
INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
L. Tekin et al., Vol.6, No.4

Implementation and Evaluation of Improved
Secure Index Scheme Using Standard and

Counting Bloom Filters

Leyla Tekin, Serap Sahin

Izmir Institute of Technology, Faculty of Engineering, Department of Computer Engineering,
Gulbahce-35430, Urla, Izmir, Turkey. Tel: +90 232 750 7869. e-mail: {leylatekin, serapsahin}@iyte.edu.tr

Abstract—This paper presents an improved Secure Index scheme as a searchable symmetric encryption technique and provides
a solution that enables a secure and efficient data storage and retrieval system. Secure Index scheme, conceived by Goh, is based
on standard Bloom filters (SBFs). Knowledge of the limitations of SBFs, such as handling insertions but not deletions, helps in
understanding the advantages of counting Bloom filters (CBFs). Thus, we have extended this scheme by adding a new algorithm
so that CBFs can also be applicable. Unlike the old scheme, our scheme can handle dynamic update of a document by updating
the existing index without rebuilding it. Moreover, we give a complementary comparison of both filters in our scheme. Finally, a
detailed performance evaluation shows that our scheme exhibits similar performance with regard to the query overhead and the
false positive probability and is quite efficient than the old scheme with regard to the update overhead by allocating more space.

Keywords—Searchable symmetric encryption; keyword search; indexes; bloom filters; dynamic update.

1. Introduction

In recent years, vast amounts of data are pro-
duced by several sources such as millions of digital
sensors, social media applications, smart phones,
financial transaction records etc. Thanks to many
capabilities offered by cloud computing, data own-
ers and organizations have extensively moved their
huge datasets from traditional local data centers to
the cloud so that they can utilize the possibilities
of greater flexibility and lower cost. However, this
requires to be kept their sensitive data on remote
untrusted servers and introduces new security and
privacy challenges that needs to be handled. There-
fore, these data are encrypted before sending to
the untrusted servers in order to protect the data

confidentiality. Although data encryption ensures
data confidentiality, it certainly prevents the server
from operating on the data, especially searching
over it.

The search functionality enables a data user to
receive the related data with a keyword from a
remote data server. The proposed solutions to per-
form a keyword search over the encrypted data
are (i) downloading all the stored data to the user
side, decrypt it locally and search the keyword over
the decrypted data and (ii) allowing the server to
decrypt the data and search the keyword, and return
the related results to the user. The first approach
downloads the entire data when a keyword search
is performed, even if a very small part of the data

46



INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
L. Tekin et al., Vol.6, No.4

is related to the search keyword. Hence, it leads to
an increase in communication overhead. The second
approach allows the server to know the secret key
and plaintext.

On the other hand, various searchable encryption
schemes have been developed to support searching
over encrypted data in a secure and efficient way.
Tang [4] presents a systematic study on search in
encrypted data. Three application scenarios, which
have motivated a number of theoretical searchable
encryption schemes, are described in that paper.
These application scenarios are: (i) search in out-
sourced personal database, (ii) email routing service
and (iii) matching in internet-based PHR (personal
healthcare records) systems.

In the first scenario, there can be a user who
may want to access her personal database any-
time and anywhere. Thus, the user can outsource
her database to a third-party service provider. To
provide a privacy-preserving solution, the user can
encrypt her database and outsource the ciphertext
to the service provider. Then, she can send a search
query to the service provider which search the query
in the encrypted database and return the encrypted
contents related to the search criteria. In the second
scenario, there can be an email service provider
which offers secure email service to its users. In this
situation, a user can have all her mails encrypted
using her public key which may be known by
every entity. Later on, she can submit a search
query to the service provider which search the query
in encrypted emails and send back the interesting
emails to the user. In the third scenario, an internet-
based PHR system can allow users to store, access,
edit and also share their PHRs. A PHR data of a user
can have a lot of sources. Since PHRs are sensitive
information, there should be a secure solution to
meet the privacy problem. For this, the user can have
her PHR data encrypted under her public key using

an encrypted search scheme. Then, the user can
authorize third-party servers to match her encrypted
data.

