniques. In this section mostly used anti-static

obfuscation methods are explained as follows.

3.1 Change the order of the code

It is a simple obfuscation approach to

change the order of execution of program

instructions [[8]]. Unconditional jump statements

are inserted into the program code for changing the

order of code execution without affecting the

actual behaviour of malware program as shown in

Figure 5. It seems very simple for this example to

find out the original order but for hundred lines of

code, it becomes cumbersome for the analyst to

find out the actual order.

Figure 5 (a) Original x86 assembly code, (b) It shows

reordered code using unconditional jump instruction.

3.2 Redundant Data Insertion

Malware writers insert the dead code into

the program for creating the new version of same

malware just for increasing the overhead of the

analyst [[19]]. This approach can evade the

signature-based detection systems. When the

redundant code is inserted then the different

signature is generated. This approach of

obfuscation affects the static analysis only because

in static analyzes it becomes difficult to distinguish

the dead code which has no contribution in the

working of malicious software. Thus investigating

the dead code is extra overhead for the malware

analyst. The redundant code or dead code doesn’t

affect the original purpose of the malicious

software. Unconditional jump statements are used

to bypass the redundant code block which retains

the original executing order of malware.

Moreover, a serious of NOP (Not operation like

instruction in x86) statements are inserted in the

malware to create new variant as shown in Figure

6.

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
Singh et al., Vol.7, No.3

104

Figure 6 Insertion of Redundant code (garbage code) in

figure 4(a).

3.3 Equivalent Code Replacement

This obfuscation technique substitutes the

originals instructions of malware with other

instruction while retaining the semantic of

malware [[8], [19]]. Thereby, numbers of variants

of same malware files can be created. To handle

this problem for every possible variant of same

malware the unique signatures is required to detect

these variants as well. It is not an impossible task

but with the face of increasing new variants of

same malware is not an easy task. In every

programming language, the same function can be

performed in a number of ways. Therefore, the

malware writers exactly do the same things. They

transform the actual instruction into equivalent

instructions. For example, multiplication can be

performed using either a series of ADD

instructions or a single multiplication instruction

(MUL). Figure 7 shows the equivalent code

replacement technique.

Figure 7(a) Original assembly code, (b) Transformed code

into equivalent form.

3.4 Rename the identifiers

In this obfuscation technique, the

identifiers of constants, variables, and registers are

changed with other names without altering the

semantic [[11]] as shown in figure 8. However, it is

expensive obfuscation approach because it requires

manual transformation of identifiers of constants,

registers, and variables.

Figure 8. Renaming the registers.

3.5 Packing the code

It is advanced obfuscation technique to create

more complex and sophisticated variants of

malware which makes the static analysis more

difficult. In this technique, actual malware code is

compressed or encrypted into different form but

semantically same [[18], [19]]. Figure 9 shows the

packed malware. As a result, new executable file

consists of packed or wrapped malware binary

code (compressed or encrypted) and an unpacking

code. This unpacking code defines the entry point

of new packed malware file which is invoked by

the operating system. Then, the unpacking code is

executed; it unpacks the original malware code

into the memory at the runtime. In other words, the

unpacking routine represents the original entry

point (OEP). Moreover, the unpacking routine

handles the imports for actual executable malware

file. At last, it returns the control to the original

OEP then malware starts performing its actual

functioning.

Figure 9. Packed Malware.

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
Singh et al., Vol.7, No.3

105

To create the new malware variants, the various

packers such as UPX, NSPack, UPACK, and FSG

are used to compress actual code of malware.

Thereby, it hides the malicious code which

subverts malware detection. In section 3.3.3,

countermeasures for packing malware are

discussed.Various variants of a malware are

discussed as follow.

a. Encryption

Original malware code is encrypted using an

encryption key to generate the encrypted payload.

Every encrypted malware consists of an encrypted

payload, an encryption key, and decryptor[6,10,

15,19, 23]. In addition, a different encrypted

variant of same malware can be produced using a

different encryption key. Thereby, it could evade

the malware detections. Win95/Mad and

Win95/Zombie were examples of the encrypted

32-bit malware in which cascaded encryption was

applied for making encrypted virus more complex.

The weak point of the encrypted malware is that

the same decryptor is used to decrypt the

encrypted payload every time. For this reason,

malware detection system can be trained can be

done on the signature of malware decryptor.

b. Oligomorphic

Oligomorphism implies few structures. It is

Greek term combination of two words: oligo (i.e. a

small number of) and morphe means form.

