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Abstract—We show a novel lattice-based scheme (PairTRU) which is a non-commutative variant of the NTRU. The original NTRU is defined via
the ring of quotient with variable in integers and this system works in the ring R =

Z[x]
<xN−1>

. We extend this system over Z× Z and it performs

all of operations in the non-commutative ring M =
M(k,Z×Z)[x]

<(Ik×k,Ik×k)x
N−(Ik×k,Ik×k)>

, where M is a matrix ring of k × k matrices of polynomials

in R =
(Z×Z)[x]

<(1,1)xN−(1,1)>
. In PairTRU, encrypting and decrypting are non-commutative and the cryptosystem is secure for linear algebra and

Lattice-based attacks. PairTRU is designed using the NTRU core and reflects high levels of security by two-sided matrix multiplication with pairwise
entries.
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1. Introduction

Lattice-based cryptographic structures are known with their
worst-case hardness for strong security proofs and rela-
tively efficient implementations for post-quantum cryptogra-
phy which have considerable active research area. Moreover,
lattice cryptography is compatible and secure for quantum
computers [1]. Our focus here will be mainly on the theoretical
aspects of lattice-based cryptography.

J. Hoffstein, J. Pipher and J. Silverman presented NTRU
public key scheme. The first version of the NTRU cryp-
tosystem was presented at the Crypto ‘96 conference [2].
The mathematical background of these lattice-based systems
lies in polynomial algebra. The fundamental operation is
basen on two modulos for reducing of polynomials. The
NTRU encryption scheme (NTRUEncrypt), for gaining a high
efficiency, utilizes the structured lattices and their properties
and that makes it a potential practical system. It’s core is
different from RSA and ECC, and it is more efficient than
those schemes. It is considerably faster than RSA and ECC
or any other public key system. Statistics [3] shows that the

TABLE 1
A comparison of NTRUEncrypt, RSA and the elliptic

curves cryptosystem made using a 800MHz Pentium III
computer [5].

NTRU 251 RSA 1024 ECC 163
Public key(bits) 2008 1024 164

Private key(bits) 251 1024 163

Plaintext block(bits) 160 702 163

Ciphertext block(bits) 2008 1024 163

Encryption speed(blocks/sec) 22727 1280 458

Encryption speed(Mbits/sec) 3.6 0.9 0.075

Decryption speed(blocks/sec) 10869 110 702

Decryption speed(Mbits/sec) 1.7 0.077 0.11

security level of NTRU with N = 251, RSA with 1024 bits,
and ECC [4] with 163 bits are comparable. The experimental
results can be seen in table 1. The security of the NTRU is
based on intractability of solving “Shortest Vector Problem
/ Closest Vector Problem” (SVP/CVP) in a particular type
of lattice called Convolutional Modular Lattices (CML)
related to the cyclotomic ring R = Z[x]

<xN−1> . Thus, lattice
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reductions are important attacks for NTRU [6] and Chinese
Remainder Theorem (CRT) attacks [7]. Lattice attacks want
to find a key for decrypting. In NTRU, without FFT, the
multiplication of two polynomials has O(N2) cost. Moreover,
we can use optimization processes for multiplications such as
FFT or NTT. Also, the key generation of NTRU is very fast,
as well as it utilizes vector multiplications (convolutions), so
the NTRU has an appropriate speed. Standardization for the
NTRU has now been with version IEEE P1363.1 [8]. The
cryptanalysis results for NTRU can be found in [7], [9], [10],
[11], [12], [34]. Improvements of the security of NTRU as
well as some variants are described using polynomial rings
with special type of coefficients such as GF (2k)[x] [13], the
non-commutative matrix ring of polynomials in Z[x]

<xN−1> [14],
the non-commutative matrix ring M = MkZ[x]

Xn−Ik×k
, where M

[15], Dedekind domains such as Z[i], Z[
√
−2], Z[ζ3] and Z[ζ5]

[16], [17], [18], QTRU, based on Quaternion algebra [19] and
authors’ lattice-based schemes [20], [27], [28], [29], [30], [31],
[32], [33]. Here, we extend the core of NTRU to a broader
algebra than Z such as M(k,Z× Z) matrices. The NTRU can
be summarized as follows:

Let R = Z[x]
<xN−1> with N prime. Assume q be an integer

and assume p ∈ R co-prime with q and such that the plaintext
space R/ < p > is large. In general, we can take p = 3 or
p = x + 2. As a private key, (f, g) ∈ R2 randomly chosen
with coefficient of {−1, 0, 1} proportionally. For improved
decryption efficiency, invertible f ≡ 1 mod p for modulo q

and modulo p is chosen, therefore, the public-key is computed
h = pg ∗ f−1 mod q. For encrypting m ∈ R/ < p >, we can
choose a ephemeral element r ∈ R with short norm and gives
the ciphertext e ≡ hr+m mod q. To decrypt the ciphertext e,
one can compute f ∗ e mod q. If e be a honest data, this gives
pgr + fm mod q. Since p, g, r, f,m have small coefficients,
we can show that using reducing technique modulo q, we have
pgr + fm ∈ R. Next, by reducing modulo p, it provides fm
mod p. Now, we can multiply the previous result by the inverse
of f modulo p. In addition, encryption is probabilistic and
decryption failure can be shown for some sets of parameters.
Therefore, we can decrease or eliminate decryption failure
with appropriate parameters.

Here, another version of NTRU is proposed, which is called
PairTRU. Our proposed cryptosystem is a variant based on
non-commutativity rule over Zq , i.e., over the quotient poly-

nomial ring Zq [x]
<xN−1> . The PairTRU cryptosystem performs an

efficient multiplication while providing a security level higher
than that of NTRU. It operates in the ring of k × k matrices
with pairwise entries of k2 different polynomials in R =

(Z×Z)[x]
<(1,1)xN−(1,1)> . Here, matrix operations and multiplications
in PairTRU is based on non-commutativity rules. Attackers
must recognize left and right computations. Also Shamir [6]
showed that non-commutative operations give a high level of
security against Lattice attacks. In addition, we can construct
more complicated cryptosystems using non-commutative ma-
trix rings. By replacing nk2 = N , comparing of instances
are easy. For encrypting and decrypting in NTRU, we have
O(N2) or O(n2k4) operations for element N but in PairTRU
for identical levels, we have Õ(nlogn.k2.376) operations using
Fast Fourier Transformation for linear transformation [15]. We
use Õ(.) to hide poly-logarithmic factors. Furthermore, we can
inverse these kind of polynomials by some methods like [21].

The rest of this paper is structured as follows: In section 2,
we give some notations and norm estimations. In section 3,
we suggest an NTRU-Like public key cryptosystem (PairTRU)
using non-commutative matrix rings with pairwise entries.
Analysis of security for our proposed PairTRU cryptosystem
is described in sections 4. Section 5 is dedicated to efficiency
and comparisons. Finally, conclusions is given in section 6.

2. Notations and Definitions

Set R = (Z×Z)[x]
<(1,1)xN−(1,1)> , an element f in the ring R can

be represented as follows:

f = {(a0, b0)+(a1, b1)x+...+(aN−1, bN−1)x
N−1|ai, bi ∈ Z}.

Since the elements of R are polynomials of degree less
than N , they can be represented as vectors. We can use the
following representation of f ∈ R interchangeably when there
is no possibility of confusion.

f =

N−1∑
i=0

(ai, bi)x
i = {(a0, b0), (a1, b1), ..., (aN−1, bN−1)}

∈ (Z× Z)N .

By reducing an element of R modulo (p, p) or (q, q), we mean
reducing of its pairwise coefficients modulo p or q as follows

12



INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
A.H. Karbasi et al., Vol.7, No.1

(i.e., [ai mod p, bi mod p] or [ai mod q, bi mod q]) that we
denoted by componentwise mod (p, p) or mod (q, q).

R(p,p) =
(Z/pZ× Z/pZ)[x]

< (1, 1)xN − (1, 1) >
,

R(q,q) =
(Z/qZ× Z/qZ)[x]

< (1, 1)xN − (1, 1) >
.

We can compute summation of two elements f and g of R
as follows:

f = {(a0, b0)+(a1, b1)x+...+(aN−1, bN−1)x
N−1|ai, bi ∈ Z},

g = {(c0, d0)+(c1, d1)x+...+(cN−1, dN−1)x
N−1|ci, di ∈ Z},

f + g ={(a0 + c0, b0 + d0) + (a1 + c1, b1 + d1)x+ ...

