
INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
K.D. Cook et al., Vol.7, No.2

78

Using PowerShell to Capture and Compare

Windows Registry and Live Memory Artifacts

with Online Databases to Identify Suspect Files

Kenneth Dale Cook*, Narasimha Shashidhar*
§

* Department of Computer Science, Sam Houston State University,

Huntsville, TX 77341, USA.

{kdc057, karpoor}@shsu.edu

Abstract - System administrators and forensic investigators alike face a multitude of challenges

when seeking to identify sources of pertinent data while in the course of their work. The

inconsistent identification and acquisition of significant registry keys is frustrating, second only to

the common practice of overlooking unique data stored in system memory. Also challenging, is the

practice of identifying suspect file signatures from the resulting data. Many tools are available for

scanning and identifying suspect files, and as such it makes sense to utilize them where possible. In

this paper, we present a PowerShell tool and the accompanying method to acquire, parse, and

display not only significant registry data, but also perform live memory acquisition of the

application compatibility cache where key registry attributes are stored before being later written to

the registry. These keys, stored in memory, are of particular interest since they can be an indicator

of executed processes that are not yet recorded in the registry, and therefore potentially helpful to

system administrators and investigators. This tool identifies the contents of the Application

Compatibility Cache stored in volatile memory, and compares them to the same dataset recorded to

disk in the Windows Registry. The items that exist in memory, but are absent from the registry on

disk, are hashed and submitted to the VirusTotal.com database where the results are returned and

presented in the form of a report. This paper contains not only positive VirusTotal.com results, but

also other significant data from the registry that may be of interest to the administrator and

investigator.

Keywords – Registry; Memory; PowerShell; Appcompatcache; ShimCache.

1. Introduction

 The windows registry, together with the

system’s volatile memory, contains

information that is not only critical to the

functioning of the system, but also of

irreplaceable benefit to the systems

administrator performing troubleshooting and

diagnostic work, or the investigator searching

for clues/artifacts. From critical system

settings, executed and accessed files, to user

preferences, the registry and volatile memory

offer both a recorded history of what has

happened on the system, as well as a road map

to what will happen in the future.

 In order to add to the existing toolsets that

are available, this project expands on prior

research and work involving the registry,

volatile memory, and a handful of unique

applications that enable analysis with the

PowerShell scripting environment,

consolidating all of these aspects into a single

tool. Prior research shows that certain registry

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
K.D. Cook et al., Vol.7, No.2

79

attributes stored in memory have been found to

be unique in that they may not be written to the

registry hives on disk until a successful

shutdown has been initiated. This project is a

PowerShell tool that, with the integration of

existing tools specific to accessing elements in

volatile memory, seeks to address the

following topics:

1) Create a consolidated report of

significant registry keys.

2) Retrieve the Application Compatibility

Cache entries in both the registry and memory.

3) Submit the hashes of uncommitted

Application Compatibility Cache entries from

Volatile memory to an online malware

scanning database in order to check for suspect

files and report results.

 This paper is organized as follows. In

Section 2, we provide a background review of

the Windows Registry, Volatile Memory, and

PowerShell, as well as the additional resources

and executables. Their importance, role, and

method of utilization will also be discussed. In

Section 3, the methodology and further details

of the script’s functional areas are described.

Section 4 is devoted to the final report and

exported files as compiled by the tool, while

Section 5 will provide a conclusion and briefly

discuss future work.

2. Background

 Whereas the focus of this project is to capture

and present data present in the Windows

Registry and Volatile Memory (RAM),

followed by presenting a subset of this data to

an online database for identification of suspect

files, some background is necessary to describe

the Windows Registry, Volatile Memory, and

the primary tool – the PowerShell scripting

environment. Additionally, there are external

executables utilized for their specialization and

those are described here as well.

A. Windows registry

 The Windows Registry is a central

repository in the form of a hierarchical

database of configuration data for the

Windows operating system and many of its

programs [1]. First introduced into the

Windows operating system with the release of

Windows 95, it continues this role as a

configuration database in Microsoft’s latest

releases. It has consolidated and organized the

tasks of installing software device drivers,

defining environment variables, and running

startup programs. In addition, previously

important files such as config.sys, autoexec.bat,

win.ini and system.ini, previously used to store

user settings and system parameters, have been

consolidated into the registry [2].

The Windows registry is an important

resource to the forensic investigator and

system administrator due to its role within the

operating system. For the investigator familiar

with the type of information available and its

location, a virtual treasure trove of valuable

artifacts can be unearthed. As an investigative

resource and troubleshooting tool, the registry

may provide information on users, groups,

hardware, software, networking, recently

installed peripherals, and other areas such as

programs executed and files accessed. This

collection of information, taken in part or as a

whole, may provide irreplaceable information

and history concerning an incident.