Oligomorphic malware overcomes the limitation

of simple encrypted malware in which the same

decryptor is used to create the copies of malware

file [19]. In Oligomorphic malware, the decrypt or

imitates into different form every time to decrypt

the malware file into equivalent form while

retaining the same semantic. Win95/Memorial was

the Oligomorphic malware which had the

capability to create the 96 variants of original file.

The problem with Oligomorphic malware is that

only a limited number of decryptor can be made.

Consequently, a malware detector can use this

weakness for detection of every possible variant of

malware files.

c. Polymorphic

Polymorphism implies many structures or

forms and is gotten from the Greek terms poly (i.e.

numerous) and morphe means form. Moreover, it

is not just in view of encryption techniques like its

forerunner, yet uses the blend of various obscurity

procedures, for example, dead code addition.

Basically, the polymorphic malware are an

advanced version of the Oligomorphic malware.

Unlike Oligomorphic, unlimited decryptors can be

generated in order to produce the unlimited

malware variants [15, 19]. Hence, the polymorphic

malware can imitate itself into unlimited numbers

of semantically equivalent variants which evade

the malware detection. Win95/HPS and

Win95/Marburg were the first 32-bit polymorphic

malware. Polymorphic malware can use the

multiple layers of encryption as well for making

the detection much more difficult. For example the

win32/Coke and Win32/Crypto were the multi

layer polymorphic malware. Despite the fact that

the polymorphic malicious software can viably

avoid the signature-based detection. But, the static

body of this can be used to detect its presence.

Even if the code is changed into other form but the

semantic of the equivalent code remains same. So,

it is feasible to apply the signature matching

techniques during the runtime.

d. Metamorphic

Igor Muttik defined metamorphic malware as:

“Metamorphics are the bodypolymorphics”.

Metamorphic malware doesn’t have a constant

body and a decryptor; because metamorphic

malware do not use any encryption and packing

technique to thwart the analysis [14, 23].These

malware transform its binary code dynamically to

evade detection. Unlike Oligomorphic and

polymorphic, it does not reveal the constant body

in the memory. Metamorphic malware imitates

another form during runtime in memory. That is

why it is known as dynamic code obfuscated

malware.

Very early in 1998, Vacna, a malware writer,

implemented a metamorphic malware

Win95/Regswap by exchanging the used registers

in the code as shown in figure 10.

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
Singh et al., Vol.7, No.3

106

Figure. 10 Win95/Regswap Metamorphic Malware with

different registers

For this reason, the metamorphic malware are very

hard to detect as compared to other malware.

4. Dynamic Analysis Evasive Techniques

Dynamic analysis is performed by designing a

virtual or emulator environment. Also some kind

of debuggers’ tools can be used to monitor the

behavioural artifacts of executing malware. The

main requirement while designing the monitoring

environment is transparency. The analysis and

non-analysis systems must be indistinguishable to

each other [[25]]. In [[26]] five main transparency

conditions are explained. In Table 1 the

transparencies of four dynamic analysis

environments are listed. Dynamic malware

analysis is applied in many ways like using virtual

environment, emulator, hypervisors and bare

metal. But each of them has their pros and cons. If

the transparency is considered an important point,

then bare metal is much more effective because it

is immune to timing attacks.

 VM Emulated Hypervisor Bare

Metal

Transparency Low Low Medium High

Table 1. Transparency Level of four Dynamic Analysis

Environments.

4.1 Detection of Virtual Environment

It is not likely to execute the malware files

onto the host computer as such because the

malware files can harm the host computer.

Normally for analysis we setup the virtual

environment.

The malware can detect the monitored

environment in which it is being monitored and

hide the actual behaviour [[5], [9],[10],[27],[28]].

Thereby, it fails the malware analysis. Malware

writers use the two main features to know the

presence of virtual platform such as:signature of

virtual tools and fingerprint of the operating

system. Signature of virtual tools means the

presence of Virtual Box or VMware over the

virtualization has been done. For example, in the

case of Microsoft Windows VMware leaves the

hint in the registry and creates the many processes

such as VMwareService.exe, VMwareTray.exe

etc. Moreover, in the case of MAC operating

system there is specific hardware address

(00:0c:29 first three bytes) which exposes the

presence of VMware [[15]].

It can also detect the guest operating system

over which it is running. In other terms, malware

can detect that the guest operating which is

installed on VirtualBox or VMware for malware

analysis. The guest operating has different kernel

data structure than real one when it is installed in

the virtual machine. Thereby, the malware writer

can exploit these weaknesses or vulnerabilities to

known the virtualization and hide the actual

behaviour.