+ (aN−1 + cN−1, bN−1 + dN−1)x
N−1

|ai, bi, ci, di ∈ Z}.

Clearly, we have:

f − g ={(a0 − c0, b0 − d0) + (a1 − c1, b1 − d1)x+ ...

+ (aN−1 − cN−1, bN−1 − dN−1)xN−1

|ai, bi, ci, di ∈ Z}.

Also we can compute convolution multiplication of two
elements f and g of R, denoted by f ∗ g, as follows. At
first, we show the ordinary convolution multiplication for k-th
coefficient, then we reflect pairwise convolution multiplication.

f ∗ g =

k∑
i=0

fi.gk−i +

N−1∑
i=k+1

fi.gN+k−i

=
∑

i+j≡k (mod N)

fi.gj

Now we can change the usual convolution multiplication to
coordinatewise multiplication for two entries in coefficients.
Clearly, we compute pairwise convolution multiplication as
follows:

f ∗ g =
∑

(i,i)+(j,j)≡(k,k) (mod (N,N))

(ai, bi).(ck−i, dk−i)

(2.1)

Definition 2.1. We would like to show that (Z× Z,≤′)
is a partially ordered set (poset). So we define (ai, bi) ≤′

(a′i, b
′
i)⇔ [ai ≤ a′i and bi ≤ b′i].

1 Reflexivity:
∀(ai, bi) ∈ (Z× Z) :
(ai, bi) ≤′ (ai, bi)⇔ [ai ≤ ai and bi ≤ bi].

2 Antisymmetry:
∀(ai, bi), (ci, di) ∈ (Z× Z) :
[(ai, bi) ≤′ (ci, di) and (ci, di) ≤′ (ai, bi)] ⇒ [ai ≤
ci and bi ≤ di] and [ci ≤ ai and di ≤ bi] ⇒ (ai, bi) =

(ci, di).
3 transitivity:
∀(ai, bi), (ci, di), (ei, fi) ∈ (Z× Z) :
[(ai, bi) ≤′ (ci, di) and (ci, di) ≤′ (ei, fi)] ⇒ [ai ≤
ci and bi ≤ di] and [ci ≤ ei and di ≤ fi] ⇒ [ai ≤
ei and bi ≤ fi]⇒ (ai, bi) ≤′ (ei, fi).

Hence as a consequent (R,≤′) is poset.

Definition 2.2. We define (a′, b′) is a maximum element in
f if (ci, di) ≤′ (a′, b′) for all (ci, di) in f and we show by:
max1≤i≤N {(ai, bi)}

Definition 2.3. We also define (a′′, b′′) is a minimum element
in f if (a′′, b′′) ≤′ (ci, di) for all (ci, di) in f and we show
by: min1≤i≤N {(ai, bi)}

Definition 2.4. The width of an element f ∈ R is defined to
be:

|f |∞ = max
1≤i≤N

{(ai, bi)} − min
1≤i≤N

{(ai, bi)} (2.2)

Definition 2.5. The centered L⊥ norm on R is de-
fined by: |f |⊥ =

√∑N−1
i=0 (ai, bi)2 − 1

N (
∑N−1
i=0 (ai, bi))2 ⇒

(ai, bi).(ai, bi) = (aiai, bibi) = (a2i , b
2
i ) ⇒

∑N−1
i=0 (a2i , b

2
i ) =

(a0, b0)
2 + (a1, b1)

2 + ... +(aN−1, bN−1)
2 = (a20, b

2
0) +

(a21, b
2
1)+ ...+(a2N−1, b

2
N−1) = (a20+a

2
1+...+a

2
N−1, b

2
0+b

2
1+

... + b2N−1) ⇒ 1
N (ai, bi) = (aiN ,

bi
N ) ⇒ (

∑N−1
i=0 (ai, bi))

2 =

((a0, b0) + (a1, b1) + ... +(aN−1, bN−1))
2 = (a0 + a1 +

... + aN−1, b0 + b1 + ... + bN−1)
2 = [(a0 + a1 + ... +

aN−1)
2, (b0 + b1 + ... + bN−1)