Traditionally, the Windows Registry is

accessed via a standard graphical user interface

(GUI) that has largely remained unchanged

across multiple versions of the parent

operating system. The registry editor is

accessed by referencing “regedit.exe” from the

command line. It is a no-frills interface for

casual browsing and even editing of the

database that many refer to as the “brain” or

“heart” of the operating system. While it does

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
K.D. Cook et al., Vol.7, No.2

80

permit backup and restore of the data within, it

lacks in areas of automation, bulk commands,

and especially the inability to view encrypted

or binary data. It is in these areas where our

tool excels, as discussed later in this paper.

 Organizationally, the registry is divided

into sections titled hives, containing a logical

group of keys, sub keys, and values.

Reviewing the work previously conducted by

Farmer [2], and cross-referencing with the

MSDN.Microsoft.com [3] documentation for

the registry, we can define the primary hives

along with their keys and values. Of particular

note is that the first two hives are in fact

aliases of other physical hives.

HKEY_CLASSES_ROOT (HKCR) – Contains

file-name extension associations and COM

class registrations, in order to define which

application is executed when a file is opened.

Also contains drag-and-drop rules, shortcuts,

and user interface information. An Alias for:

HKEY_LOCAL_MACHINE\SOFTWARE\Cl

asses.

HKEY_CURRENT_USER (HKCU) - Defines

preferences for the currently logged-on user,

including folder, display, and control panel

settings. An alias for the current user’s branch

in: HKEY_USERS\User SID

HKEY_USERS (HKU) – Defines default and

new user configuration including application

configurations and visual settings.

HKEY_CURRENT_CONFIG (HKCC) -

Contains information about the current

hardware profile or system configuration.

B. Volatile Memory

 Volatile memory describes computer

storage that maintains its digital contents only

while the device is powered on, which in

common usage, refers to the RAM (Random

Access Memory) in personal computers and

servers. This is in contrast to non-volatile

storage such as hard disks, solid state drives,

magnetic tape, and other similar media types

that do not rely on constant power to retain

information.

 The Windows Operating System utilizes

volatile memory (RAM) to store the operating

system’s code and data needed by the CPU.

This process provides faster read and write

access to the data by the CPU than traditional

hard disks are able to provide. The information

is stored and accessed, while also swapped in

and out of Virtual memory, paging, and

hibernation files as the need and settings

require. For the purposes of our research

project, we will focus on live memory

acquisition and the data that is actively stored

in volatile memory

 The forensic values of the RAM contents

are an important reason to focus on the data

that resides within, as well as the methods

used to obtain it. Through acquisition and

analysis, we are able to see a history of

executed commands, network connections,

processes, and other items that only exist in

memory. Disk encryption keys, application

shims (injected code), chat messages, internet

history, and others exist for the investigator to

obtain through diligence and proper execution

of memory imaging tools [6]. In addition to the

aforementioned sensitive information, data

such as usernames and passwords may be

unintentionally exposed in the system memory

during use and subsequent analysis.

 In “Comparative Analysis of Volatile

Memory Forensics, Live Response vs.

Memory Imaging” Aljaedi et al., prominently

state the significance of volatile memory

analysis in digital investigations due to certain

data residing only in physical memory (RAM),

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
K.D. Cook et al., Vol.7, No.2

81

and not existing in any state on the physical

media. Examples such as Code Red, Witty,

and the SQL Slammer worms function in

memory without writing themselves to disk,

and therefore support the importance of

acquiring volatile data as one of the beginning

steps in incident handling [7]. Additionally,

these points are further supported in well-

known incident handling guides [8].

 The structure of physical RAM requires the

use of external tools in order to easily extract

the contents for analysis. Our project will

utilize multiple tools in order to simplify

access to the information held in RAM. This

will involve creating an image of the memory

contents as they exist at a point in time, and

utilizing separate tools to parse the resulting

image file for the data contents. These

methods will be explained in detail later.

C. PowerShell

 Windows PowerShell is the native scripting

environment for Windows environments,

consisting of a command line shell built on

the .NET framework, enabling it to interface

with .Net objects. The ability to accept and

return .Net objects while most scripting shells

accept and return text provides for a significant

change in the way administrators are able to

configure and manage Windows environments

[9].