4.2 Network artifacts detection

Different network behaviour and qualities can

be used by malware to detect the analysis. For

examples network simulation and isolation [[29]],

fast internet service [[33]] and fixed IP addressing.

Miramirkhani et al. [[30]] discussed about network

behaviour in the virtual environment which is itself

an indicator of detection. Some emulator does not

perform well like Android SDK which is unable to

forward the ICMP packets [[31], [32]].

4.3 Recognition of debuggers

Furthermore, the malware not only detect

the virtual environment but also can detect the

debugging tools. This is anti-analysis mechanism

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
Singh et al., Vol.7, No.3

107

when the analyst is using actual host machine to

known the actual behaviour of malware. Detection

of a debugger can be done in following ways as:

4.3.1 API detection

In MS Windows operating system, the API

calls can be used to detect the debugging tools. A

malware writer can write the small code to check

the BeingDebugged flag in Windows OS in order

to detect the debugger as shown in Figure 11.

Figure 11 Example of detection code used by malware.

There are many API functions which are

commonly used by malware to known whether the

malware is being analyzed as

CheckRemoteDebuggeRpresent(),

OutputDebugString() [[8], [4], [19], [23]].

4.3.2. Services and handles

Services and handles are used by various

malware. The various fine debuggers have main

services which may be used by malicious software

to identity their existence.. SoftICE is well-known

kernel level debugger tools. Its service NTICE can

be used by malware to detect its presence.

4.3.3 Signature of Debuggers

This is very simple and effective anti-

analysis approach to detect the present of the

debugger by using their signature and address.

Like 83 3D 1B 01 was the signature of old version

Ollydbg.

4.4 Browser Based Fingerprints

In analysis environment, the browser is

also vulnerable which can be exploited by malware

in order to confirm the detection environment

[[33], [34]]. There are certain discrepancies in

features of JavaScript language such as exception

handling or parsing which can be a reason of

analysis environment detection. Because browser

behaves differently in analysis environment

compared to host operating system. Also, ActiveX

behaves differently in browser in virtual and

emulated environment can be a fingerprint of

detection. In [[33]], two other feature of browser

HTML parsing and Document Object Model can

be detected in the emulated environment.

5. Countermeasures to Some Anti-Analysis

Techniques

In this section, countermeasures to the anti-

analysis techniques are discussed. We have

discussed countermeasures for redundant code

insertion, reordering of actual malware code and

packing malware.

5.1 Countermeasure for Redundant Code

Practically speaking, ClamAV anti-virus

programs provided the solutions to NOP

instructions [[17]]. This technique just only

concentrates on viral byte arrangements and

semantic NOP byte instructions are overlooked. It

is highly dependent on used regular expression and

wildcards. A poor decision can bring about a high

false positive rate. Christodorescu et al. proposed

a standardization approach where NOP and

semantic NOP instructions are distinguished and

evacuated by watching the content. However, this

technique can’t be effective if further obscurity

techniques are used in the malware file. If malware

writer has used additional obfuscation technique

along with NOP instruction then this technique

fails to handle NOP redundancy. Thereby, it is not

possible to disassemble the malware code

accurately. Besides, checking whether a code is a

semantic NOP is undecidable [[4]].

5.2 Countermeasure for Reordering of Code

Christodorescu et al. (2007) proposed an approach

which uses a CFG(control flow graph) invariant to

determine and remove the reordering of malware

program. Using invariant CFG, we again reorder

the code into the actual order which was before

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
Singh et al., Vol.7, No.3

108

first reordering. But the requirement of this

technique is that malware code must be

disassembled properly thereby the CFG can be

made appropriately.

5.3 Countermeasure for Packer

Revealing malware secured by archivers is not as

tough as the reverse techniques are available and

effortlessly reachable. Conversely, beating packers

is substantially more troublesome. First of all, one

needs to recognize them effectively. This can be

either accomplished by searching for section

names inside the packed malware program, which

can uncover the packer (e.g. UPX0, UPX1 if UPX

packer is used or look for different markers for

example, few library imports, unusual segment

sizes (e.g. size of crude information is 0 while the

virtual size is never zero). The other way is to

unpack the packed malware program in order to

access the code which represents the actual

behaviour of malware. In this manner, there are

three basic options for unpacking [[15]] such as

follows:

a. Static: Automated Unpacking

This approach deals with packed malware

without running them and uses some automated

tool for unpacking. Most commonly used packing

tools are UPack, UPX, NSPack, FSG, ASpack etc.