2] ⇒
∑N−1
i=0 (ai, bi)

2 −
1
N (

∑N−1
i=0 (ai, bi))

2 = [(a20 + a21 + ...+ a2N−1, b
2
0 + b21 + ...+

b2N−1)] −[
(a0+a1+...+aN−1)

2

N , (b0+b1+...+bN−1)
2

N ] = (a20+a
2
1+

...+ a2N−1 −
(a0+a1+...+aN−1)

2

N , b20 + b21 + ...+ b2N−1 −
(b0+b1+...+bN−1)

2

N )

Now we set:

s = (a20 + a21 + ...+ a2N−1 −
(a0 + a1 + ...+ aN−1)

2

N
,
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and

t = b20 + b21 + ...+ b2N−1 −
(b0 + b1 + ...+ bN−1)

2

N
),

Therefore

(s, t)⇒
√
(s, t) = (s, t)

1
2 = (s

1
2 , t

1
2 ) = (

√
s,
√
t). (2.3)

Note that if there is no maximum or minimum element
in polynomial f , we can choose simply another polynomial
f of R. The norm is imposed componentwise on (f, g) ∈
R2 : |(f, g)|⊥ = |f |⊥ + |g|⊥. Note that |f |⊥ is the standard
deviation of the entries of f , times

√
N .

Lemma 2.6. If the entries of f have zero mean, the centered
norm is the same as the Euclidean L2 norm.

Proof: Having zero mean implies that
1
N (

∑N−1
i=0 (ai, bi)) = 0 so |f |⊥ =

√∑N−1
i=0 (ai, bi)2 − 0 =

||f ||2.

Definition 2.7. Two norms ||.||α and ||.||β on a vector space R
are called equivalent if there exist positive real numbers γ1, γ2
such that for all f in R: γ1||f ||α ≤ ||f ||β ≤ γ2||f ||α. Hence
for any (0, 0) ≤′ ε = (λ1, λ2) there are constants (0, 0) ≤′

γ1, γ2, rely on ε and N , such that for random f, g ∈ R, the
probability is greater than 1− ε that they satisfy

γ1|f |⊥|g|⊥ ≤′ |f ∗ g|∞ ≤′ γ2|f |⊥|g|⊥ (2.4)

We already observe that converting from R to R(q, q) is
clear and we can reduce the coefficients of a polynomial
modulo (q, q). This reduction is a ring homomorphism.

(f + g)mod (q, q) = (f mod (q, q)) + (g mod (q, q))

(f ∗ g)mod (q, q) = (f mod (q, q)) ∗ (g mod (q, q))

Example 2.8. Assume N = 3 and (q, q) = (3, 3). Let f =

(4, 3)+(2,−1)x+(−5,−6)x2 ∈ R. We can simply reduce the
pairwise coefficients of polynomial f modulo (q, q) = (3, 3)

as f ′ = (1, 0) + (2, 2)x+ (1, 0)x2 ∈ R(3,3).

Definition 2.9. Let f ∈ R(q, q). The centered lift of f to
R is the unique polynomial f ′ ∈ R satisfying f ′ mod (q, q)

= f whose pairwise coefficients are chosen in the interval
− q2 < a′i ≤

q
2 and − q2 < b′i ≤

q
2 .

Example 2.10. Suppose N = 3 and (q, q) = (7, 7). Let f =

(5, 3) + (3,−6)x + (2, 4)x2 ∈ R(7,7). For the centered lift
of the polynomial f we sample the pairwise coefficients of
polynomial f ′ from {−3,−2,−1, 0, 1, 2, 3} as f ′ = (−2, 3)+
(3, 1)x+ (2,−3)x2 ∈ R.

Proposition 2.11. A polynomial f in R is invertible mod (q, q)

if and only if gcd(f,< (1, 1)xN − (1, 1) >) ≡ (1, 1) mod
(q, q).

Proof: We know that (Z×Z)[x]
I = {t+ I|t ∈ (Z× Z)[x]}.

Set f ∈ (Z×Z)[x]
I , then f = t + I for some t ∈ (Z × Z)[x].