 PowerShell version 2.0 was released in 2009

and included in Windows 7 and Windows

Server 2008 R2. Versions for XP, Vista, and

Server 2003 were subsequently released and

PowerShell has been included in all versions

of workstation and server operating systems

since 2009. The latest version (x86 or x64)

may be downloaded and installed from

Microsoft’s website [10].

 The base command in PowerShell is

comprised of a cmdlet, which is in the format

of Verb-Nouns, such as Get-File hash (the

cmdlet for obtaining the file hash of a file,

which we will use later in our project). The

self-descriptive nature of the name persists

throughout the shell, providing searchable help.

The results are output not at text, but rather as

objects that persist through the pipeline [11].

 The PowerShell pipeline supports the piping

of output from one cmdlet to another, whereas

either all the object properties or selected

properties may be piped and thereby used as

input in subsequent tasks. PowerShell provides

methods to format data, and thus

customization of the output objects is possible.

Additionally, external executables are also

supported, whereby PowerShell receives a

text-stream of the output from the executable

in order to make the output available to the

PowerShell system [12, 13].

 From a forensic viewpoint, PowerShell can

perform an important role in gathering data. Its

ability to configure and manage Windows

system changes both locally and remotely may

be leveraged to also query those same systems

and system settings. The resulting data sets can

be used for investigations, auditing and

reporting. Of particular note is PowerShell’s

ability to natively read the Windows Registry

and parse the data as a normal file system. The

ability to use the common Get-Item and Get-

ChildItem PowerShell cmdlets simplify the

task of querying the Windows registry and

compiling reports. This is in contrast to

previous methods involving manually looking

at regedit.exe or other scripting tools.

Additionally, where other tools are necessary

or preferred, the ability to work with the

external tool’s returned data stream within a

single PowerShell script ensures that a single

tool can be used and greatly reduces the

multiple steps that would otherwise be

necessary. The next section will describe

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
K.D. Cook et al., Vol.7, No.2

82

external tools that we will use with PowerShell

to acquire the information.

D. WinPMem Version 1.6.2

 This stand-alone tool, which enables us to

acquire the system memory, while creating a

single image file, is part of the Rekall Forensic

and incident response framework, which bills

itself as the most advanced open source

memory analysis framework available [14, 15].

Like many forensic tools, the platform requires

Python [16] to be installed. However, we have

chosen to use a version of WinPMem that has

been compiled into a windows executable in

order bypass the requirement for python to be

installed on the target system. The particular

version on WinPMem used here, Version 1.6.2,

is a prior version that natively supports the

RAW image file creation, which is more

broadly supported by our other chosen tools.

During prior research, we discovered that the

latest version, Winpmem, 2.1.post4.exe,

supports a native format of AFF4. While it is

possible to convert memory dumps from AFF4

to RAW format, we find this step to be

unnecessary while adding unnecessary

complexity to the process. In addition, it

appears that Winpmem 1.6.2 uses less memory

when running than subsequent versions. This

is an important distinction since our

acquisition tools should have the smallest

footprint possible; especially if our

investigations include processes which seek to

examine unallocated structures. In those cases,

the extra memory usage will overwrite

unallocated space in the memory, potentially

destroying valuable information [17].

E. Volatility Version 2.6 Windows Standalone

Executable

 The Volatility framework is one of the

most widely used memory analysis and

forensic toolsets available, as represented by

years of published academic research. Based

on Python, it is a cross-platform, modular, and

extensible platform that enables collaboration,

innovation, and accessibility to knowledge and

tools within the forensic and offensive

software/security communities. Used

extensively by commercial investigators,

academia, military, and law enforcement

organizations, its reputation is widely known

and prior success with it has resulted in its use

within this project [18]. This stand-alone

executable, like the previously mentioned

WinPMem.exe, allows us to take advantage of

this tool without installing the prerequisite

Python distribution. Additionally, it retains the

ability to fully support the vast catalog of plug-

ins available to extend the native feature set.

Our process leverages the plugins available for

Volatility such as dumpregistry, and

shimcachemem to not only extract the cached

registry files from the image file we created,

but to also extract and decipher the

Application Compatibility Cache information

that is stored within RAM. Their use will be

further explained later in this paper.

F. Registry Ripper V1.0

 Harlan Carvey is a name synonymous with

practitioners of Digital Forensics, as not only

an author of popular books on the subject, but

also as principal author of the tool commonly

referred to as RegRipper. An open source tool

written in Perl, it serves as a registry data

extraction and analysis tool. Offered in two

versions, a GUI and a Command line tool, its

strength lies in the exhaustive plugin library

that enables the user to extract keys, sub keys,

and their data [19].