In addition to the above application scenarios, two
categorizations for search schemes over encrypted
data are presented in [4]. The first categorization is
based on whether a scheme supports full-domain or
index-based search. In full-domain setting, a search
will check every data item one by one for some
criteria. In index-based search, the search criteria is
tested based on index(es) rather than the contents of
all data items. Furthermore, in terms of the second
categorization, the schemes can be modeled using
either symmetric or asymmetric setting. The first
symmetric-setting scheme, proposed by Song et al.
[5], allows only the client to create the searchable
encrypted data and trapdoors. The first asymmetric-
setting scheme, introduced by Boneh et al. [6],
enables every entity to create the encrypted data, but
only the client can generate valid search trapdoors.

The study in this paper matches the first ap-
plication scenario explained above and focuses on
a searchable symmetric encryption scheme which
performs index-based search. We have chosen Se-
cure Index scheme, developed in [2], to implement
searches on encrypted documents. The scheme is
based on (standard) Bloom filters (SBFs) that are
fast probabilistic data structures for representation
of a set in order to answer membership queries.
However, Bloom filters do not support element
deletions. Unlike Bloom filters, counting Bloom
filters (CBFs) are able to support element additions
and deletions dynamically. In this manner, we have
proposed an improved scheme of Secure Index that
can allow dynamic updates on documents without
rebuilding operation.

The rest of the paper is organized as follows.
Section 2 gives information about the research
background on standard and counting Bloom filters.

47



INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
L. Tekin et al., Vol.6, No.4

Section 3 describes our enhanced Secure Index
scheme. Section 4 presents the system algorithms.
In Section 5, we point out performance evaluation.
Finally, we discuss the related work and conclude
the paper in section 6 and 7, respectively.

2. Background

In this section, we will provide a detailed back-
ground on standard and counting Bloom filters
by describing the properties and operations of the
filters, analyzing the mathematical model for false
positive probability and deciding trade-offs between
performance parameters.

2.1. Bloom Filters

Bloom filters are introduced by Burton Bloom
in 1970 [1]. A Bloom filter is a fast probabilistic
data structure that allows to test whether an element
is a member of a set in a limited memory space.
Although it is more space-efficient to represent a
set than other data structures like linked lists, arrays,
hash tables etc., it does not always produce 100%
correct results. It can result in false positives that
occur when it suggests that an element is in a set
even if the element is not, but the bloom filter
does not lead to false negatives. The basic Bloom
filter supports two operations that involve adding
elements to the set and querying for the membership
of elements.

Now, let us look at the detailed description of a
Bloom filter. The filter is a bit array of length m
to represent a set S = {s1, ..., sn} of n elements. It
uses k distinct independent hash functions h1, ..., hk,
each of them maps some element to the interval
[1, m] with a uniform random distribution. All bits
are firstly set to 0. Then, to insert each element si in
the set S, the array bits at positions h1(si), ..., hk(si)
are set to 1 on the bit array. Some bits can be set

to 1 multiple times by coincidences for different
elements. To test whether an element q belongs
to the set S, the array bits corresponding to the
positions h1(q), ..., hk(q) are checked. If at least one
bit is set to 0, then q is definitely not a member of
S. However, if all the checked bits are set to 1, then
q is a member of the set S with a high probability.
This means that there is some probability of a false
positive.

The false positive probability that occurs in a
Bloom filter can be calculated under the assumption
that a hash function chooses each array position
with equal probability, as specified in [7]. Before
quantifying the probability, some notations to be
used are examined: m = the number of bits in the
Bloom filter, n = the number of elements in the set,
k = the number of hash functions, and fp = the false
positive probability.

After defining the notations, now we will demon-
strate how the false positive probability can be
calculated. During the insertion of an element into
the filter, the probability that a specific bit is set to 1
by a hash function is (1/m). So, the probability that
this specific bit is not set to 1 by a hash function
is (1–1/m). Since there are k hash functions, the
probability of not setting the bit to 1 after all
the hash functions are applied is (1–1/m)k. After
inserting all elements of the set into the filter,
the probability that the bit is still 0 is (1–1/m)kn.
Therefore, the probability that the bit is 1 can be
found as 1–(1–1/m)kn. A false positive can occur
for an element that is not in the set if each of the
k array positions obtained by the hash functions is
1. Hence, the false positive probability fp can be
estimated, as in

fp = (1–(1–1/m)kn)k ≈ (1–e–kn/m)k. (1)

For fixed m and n, the value of k that minimizes
fp can be computed by setting the derivative of the

48



INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
L. Tekin et al., Vol.6, No.4

equation with respect to k to 0, which gives the
optimal value of kopt = ln2 ∗ (m/n). So, using the
optimal k, the false positive probability is (1/2)k ≈
0.6185m/n. The required array size m for the desired
number of elements n and false positive probability
fp is given by m = –(n∗ ln(fp))/(ln2)2. It means that
for a fixed false positive probability fp, there is a
linear relationship between the array size m and the
number of inserted elements n.