We show that there exists g = t′ + I ∈ (Z × Z)[x] such that
f ∗ g = (1, 1) + I .

t.t′ + I = (1, 1) + I

⇒ t.t′ − (1, 1) ∈ I
⇒ I =< (1, 1)xN − (1, 1) >

= {h ∗ ((1, 1)xN − (1, 1))|h ∈ (Z× Z)[x]}
⇒ ∃u ∈ (Z× Z)[x] :

t.t′ − (1, 1) = u((1, 1)xN − (1, 1))

⇒ t.t′ − u((1, 1)xN − (1, 1)) = (1, 1)

⇒ t.t′ − u((1, 1)xN − (1, 1)) ≡ (1, 1)mod (q, q)

All arithmetics in PairTRU are given in M =
M(k,Z×Z)[x]

<(Ik×k,Ik×k)xN−(Ik×k,Ik×k)>
, such that M is k × k matrices

with entries R = (Z×Z)[x]
<(1,1)xN−(1,1)> .

Definition 2.12. Width of f ∈M is defined by:

|f |∞ =Max(Coef.inPolys.inf)

−Min(Coef.inPolys.inf)

We say a matrix f ∈ M is short if |f |∞ < (q, q). Similarly
the polynomial f ∈ R is said to be short if |f |∞ < (q, q).

3. PairTRU Cryptosystem

3.1. Parameter Creation

PairTRU scheme utilizes five positive integer (n, k, p, q, d)

where p � q are co-prime and five sets of matri-
ces (Lf , Lc, Lr, Lw, Lm) ⊂ M. The set of matrices
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(Lf , Lc, Lr, Lw) are chosen from L(d1, d2) as follows:

L(d1, d2) := {f ∈ R|f has d1 coef. equal 1,

d2 coef. equal − 1, and rest 0}

where, d = d1 = d2 ≈ n/p.

We express the space of message Lm as follows:

Lm := {m ∈M|Polys. in m has coef.

lying between − p− 1

2
and

p− 1

2
}

We now describe all five sets of matrices
(Lf , Lc, Lr, Lw, Lm) ⊂M:

• invertible Lf with entries f and g gives private-key and
Lr with ephemeral entry r is chosen for encrypting.

• public key entries c and w are in matrix set Lc as
invertible modulo (p, p) and Lw respectively.

• We sample m ∈ Lm as a plaintext.

3.2. Key Generation

Suppose that Bob wants to create his public and private
key. He randomly chooses f, g ∈ Lf and w ∈ Lw and c ∈
Lc. We denote the inverses of f, g and c modulo (p, p) and
modulo (q, q) by notation F(p, p), F(q, q), G(p, p) and C(p, p)

respectively, so we have:

f ∗ F(q, q) ≡ (I, I)mod (q, q) (3.1)

g ∗G(p, p) ≡ (I, I)mod (p, p) (3.2)

G(q, q) ∗ g ≡ (I, I)mod (q, q) (3.3)

C(p, p) ∗ c ≡ (I, I)mod (p, p) (3.4)

Bob next computes the pair of matrices (h,H) ∈M as follows
and publish them as his public key.

h ≡ w ∗G(q, q)mod (q, q) (3.5)

H ≡ F(q, q) ∗ c mod (q, q) (3.6)

He retain (f, g, c) as his private key.

3.3. Encryption

Alice chooses her message m ∈ Lm. Next, Alice randomly
choose an ephemeral key r ∈ Lr. She encrypts the message
as:

e ≡ pr ∗ h+H ∗mmod (q, q) (3.7)

Then she sends e to Bob. Another random r is chosen for next
plaintext m.