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
K.D. Cook et al., Vol.7, No.2

83

 From a forensics standpoint, RegRipper’s

significance is unquestionable. It has long been

a staple in many investigator’s toolbox, and its

reputation and ease of use in other projects

lends itself to this project without challenges.

The ability for RegRipper to utilize its plugins

and extract targeted data from the extracted

hive could not have as easily be obtained

otherwise. In this project we utilize plugins

such as comdlg32, recentdocs, mp2,

userassist_tln, and usbsotr2 in order to access

the data from the extracted registry hives.

G. AppCompatCacheParser V9.8.0

 The AppCompatCacheParser.exe by Eric

Zimmerman is a standalone Windows

executable for Windows 7, 8, and 10. It is used

to dump shimcache entries directly from the

registry stored on disk [20]. Contrary to the

feature set of the aforementioned tools, the

AppCompatCacheParser.exe has a single goal

with limited options. When executed, it

extracts the binary data in the

AppCompatCache Key in the registry and

exports it to a readable tab separated value

(.tsv) file which can be viewed in a text editor

or imported into a spreadsheet viewer. Each

record in the resulting *.tsv file contains the

following fields: ControlSet,

CacheEntryPosition, LastModifiedTimeUTC

Path, and Executed. This data is significant to

the project as we will compare it to the same

entries stored in volatile memory (RAM) in

order to isolate any AppCompatCache entries

that are in memory, but which have not yet

been committed to the registry stored on disk.

H. VirusTotal.com API

 The final external tool that this project

utilizes is the virustotal.com API. Virus Total

utilizes over 70 antivirus scanners and other

tools such as URL and domain blacklisting

services to analyze submitted executables and

record the data. The website provides a

method for uploading files for analysis, or the

user may upload the hash of a file and Virus

Total will check their database to see if they

have a record for that file with that hash value.

 This service is one of many providing

cloud-based malware scanning to the Internet

community. While the web interface allows for

uploading one file at a time, the HTTP-

accessible API provides a platform for a more

automated and scriptable solution (such as our

project) to be developed, whereby multiple

items can be scanned from one instance. A free

API key, necessary to use the API, is available

to anyone that registers, although it has limited

usage and restricts the number of inquiries to

four submissions per minute. Additional calls

may be made with an alternate, paid account.

Since the other tools we are using are open

source with no cost, this project will utilize the

free API and limit the requests to no more than

four per minute [21]. While prior work has

been completed by others with each of these

tools, this project extends the individual

functionality by leveraging each application’s

strengths and combines their functionality into

a new tool.

3. Tool Description

 In simplest terms, the tool utilizes existing

cmdlets within PowerShell as a basis for data

acquisition while leveraging mature projects

described in the prior section such as

Winpmem and the Volatility framework to

create and analyze volatile memory from a

Windows machine. In the following tool

description, we will discuss the methodology

used, followed by a description of the actual

tool script in detail. The major processes are

divided into the actionable areas as follows.

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
K.D. Cook et al., Vol.7, No.2

84

A. Methodology

 1) Integrate Winpmem with PowerShell to

obtain the Memory dump and store for analysis.

 2) Utilize standard PowerShell cmdlets to

access the Registry on disk and record data for

later use.

 3) Integrate PowerShell and the Volatility

framework in order to obtain the registry from

the memory dump and store for analysis.

 4) Use multiple tools to obtain the

Application Compatibility Cache data from

both the committed registry and uncommitted

data in volatile memory.

 5) Submit unique AppCompatCache entries

from memory that do not exist in the registry

to an online malware database (say,

virustotal.com) for identification of suspect

files.

 6) Record data to an easy to read HTML file.

B. Tool Script

 The tool itself is divided into 18

commented sections where specific actions

occur in each. A brief summary of these areas

is presented here to better understand the

subsequent report in section 4, which is the

output of the tool. Throughout the script, a

common output goal is repeated, and that is

obtain the data, create a hash of the system

library or executable referenced when possible,

create output for HTML report, and finally,

export data to CSV file(s). The CSV files

typically obtain the root RegKey, ValueName,

ValueData, and generated hash.

 1) Sections 1-7 of the script use the

PowerShell Get-ItemProperty to access

different keys and Sub keys in the HKLM,

HKCR, and HKCU Registry hives as they

currently exist on the system’s hard drive. The

different sections, containing different

functions, are necessary due to the different

structure of the hives, keys, and sub keys,

along with the data they contain. The data

targeted in these sections pertained to the RUN,

RUNONCE, EXTENSION ASSOCIATION,

COMMAND PROCESSOR, APPINIT_DLLS,

and DEBUGGER options and settings within

the registry. Additionally, The SERVICES sub

keys are returned. Together, these datasets

provide a detailed look at what has executed,

as well as what will execute in the future in

certain specific circumstances.