As can be seen in the Eq. (1), fp varies according
to three parameters: m, n and k. We test the mathe-
matical formula of the false positive probability with
different values for these parameters in order to see
the behavior of the theoretical mathematical model,
and draw the graphs shown in Fig. 1.

As a result, the variation of the fp with respect
to the parameters can be illustrated in Fig. 1: (i)
if m increases, fp decreases, (ii) if n increases,
fp also increases and (iii) if k increases for fixed
m and n, fp at first decreases, then reaches a
minimum, then increases. Therefore, there exists a
trade-off between three performance metrics which
are computation time (corresponding to k), storage
cost (corresponding to m) and probability of error
(corresponding to fp).

2.2. Counting Bloom Filters

Standard Bloom filters do not allow element dele-
tions by resetting ones back to zeros because there
can be coincidences and a bit can be set by multiple
elements. To address such a problem, Fan et al.
[3] proposed counting Bloom filters in which an
array of counters are used instead of bits. Initially,
all counters are set to 0. When an element is
inserted, the relevant counters are incremented and
when an element is deleted, the relevant counters
are decremented. To answer whether an element
is contained in a set, check if all the counters
corresponding to the hash functions are nonzero. In
this context, a counter keeps track of the number
of elements currently hashed to that location. The
selection of counter size is also important to avoid
counter overflow. According to the work in [7], four
bits are enough for most applications.

The structure of a counting Bloom filter is similar
to that of a standard Bloom filter. Hence, it can
represent a set of n elements with m counters using
k independent hash functions. Also, it can yield a
false positive probability, which does not depend on
the counter size, as in Eq. (1).

20000 40000 60000 80000 100000
m

0

0.2

0.4

0.6

0.8

1

fp

(a)

20000 40000 60000 80000 100000
n

0

0.2

0.4

0.6

0.8

1

fp

(b)

0 5 10 15 20 25
k

0

0.2

0.4

0.6

0.8

1

fp

(c)

Fig. 1: The changes of fp with respect to m, n and k. (a) fp as a function of m. (b) fp as a function of n.
(c) fp as a function of k using fixed m and n values. In (a) and (b), an optimal number of hash functions
has been assumed.

49



INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
L. Tekin et al., Vol.6, No.4

3. Proposed Solution: Improved Secure
Index Scheme

Secure Index scheme introduced in [2] consists of
four algorithms such as Keygen, Trapdoor, BuildIn-
dex and SearchIndex. The scheme uses (standard)
Bloom filters to track words in documents. A Bloom
filter represents a static set. Therefore, the scheme
updates a document by regenerating the Bloom
filter index of the document. On the other hand,
a counting Bloom filter can represent a dynamic
set. In this study, we add a new algorithm which
is UpdateIndex to the scheme. This new algorithm
uses counting Bloom filters, and so supports dy-
namic updates on documents more efficiently by
just updating the existing counting Bloom filter
index of the document. So, in the below algorithms
other than UpdateIndex, both standard and counting
Bloom filters can be used.

Keygen(s): The key generation algorithm takes a
security parameter s and generates a pseudoran-
dom function f and a master private key Kpriv =
(k1, . . . , kr).

Trapdoor(Kpriv, w): This algorithm takes the mas-
ter key Kpriv and word w as input, and outputs the
trapdoor for word w by calculating the r pseudoran-
dom functions which are computed efficiently from
the word and one part of the master key. So the
trapdoor can be shown as:
Tw = (f(w, k1), . . . , f(w, kr)).

BuildIndex(D, Kpriv): The algorithm focuses on
index generation. Given a document D including a
unique identifier Did and a list of words, and the
master key, it generates an index for the document
Did.
The steps to create the index for the given document
and master key are given below:
First, for each unique keyword wi in the document:

1 The trapdoor is calculated using the
Trapdoor(Kpriv, wi) algorithm, so the trapdoor
is:
Twi = (x1 = f(wi, k1), . . . , xr = f(wi, kr)).