3.4. Decryption

Bob for decrypting, computes:

a ≡ f ∗ e ∗ g mod (q, q)
≡ f ∗ (pr ∗ h+H ∗m) ∗ g mod (q, q)
≡ f ∗ pr ∗ h ∗ g + f ∗H ∗m ∗ g mod (q, q)
≡ pf ∗ r ∗ w ∗G(q, q) ∗ g + f ∗ F(q, q) ∗ c ∗m ∗ g
mod (q, q)

≡ pf ∗ r ∗ w + c ∗m ∗ g mod (q, q) (3.8)

If a is equal to the non-modular expression pf ∗r∗w+c∗m∗g,
Bob can compute the matrices b:

b ≡ a mod (p, p)
≡ c ∗m ∗ g mod (p, p) (3.9)

Hence, the other private keys C(p, p) and G(p, p) are used to
obtain the plaintext m as:

m′ ≡ C(p, p) ∗ c ∗m ∗ g ∗G(p, p)mod (p, p)

≡ mmod (p, p) (3.10)

3.5. Decryption Failure

There are some requirements for true parameter selection
that we reflect them here. f∗r∗w and c∗m∗g have short norms
for preventing decryption failure. The key point for decryption
without failure is f ∗r∗w and c∗m∗g are not too large so we
want to keep |pf ∗ r ∗ w + c ∗m ∗ g|∞ short. For high levels
of security, w stays hidden from adversary. Approximately,
|w| ≈ |m|, hence we have |pf ∗ r ∗ w| ≈ |c ∗m ∗ g|.

4. Security Analysis

In this section, we analyze PairTRU security level for
appropriate parameters.
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4.1. Brute Force Attack

To conduct a brute force technique against PairTRU, at-
tackers who know the public parameters and public key
h ≡ w ∗ G(q, q)mod (q, q) and H ≡ F(q, q) ∗ c mod (q, q)
and also, n, k, p, q and d. Adversary wants to find the private
key (f, g, c) then (s)he can try all possible key in f, g ∈ Lf
so that h ∗ g mod (q, q), f ∗H mod (q, q) and c mod (q, q)

repeatedly for finding decryption flaws. Therefore, adversary
wants to find pair of (f, g) that f and g are determined by 2k2

polynomials. So the size of the key space Lf is performed as
follows:

#Lf = [
n!

(n− 2df )!df !2
]2k

2

(4.1)

Here df and dr are defined by assuming Lf and Lr con-
tains polynomials from the set of polynomials L(df , df ) and
L(dr, dr) respectively. Note that just like NTRU, f, g and all
of their scalar rotations (xi.f, xi.g) can be served as decryp-
tion key. Using Meet-In-The-Middle attack [22] the search
time could be reduced to

√
#Lf/nk2 if enough memory is

provided. Since the total state space which an attacker has to
search for an encryption key is about #Lf/nk

2. Similarly,
the same attack can also be done against a given message
by testing all possible r ∈ Lr and search for the matrices
e − r ∗ h mod (q, q) which contains polynomials with small
entries. Thus, the message security is #Lr/nk2 for brute force
attack and

√
#Lr/nk2 for Meet-In-The-Middle attack, where:

#Lr = [
n!

(n− 2dr)!dr!2
]2k

2

(4.2)

For appropriate value of nk2, the brute-force attack is not done
on the PairTRU cryptosystem. Meet-In-The-Middle attack
cannot be operated on PairTRU because computations involved
in decryption are non-commutative.

4.2. Chosen Ciphertext Attacks

Because of similarity among PairTRU and NTRU, the
security and survivability of the our proposed cryptosystem
against adaptively chosen ciphertext attacks [23] is exactly
equivalent to NTRU, then one can use prevention techniques
[24] for PairTRU. Hence, the PairTRU is CCA-secure.

4.3. Message Expansion

In PairTRU the length of the encrypted message is twice
as long as the NTRU and is more than the original message
and that is costly part for speed in PairTRU cryptosystem.
The massage expansion is shown by 2log|E|/2log|P | =

logq/logp, where E is the dictionary of encrypted message
and P is the dictionary of plaintext; for NTRU and PairTRU.

4.4. Multiple Transmission Attack

Here, utilizing identical public key for message m several
times with different error values r’s, it is then possible to
obtain information on the r’s. Suppose Alice transmit different
encrypted massages ei ≡ ri ∗ h + H ∗ m mod (q, q), then
attacker can compute (ei − e1) ∗ h mod (q, q). Therefore
recovering ri − r1 mod (q, q) by repeating this operation
with the different ei, attacker obtains r1 to provide a brute
force attack on the remaining coordinates. Therefore, multiple
transmissions is an important security issue.