 2) Pending completion of the above Sections

1-7, a function comprised of the Volatility

stand-alone executable and assorted registry

ripper plugins, are invoked in order to access

the previously obtained image file, extract the

registry hives to disk, and then parse those

hives for specific data. The registry ripper

plugins used are COMDLG32,

RECENTDOCS, MP2, USERASSIST_TLN,

and USBSTORE. Multiple variables store the

data for each of the plugins and are used in the

following sections.

 3) Sections 8-13 of the tool use the data

collected in the prior paragraph. This data,

representing Registry keys as stored in the

volatile memory, contain information on

LAST FILE/FOLDER VISISTED, RECENT

DOCUMENT LISTS, MOUNTED

DRIVES/NETWORK ACCESSES,

ACCESSED OBJECTS, and USB DEVICES

as accessed recently by the host. These

sections are unique in that while the prior

sections used native PowerShell cmdlets to

access the data, thereby resulting in similar and

consistently formatted results, this is not the

case with the Volatility command and its

plugins. Each of the plugins resulted in a

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
K.D. Cook et al., Vol.7, No.2

85

unique report of the data, and while on its own

would serve as a helpful report, in our use, it

needs to be parsed and the data extracted to be

utilized in a consistent and similarly formatted

report. Thus, in each of the sections (8-13),

unique functions and REGEX syntax are used

to isolate the desired data and further conform

to our reporting style. As with prior data, this

information is written to both a CSV file and

an HTML report to be discussed later in this

paper (Section 4).

 4) Sections 14-16 focus on the Application

Compatibility Cache areas of the registry, both

as stored on disk and the uncommitted registry

information that is stored in volatile memory

until the next shutdown sequence is completed,

at which time the registry on disk is updated

with those entries in RAM. The method used

in these three sections, begins by obtaining the

APPCOMPATCACHE entries from Disk

using the AppCompatCacheParser.exe, which

exports its data to a *.tsv file. The subsequent

step seeks to obtain the

APPCOMPATCACHE entries from volatile

memory using the volatility executable with

the shimcachemem plugin and output that data

to a *.csv file. Finally, in Section 16, these two

datasets are compared and newer,

uncommitted entries that only exist in memory

are extracted and saved to their own *.csv file.

This resultant dataset is used exclusively in the

next and last working section of the tool,

namely section 17.

 5) Section 17 is the last working section of

the tool. The function in this section takes each

entry from the prior section, which represents

uncommitted appcompatcache data in volatile

memory, and submits the hash of the

executable to the API provided by

VirusTotal.com. The results are returned to the

script in the form of a positive or negative

result. Negative results are discarded, and

positive result sets are collected with their

dataset converted to HTML for the final report.

4. Report

 The final report is presented as an HTML-

formatted output of the script’s results.

Generally, the results are presented with the

following Headers: REGISTRY KEY,

VALUE NAME, and VALUE DATA. Also

obtained, but not always displayed in the

report for space reasons, is the SHA256 HASH

of the executable named in the VALUE DATA

field. In addition, there are several CSV files

that catalogue the output and the working data

that are made available for further examination

if desired.

A. HTML report

 The HTML report is the final output of this

tool. The report serves as an example of how

the tool’s data may be viewed to provide a

dashboard into a host’s registry settings, as

well as any VirusTotal alerts pointing to

possible suspicious files. The report contains a

clickable table of contents with descriptions of

each section. The table of contents contains the

following areas, and figures are provided to

demonstrate the formatting of the data as

collected and presented by the tool.

TABLE OF CONTENTS

1. ALERTS

 Figure 1 displays the first section of the report,

the VirusTotal.com results, assuming that

positive results were returned. If no positive

results are present, this section states this fact

in the report. In the example, ORDER is the

position of record in the appcompatcache in

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
K.D. Cook et al., Vol.7, No.2

86

volatile memory, the LAST MODIFIED entry

is the last time the executable itself was

modified, the EXEC flag indicates whether or

not the file was executed on the system or

merely accessed, The FILE PATH is self-

explanatory, the HASH is the SHA256 hash of

the File, the HITS are the number of positive

results from VirusTotal.com, and the LINK

TO RESULTS field contains a hyperlink to the

details page on VirusTotal.com where the

detailed returns and comments for this

particular hash are recorded. In the example

provided in Figure 1, three of the engines used

by VirusTotal flagged ACCParser.exe as a

suspicious file. The hyperlink, if followed, will

display the details to include which three

engines, and more.