There are various tools such as PEid, PE Explorer

and PE view which are capable for unpacking the

packed malware files which are packed using these

tools. These tools restate the malware executable

into original form (unpack) without running the

malware file. But, the malware writers can use

several anti-packing mechanisms to evade the

unpacking such as data encoding (e.g. base64

coding), encryption and, anti-disassembly

techniques (multilevel instruction, abuse of

pointers and exception handlers) [[23], [24]].

Consequently, to unpack the packed malware is a

big challenge for the analyst [[15], [23]].

b. Dynamic: Automated Unpacking

In dynamic unpacking, the malware file is

executed. When, the unpacking routine unpacks

the malware file then original import table is

constructed. The big hurdle of this approach is to

find out the beginning of original code (original

entry point) and ending of unpacking routine. It

requires hard work and expertise. Undesirably, this

is a difficult issue to handle automatically.

Consequently, manual negotiation is done to

determine the starting of original malicious code.

c. Manual Unpacking

It is not an easy task to find out the Original

Entry Point(OEP) of malware programs. It requires

a lot of hard work and the great understanding

about the packing tools in order to get insight

about the packed malware file. Unlikely, no such

method is there which can determine the entry

point of packed file.

6. Conclusion

Analysis of malware is very tedious task.

Obfuscation is one of the major factors which

affects the analysis of malware. There are two

basic ways to analyze the malware signature based

(without executing the file) and behaviour-based

(running the file mostly in controlled

environment). After studying various research

papers and whitepapers of security experts it has

been shown that the signature-based detection

techniques have become obsolete. Also the

signature-based detection techniques can’t detect

the new malware. Now the second alternative is

behaviour-based analysis in which malware files

are executed for capturing the behavioural

artifacts. There is also a possibility that complex

obfuscated malware can cheat the execution

environments like sandboxes, debuggers due to not

executing actual behaviour. Even though

behaviour-based system detection systems are far

better than signature-based malware detection

systems, behaviour-based systems are slow

compared to signature-based system. Therefore,

the time consuming is also a big concern in order

to scan the system and give the decision within

instant of time. By considering the pros of both

analysis techniques integrated malware detection

systems can provide solution to both problems

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
Singh et al., Vol.7, No.3

109

time efficiency and detecting the unknown

malware (new malware).

References

[1]. Malware Statistics & Trends Report | AV-TEST.

https://www.av-test.org/en/statistics/malware/ , 2017.

[2]. V. Neumann, “Theory of self-reproducing automata”,

Urbana, University of Illinois Press, 1966.

[3]. J. Blackthorne, A. Bulazel, A. Fasano, P. Biernat, and B.

Yener. “AVLeak: Fingerprinting Antivirus Emulators

Through Black-Box Testing”, In WOOT’16 USENIX

Workshop on Offensive Technologies, USENIX, 2016.

[4]. B. Beaucamps, and J.Y. Marion, “On behavioral

detection”, European Institute for Computer Antivirus

Research Annual Conference, EICAR’09, 2009.

[5]. M. Christodorescu, S. Jha, J. Kinder, S. Katzenbeisser,

H. Veith, “Software transformations to improve malware

detection”, Journal Computer Virology, Vol:3(4), pp

no:253-265, 2007.

[6]. Xu Chen, J. Andersen, Z. M. Mao, M. Bailey, and J.

Nazario, “Towards an Understanding of Anti-

virtualization and Anti-debugging Behavior in Modern

Malware”. IEEE International Conference on

Dependable Systems and Networks With FTCS and DCC

(DSN), 2008.

[7]. E. Gandotra, D. Bansal, S. Sofat “Malware Analysis and

Classification: A Survey”. Journal of Information

Security, vol:5(2), pp no: 56-64, 2014.

[8]. I. You, K. Yim, “Malware Obfuscation Techniques: A

Brief Survey”, International Conference on Broadband,

Wireless Computing, Communication and Applications,

pp no: 297-300, 2010.

[9]. Y. Gao, Z. Lu, Y. Luo, “Survey on malware anti-

analysis”, IEEE ,international conference on Intelligent

Control and information processing, 2014.

[10]. T. Vidas, N. Christin, “Evading Android Runtime

Analysis via Sandbox Detection”, ACM Symposium on

Information, Computer and Communications Security.

ACM, 2014.

[11]. C. Thompson, M. Huntley, C. Link. Virtualization

Detection: New Strategies and Their Effectiveness.

Technical Report. University of Minnesota, 2010.

[12]. A. Karnik, S. Goswami, R. Guha, “Detecting

obfuscated viruses using cosine similarity analysis”,

International Conference on Modeling and Simulation,

pp no:165-170, 2007.