4.5. Analyzing Lattice Attack against the PairTRU

Shamir in [6] showed if we design a variant of NTRU
with non-commutative encryption and decryption then the
system will be secure against Lattice attacks. In this paper our
direction involves extension of the NTRU to broader algebra
and non-commutative algebra together for obtaining robust
security against linear algebra attack. In this section we prove
that the security of PairTRU relies on the intractability of the
shortest pair of vectors problem (SPVP).

We can attack this cryptosystem if we find a suitable key
for decryption by expanding public key pair (h,H) in which
vector (f ∗ w, c ∗ g) lies as a system of linear equations and
form a lattice of dimension 2nk2 × 2nk2. In other words, we
show vectors f ∗w and c ∗ g to be same linear transformation
of public key vectors for attack. In the following theorem we
prove the security of the PairTRU based on intractability of
SPVP in a lattice and some non-linear equations.

Theorem 4.1. Let (h,H) ⊂ M, and assume that there is a
transformation ρf,g has at least a pair of solutions f ∗w and
c ∗ g in M, then an attacker cannot make a lattice by h and
H , which contains the vectors (f ∗ w, c ∗ g).
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Proof: We know by left multiplying f and right multi-
plying g to encrypted message, f ∗w and c ∗ g are produced.
We can define the linear map as follows:

ρf,g : M −→M

h −→ f ∗ h ∗ g or (h −→ f ∗ w) (4.3)

H −→ f ∗H ∗ g or (H −→ c ∗ g) (4.4)

The private key (f ∗w, c∗g) viewed as a vector of length 2nk2

over (Z×Z)[x] belongs to the lattice LPairTRU of dimension
and rank 2nk2. Let the cyclic shift of the coefficients of the
matrices (h,H) gives basis vectors. The lattice LPairTRU is
the (Z × Z)[x] span of the rows of the matrix MPairTRU

defined as:

MPairTRU =

[
[I, I]2nk2×2nk2 [h,H]2nk2×2nk2

[0, 0]2nk2×2nk2 [qI, qI]2nk2×2nk2

]
(4.5)

Clearly, linear transformation in equations 4.3 and 4.4 provides
a lattice attack if and only if public key (h,H) constructs a
lattice with vector (f ∗w, c ∗ g) or if following transformation
is linear:

(h,H) −→ (f ∗ w, c ∗ g) (4.6)

We show in following analysis that transformation h −→
f ∗h∗g is not linear. Similarly, one can prove H −→ f ∗H ∗g
and (h,H) −→ (f ∗ w, c ∗ g) are not linear. Consider the
multiplication of the matrices f ∗ h ∗ g = f ∗ w, where
each matrix (f, g, h, f ∗w) having k2 short polynomials with
pairwise coefficients as elements:

f1 · · · fk
...

. . .
...

fk(k−1) · · · fk2

 .


h1 · · · hk
...

. . .
...

hk(k−1) · · · hk2



.


g1 · · · gk
...

. . .
...

gk(k−1) · · · gk2



=


f ∗ w1,1 · · · f ∗ w1,k

...
. . .

...
f ∗ wk,1 · · · f ∗ wk,k

 (4.7)

Now we can show system of equations as follows:

g1f1h1 + ...+ gk(k−1)+1f1hk + ...+ gk(k−1)+1fkhk2

= (fw)1,1

g2f1h1 + ...+ gk(k−1)+2f1hk + ...+ gk(k−1)+2fkhk2

= (fw)1,2

...

gkh1fk(k−1)+1 + ...+ gk2hkfk(k−1)+1 + ...+ gk2hk2fk2

= (fw)k,k
(4.8)

So general term can be represented as:

(fw)i,j =

ki∑
m=k(i−1)+1

k−1∑
s=0

fm(gj+sk)(h(1+s)(m−k(i−1)))

(4.9)
Or, another form is:

(fw)i,j =
∑

flgmhz =
∑

Uzhz (4.10)

where i, j, l,m ∈ [1, k2]; z ∈ [1, k4].