Fig 1. VirusTotal.com result example.

 The next section of the Table of Contents:

2. APPLICATION COMPATIBILTY CACHE

2.1 Live Registry…

2.2 Volatile Memory…

2.3 AppCompatCache keys in memory…

Figure 2 displays the fields available in the

HTML report for Section 2, of ORDER, LAST

MODIFIED, EXEC, and FILEPATH. These

fields contain the same type of data as those

described in Figure 1.

Fig 2. HTML Report, section 2 example.

 The next section of the Table of Contents:

3. REGISTRY KETS FROM LIVE REGISTRY

3.1 AutoStart / AutoRun

3.2 Application Initialization and Default

Executable

3.3 Services

Figure 3 displays an example of the type of

data available in this area of the HTML report.

In these datasets, certain attributes are not

available, such as ORDER or EXEC.

Fig 3. HTML Report, Section 3 example.

 The next section of the Table of Contents:

4. REGISTRY KEYS FROM VOLATILE

MEMORY

4.1 Most Recently Used Keys

4.2 Network Drive / Mount Point

4.3 User Assist

4.4 USBStor

 This is the final section of the Table of

Contents. The data contained is formatted

similarly to the prior section as displayed in

Figure 3. The exception is section 4.2 and 4.4.

When data is available, the source tool

presents it differently, and therefore those

datasets are presented in one field as displayed

in Figure 4. In the example, we see that the

prior mount points for the operating system

include several local SMB shares and volumes.

In spite of the formatting, the same three fields

of REGISTRY KEY, VALUE NAME, and

VALUE DATA are represented to maintain

consistency.

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
K.D. Cook et al., Vol.7, No.2

87

Figure 4. HTML Report, Section 4 example.

 Depending on the age of the operating system,

or time since last reload, as well as how the

system is used, the size of the registry and

therefore the HTML report can vary widely. It

was not uncommon during testing to see

printed reports over 100 pages in length.

B. Exported Files

 The files that result from executing the script

are saved for reference, in the event that the

investigator would like to look at additional

information left out of the report, such as

additional hashes, or to run their own queries

against the CSV file for sorting and comparing.

1) Collected-data.csv – This csv file

contains the output from the majority of the

script, sections 1-13.

2) Out-Cache.csv – Contains data from the

live Registry Application Compatibility Cache

data from sections 14-16.

3) RegCompatCache.csv – Contains results

of the AppCompatCacheParser application in

section 14.

4) RamShimCache.csv – Contains the

sorted and ordered results of the Volatility

application and the shimcachemem plugin in

section 15.

5) ShimCacheMem.csv – Contains the raw

output of the Volatility application and the

shimcachemem plugin in section 15.

6) <%VariableName%>_AppCompatCache.tsv –

Where the first part of this file name represents

the profile used in Volatility, combined with

the Host computer name, this is a tab-

separated file created by the Application

“AppCompatCacheParser”.

7) Final-HTML-Report.html - This is the

Final report as created by the tool to display

the results as collected.

While the exported files are not part of the

final report, they are left available in the event

that the investigator might wish to parse them

differently or otherwise benefit from their

contents.

5. Conclusion

 This project discussed the significance of

the registry and how certain aspects of it can

not only be useful in investigations, but also

how certain contents can vary depending on if

they are stored in the memory or on disk, as

items may exist in memory that have not yet

been committed to disk. Exploring these

differences and developing a tool for reporting

the findings was the primary focus and result

of this project. While developing the tool, the

three primary goals were met; these being:

Creating a consolidated report of significant

registry keys, retrieving the Application

Compatibility Cache entries from both the

registry and memory, and lastly, submitting the

hashes of uncommitted Application

Compatibility Cache entries from Volatile

memory to an online malware scanning

database in order to check for suspect files and

report results.

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
K.D. Cook et al., Vol.7, No.2

88

 The main challenges incurred during this

project resulted from developing the tool in

PowerShell, which proved to be a challenging

task due to the integration of many distinct

tools involved in our research project. Once

captured, parsing and manipulating the data

from different sources into a common format

sometimes proved difficult, but was almost

universally accomplished.

 This project, while serving as an example,

or Version 1.0 of a tool, provides many

opportunities for enhancement and

modification to benefit others. Some areas or

ideas to improve upon in the future are:

1) Obtain an enhanced API key from

VirusTotal.com. The key in use in this version

of the tool utilizes the free key and has limits

on how many inquiries can be made per

minute. This can be a significant issue in an

OS with many records.