[13]. B. Zhang, J. Yin, J. Hao, D. Zhang, S. Wang,

“Malicious codes detection based on ensemble

learning”, Springer In Autonomic and Trusted

Computing, vol:46(10), pp no: 468-477, 2007.

[14]. M. Cova, C. Kruegel, and G. Vigna, “Detection and

Analysisof Drive-by-Download Attacks and Malicious

JavaScript Code”, ACM International Conference on

World Wide Web, 2010.

[15]. M. Sikorski, A. Honig, “Practical Malware Analysis:

The Hands-On Guide to Dissecting Malicious Software”

Press, San Francisco,CA, USA, 2012.

[16]. K. A. Roundy, B. P. Miller, “Binary-code obfuscations

in prevalent packer tools”, ACM Computing Survey,

Vol:46(1) pp no:1-4, ClamAV, 2013.

[17]. Clamav, Available at

http://www.clamav.net/index.html, 2017.

[18]. S. Alam, R. N. Horspool, I. Traore, I. Sogukpinar, “A

framework for metamorphic malware analysis and real-

time detection”, Computers & Security ,vol:48, pp no:

212-233, 2015.

[19]. R. Hedayat, The devil’s right hand: An investigation on

malware-oriented obfuscation technique. Report, pp

no:-31-67, 2016.

[20]. F. Zhang , M. Yang, M. Xu “A malware analysis

platform based on taint analysis”, IEEE International

Conference on Computer Sciences and Applications,

2013.

[21]. M. Egele, T. Scholte, E., C. Kruegel, “A survey on

automated dynamic malware analysis techniques abd

Tools”, ACM computing Surveys, 2012.

[22]. W. Aman, “A Framework For Analysis And

Comparison Of Dynamic Malware Analysis Tools”,

International Journal of Network Security & Its

Applications (IJNSA), Vol.6(5), 2014.

[23]. K. Coogan, G. Lu, S. Debray, “Deobfuscation of

virtualization-obfuscated software” Conference on

Computer and Communications Security - CCS ’11,

2011.

[24]. P. Burnap, R. French, F. Turner, K. Jones, “Malware

classification using self organising feature maps and

machine activity data”. Computers & Security, vol:73,

pp no:399-410, 2017.

[25]. T. Garfinkel, K. Adams, A. Warfield, J. Franklin,

“Compatibility is Not Transparency: VMM Detection

Myths and Realities”, USENIX Workshop on Hot Topics

in Operating Systems, 2007.

[26]. A. Dinaburg, P. Royal, M. Sharif, W. Lee, “Ether:

Malware Analysis via Hardware Virtualization

Extensions”, ACM Conference on Computer and

Communications Security, 2008.

[27]. J. Boomgaarden, J. Corney, H. Whittaker, G. Dinolt, J.

McEachen, “Challenges in Emulating Sensor and

resource-Based State Changes for Android Malware

Detection”, IEEE International Conference on Signal

Processing and Communication Systems (ICSPCS),

2015.

[28]. G. Pek, B. Bencsath, L. Buttyan. “Ether: In-guest

Detection of Out-of-the-guest Malware Analyzers”,

Fourth European Workshop on System Security, 2011.

[29]. N. Miramirkhani, M.P. Appini, N. Nikiforakis, and M.

Polychronakis, “Spotless Sandboxes: Evading Malware

Analysis Systems using Wear-and-Tear Artifacts”, IEEE

Symposium on Security and Privacy, 2017.

[30]. D. Maier, M. Protsenko, T. Muller “A Game of Droid

and Mouse: The Threat of Split-Personality Malware on

Android”, Computers ad Security, vol:54, 2015.

[31]. D. Maier, T. Muller, M. Protsenko, “Divide-and-

Conquer: Why Android Malware Cannot Be Stopped”,

IEEE Ninth International Conference on Availability,

Reliability and Security (ARES’14), 2014.

[32]. B. D. Gavitt, Y. Nadji, “See No Evil: Evasions in

Honeymonkey Systems”, Technical Report 2010.

[33]. M. A. Rajab, L. Ballard, N. Jagpal, P. Mavrommatis, D.

Nojiri, N. Provos, and L. Schmidt. Trends in

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
Singh et al., Vol.7, No.3

110

Circumventing Web-Malware Detection. Technical

Report. Google, 2016.

[34]. A. Kapravelos, M. Cova, C. Kruegel, and G. Vigna,

“Escape from Monkey Island: Evading High-Interaction

Honeyclients”, Springer International Conference on

Detection of Intrusions and Malware,and Vulnerability

Assessment (DIMVA), 2014.