As all Uz are not identical so we cannot obtain Xi =

(x1, x2, ..., xk2) so that gives f ∗ w by multiplying with a
lattice using cyclic shift of the coefficients of h. In nutshell,
we cannot find different vector Xi to multiply MPairTRU (V )

with v1, v2, ..., v2nk2 to get f ∗w as a short lattice vector. We
therefore conclude:

f ∗ w 6= XiLPairTRU (v1, v2, ..., v2nk2) (4.11)

Therefore, an attacker cannot produce a lattice by h and
H , which contains the vectors (f ∗ w, c ∗ g). So lattice
attack will not work for the PairTRU cryptosystem. Also in
practice, for dimension 150 and upper, brute force search is
inefficient [25], [26]. Therefore, attacker can use polynomial-
time methods such as LLL or system of equation attack. In
PairTRU, we change the ring Z in the NTRU by Z×Z. Notice
that the PairTRU like the NTRU is resistant against LLL-like
methods or CRT which is the important threat to the original
NTRUEncrypt. Clearly, NTRU has 2N-dimensional lattice and
lattice attacks are not effective for N = 251. Hence, lattice
dimension or key size is reduced approximately by factor
of 2. In this paper, as we see, the PairTRU cryptosystem
has 4N-dimensional lattice therefore it’s key size is reduced
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TABLE 2
Coordinatewise comparison between the PairTRU with

the NTRU.

Characteristics NTRU PairTRU

Plaintext Block Nlog2p (bits) (nk2log2p, nk2log2p) (bits)
Ciphertext Block Nlog2q (bits) (nk2log2q, nk2log2q) (bits)
Encryption Speed O(N2) (Õ(nlogn.k2.376), Õ(nlogn.k2.376))

Decryption Speed O(N2) (Õ(nlogn.k2.376), Õ(nlogn.k2.376))

Message Expansion logpq to 1 (logpq to 1, logpq to 1)

Private Key Length 2Nlog2p (bits) (2nk2log2p, 2nk2log2p) (bits)
Public Key Length Nlog2q (bits) (2nk2log2q, 2nk2log2q) (bits)
Lattice Security Secure in Secure in

High Dimension Low Dimension

approximately by factor of 4. In nutshell, we could construct
an efficient NTRU-Like public key cryptosystem with reliable
and comparable lattice security.

5. Performance Analysis and Comparison with
the NTRU

In this section, comparison of the PairTRU and the NTRU is
described and is shown in Table 2. The PairTRU cryptosystem
utilizes five positive integer (n, k, p, q, d) with p and q coprime
and five sets of matrices (Lf , Lc, Lr, Lw, Lm) ⊂ M. The
properties are listed in terms of the parameters (N, p, q) for the
NTRU. We give comparison by choosing N = nk2, since this
equates to plaintext message blocks of the same size but with
pairwise coefficient. In table 2, since the PairTRU calculates
left and right multiplication for decrypting, so the fix element
will be about four times higher than of the NTRU. For LLL
attack, the PairTRU needs private key and public keys with
matrix form which are different from the NTRU private key
and public key. However, the PairTRU gives efficient speed
over the NTRU. Note that we can reduce the number of en-
cryption and decryption operations to Õ((nlogn)k2.376), if we
use FFT for polynomial multiplication, which is considerable
speed improvement over the NTRU.

6. Conclusion

We studied the NTRU over ring R = Z[x]
<xN−1> but we

found that in low dimension the NTRU is less insecure
against Lattice-based attacks and linear algebra-based attacks.

We extend this system over non-commutative matrix quotient
polynomial ring

M =
M(k,Z× Z)[x]

< (Ik×k, Ik×k)xN − (Ik×k, Ik×k) >
,

where M is a matrix ring of k × k matrices of polynomials
in R = (Z×Z)[x]

<(1,1)xN−(1,1)> . The PairTRU security level is
comparable to the NTRU with respect to several well-known
attacks with significant speed improvement. Also, we have
shown that the PairTRU cryptosystem is more secure than the
NTRU, because of its lattice structure and robustness against
linear algebra attack. Here, security and efficiency of non-
commutative PairTRU cryptosystem are proved. In the end,
we would like to point out that the PairTRU is the first
step in extension of the NTRU public-key cryptosystems with
pairwise coefficient in quotient polynomial rings. Furthermore,
the PairTRU can be generalized to different types of rings,
modules, and vector spaces, or different kinds of algebras in
order to design new lattice-based cryptosystems and explore
their possible advantages.
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