2) Provide a function that may allow for

remote execution and capturing of the image to

a remote host, thereby not writing anything to

the target host.

3) Provide an interactive option to

eliminate duplicate executables from the report.

4) Provide for Operating System detection

and therefore automatic profile setting with the

volatility binary.

5) Provide for Windows Hiberfil.sys and

Windows Crash dump file support.

It is possible that given the amount of work

that has been completed with this version, and

the opportunities for future development and

benefit, that this project may be viewed as a

beneficial contribution in the areas of registry

and memory acquisition and analysis from

within the PowerShell environment.

References

[1] T. Roy and A. Jain, “Windows registry

forensics: an imperative step in tracking data

theft via USB devices”, International Journal

of Computer Science and Information

Technologies (IJCSIT), 3(3), 4427-33, 2012.

[2] D.J. Farmer. A forensic analysis of the

Windows registry. Champlain College

Burlington, Vermont, 2007.

[3] https://msdn. microsoft.com/en-

us/library/windows/desktop/ms724877(v=vs.8

5).aspx, MSDN. Microsoft.Com. “Structure of

the Registry”. Latest Access Time for the

website is 2 July 2018.

[4] https://technet.microsoft.com/en-

us/library/ee176771.aspx, Microsoft, “Registry

Overview”. Latest Access Time for the

website is March 25, 2018.

[5] S. Zhang, L. Wang, R. Zhang, and Q. Guo,

“Exploratory study on memory analysis of

windows 7 operating system”, In Advanced

Computer Theory and Engineering (ICACTE),

3rd International Conference on (Vol. 6, pp.

V6-373). IEEE, August 2010.

[6] M. H. Ligh, A. Case, J. Levy, and A. Walters.

The art of memory forensics: detecting

malware and threats in windows, linux, and

Mac memory. John Wiley & Sons, 2010.

[7] A. Aljaedi, D. Lindskog, P. Zavarsky, R. Ruhl,

and F. Almari, "Comparative analysis of

volatile memory forensics: live response vs.

memory imaging", Privacy, Security, Risk and

Trust (PASSAT) and 2011 IEEE Third

International Conference on Social Computing

(SocialCom), 2011 IEEE Third International

Conference on. IEEE, 2011.

[8] http://nvlpubs.nist.gov/nistpubs/SpecialPublic

ations/NIST.SP.800-61r2.pdf, NIST Special

Publication 800-86, Guide to Integrating

Forensic Techniques into Incident Response,

Latest Access Time is July 2, 2018.

[9] https://docs.microsoft.com/en-

us/powershell/scripting/getting-started/getting-

started-with-windows-

powershell?view=powershell-6, Microsoft,

“Getting Started with Windows PowerShell”.

https://technet.microsoft.com/en-us/library/ee176771.aspx
https://technet.microsoft.com/en-us/library/ee176771.aspx
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-61r2.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-61r2.pdf
https://docs.microsoft.com/en-us/powershell/scripting/getting-started/getting-started-with-windows-powershell?view=powershell-6
https://docs.microsoft.com/en-us/powershell/scripting/getting-started/getting-started-with-windows-powershell?view=powershell-6
https://docs.microsoft.com/en-us/powershell/scripting/getting-started/getting-started-with-windows-powershell?view=powershell-6
https://docs.microsoft.com/en-us/powershell/scripting/getting-started/getting-started-with-windows-powershell?view=powershell-6

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
K.D. Cook et al., Vol.7, No.2

89

Latest Access Time for the report is July 2,

2018.

[10] https://www.microsoft.com/en-

us/download/details.aspx?id=50395,

“Windows PowerShell”. Latest Access Time

for the website is July 2, 2018.

[11] https://msdn.microsoft.com/en-

us/library/ms714395%28v=vs.85%29.aspx,

“Cmdlet Overview”, Latest Access Time for

the website is July 2, 2018.

[12] https://docs.microsoft.com/en-

us/powershell/module/microsoft.powershell.co

re/about/about_pipelines?view=powershell-6,

“About Pipelines”, Latest Access Time for the

website is July 2, 2018.

[13] https://docs.microsoft.com/en-

us/powershell/module/, “About Objects”,

Latest Access Time for the website is July 2,

2018.

[14] microsoft.powershell.core/about/about_obj

ects?view=powershell-6, “About Objects”,

Latest Access Time for the website is July 2,

2018.

[15] https://github.com/google/rekall, “Rekall

Framework”, Latest Access Time for the

website is July 2, 2018.

[16] Python. Python.org. 2016.

[17] J. Williams, and B. McCrillis, Memory

Forensiscs; Always Test Your Forensics Tools.

White Paper, Available:

https://www.renditioninfosec.com/whitepapers

/ Rendition%20InfoSec%20-

%20Memory%20Forensics %20Tool

%20Testing.pdf. 2018.

[18] http://www.volatilityfoundation.org/26.

2016, “Volatility Framework”, Latest Access

Time for the website is July 2, 2018.

[19] https://github.com/keydet89/RegRipper2.8.

2017. “Registry Ripper”, Latest Access Time

for the website is July 2, 2018.

[20] https://binaryforay.blogspot.com/2015/05/i

ntroducing-appcompatcacheparser.html,

“AppCompatCacheParser”. Eric Zimmerman.

Latest Access Time is July 2, 2018.

[21] https://support.virustotal.com/hc/en-

us/articles/115002126889-How-it-works.

“VirusTotal API”, VirusTotal.com. Latest

Access Time for the website is July 2, 2018.

[22] https://technet.microsoft.com/en-

us/library/cc978714.aspx?f=255&MSPPError

=-2147217396, “Command Processor,” Latest

Access Time for the website is July 2, 2018.

[23] https://technet.microsoft.com/en-

us/library/cc939696.aspx, “AppInit_DLLs,”

Latest Access Time is July 2, 2018.

[24] https://blogs.msdn.microsoft.com/mithuns/

2010/03/24/image-file-execution-options-ifeo/,

“Image File Execution Options (IFEO),”

Latest Access Time is July 2, 2018.

[25] https://docs.microsoft.com/en-us/windows-

hardware/drivers/install/hklm-system-

currentcontrolset-services-registry-tree,

Microsoft Corp., “HKLM\SYSTEM\

CurrentControlSet\Services Registry Tree,”

Latest Access Time for the website is July 2,

2018.

[26] https://docs.microsoft.com/en-

us/dotnet/framework/winforms/controls/know

n-folder-guids-for-file-dialog-custom-places,

“Known Folder GUIDs for File Dialog

Custom Places,” Latest Access Time for the

website is July 2, 2018.

https://www.microsoft.com/en-us/download/details.aspx?id=50395
https://www.microsoft.com/en-us/download/details.aspx?id=50395
https://msdn.microsoft.com/en-us/library/ms714395%28v=vs.85%29.aspx
https://msdn.microsoft.com/en-us/library/ms714395%28v=vs.85%29.aspx
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_pipelines?view=powershell-6
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_pipelines?view=powershell-6
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_pipelines?view=powershell-6
https://docs.microsoft.com/en-us/powershell/module/
https://docs.microsoft.com/en-us/powershell/module/
https://github.com/google/rekall
http://www.volatilityfoundation.org/26.%202016
http://www.volatilityfoundation.org/26.%202016
https://binaryforay.blogspot.com/2015/05/introducing-appcompatcacheparser.html
https://binaryforay.blogspot.com/2015/05/introducing-appcompatcacheparser.html
https://support.virustotal.com/hc/en-us/articles/115002126889-How-it-works
https://support.virustotal.com/hc/en-us/articles/115002126889-How-it-works
https://technet.microsoft.com/en-us/library/cc978714.aspx?f=255&MSPPError=-2147217396
https://technet.microsoft.com/en-us/library/cc978714.aspx?f=255&MSPPError=-2147217396
https://technet.microsoft.com/en-us/library/cc978714.aspx?f=255&MSPPError=-2147217396
https://technet.microsoft.com/en-us/library/cc939696.aspx
https://technet.microsoft.com/en-us/library/cc939696.aspx
https://blogs.msdn.microsoft.com/mithuns/2010/03/24/image-file-execution-options-ifeo/
https://blogs.msdn.microsoft.com/mithuns/2010/03/24/image-file-execution-options-ifeo/
https://docs.microsoft.com/en-us/windows-hardware/drivers/install/hklm-system-currentcontrolset-services-registry-tree
https://docs.microsoft.com/en-us/windows-hardware/drivers/install/hklm-system-currentcontrolset-services-registry-tree
https://docs.microsoft.com/en-us/windows-hardware/drivers/install/hklm-system-currentcontrolset-services-registry-tree
https://docs.microsoft.com/en-us/dotnet/framework/winforms/controls/known-folder-guids-for-file-dialog-custom-places
https://docs.microsoft.com/en-us/dotnet/framework/winforms/controls/known-folder-guids-for-file-dialog-custom-places
https://docs.microsoft.com/en-us/dotnet/framework/winforms/controls/known-folder-guids-for-file-dialog-custom-places