2 Trapdoors are not directly inserted to the
Bloom filter against correlation attacks. There-
fore, the codeword Cwi is calculated using the
generated trapdoor and the identifier of the
document, which ensures the creation of dif-
ferent codewords representing the same word
for different documents. The codeword for wi
in document Did is:
Cwi = (y1 = f(Did, x1), . . . , yr = f(Did, xr)).

3 The codeword {y1, . . . , yr} can be inserted
into the Bloom filter of the document Did by
setting 1s to the bit positions corresponding to
{y1, . . . , yr}.

Next, the algorithm continues with the blinding
the Bloom filter that starts by computing an upper
bound u on the number of tokens in the document.
The Goh’s paper [2] suggests one token for every
byte in the document after it has been encrypted.
Then, v is determined as the number of unique
words in the document, and now the bloom filter is
blinded by inserting (u–v) ∗ r random 1’s. It equals
to adding (u–v) random words into the filter, except
for computing any pseudorandom function.
Finally, the index ID = (Did, BF) is returned as the
index for the document Did.

SearchIndex(Tw, ID): It takes the trapdoor Tw =
(x1, . . . , xr) for word w and the index ID = (Did, BF)
for document Did.
To test whether the document contains the keyword
or not, the following steps are performed:

1 The codeword for word w is calculated using
the given trapdoor and Did in a similar manner
as described above:
Cwi = (y1 = f(Did, x1), . . . , yr = f(Did, xr)).

2 Test if all bits at positions {y1, . . . , yr} in the

50



INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
L. Tekin et al., Vol.6, No.4

Bloom filter are set to 1.
3 If the Bloom filter’s reply is positive, then

output 1. Otherwise, output 0.

UpdateIndex(D, D', Kpriv, ID): The algorithm
takes two versions of a document which are the
previous version D and the updated version D', the
master key and the index of the document.
This algorithm is valid when counting Bloom filters
are used in the scheme. The steps to update the
taken index are explained below:
Firstly, the counting Bloom filter CBF is obtained
from the index.
Then, for each unique keyword wi that is included
in the previous version D, but not included in the
updated version D' of the document:

1 The trapdoor is calculated with the
Trapdoor(Kpriv, wi) algorithm.

2 The codeword is computed using the trapdoor
and the document id.

3 The codeword is deleted from the filter.

Next, for each unique keyword wi that is not in-
cluded in the previous version D, but included in
the updated version D' of the document, the trapdoor
and codeword are calculated, and inserted into the
filter.
As the last step, the index ID' = (Did', CBF) is
returned as the index for the document Did'.

4. Improved Secure Index Applied To
Encrypted Search

Until now, theoretical background on standard and
counting Bloom filters are investigated, and our im-
proved Secure Index scheme is given. Now, in this
section, we will mention how the search system can
be created. Actually, Goh [2] explained how Secure
Index scheme can be applied to search on encrypted
documents and described the system algorithms

using the setup, search and update algorithms. But,
our system has some differences, specifically in
update algorithm. Then, our system consists of five
algorithms: setup, search, add a document, delete a
document and update a document.

Algorithm 1 – Setup
This algorithm is run on the user side to set up the
system, in which either standard or counting Bloom
filters can be used. The user has n documents which
will be outsourced to the server. The algorithm
consists of the following steps:

1 Firstly optimal Bloom filter parameters should
be selected. Then, the user runs the Keygen(s)
algorithm with the chosen parameters to get
the pseudo-random function f and the master
private key Kpriv.

2 An integer i ∈ [1, n] is associated with each
document as its unique identifier.

3 An index is built for each document Did by
invoking the BuildIndex(Did, Kpriv) algorithm.

4 Each document is compressed and encrypted
using standard encryption algorithms. Finally,
the encrypted documents along with their in-
dexes are uploaded to the server.

Algorithm 2 – Search
When the user wants to search the document col-
lection stored on the server for the word y, the two
steps are required as follow:

1 The user generates the trapdoor Ty using the
Trapdoor(Kpriv, y) algorithm and sends Ty to
the server.

2 The server checks every index IDi by call-
ing SearchIndex(Ty, IDi) algorithm to find all
documents that contain the word y. Then, all
matching documents are returned to the user.

Algorithm 3 – Add a document
If the user wants to add a new document to the
document collection:

51



INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
L. Tekin et al., Vol.6, No.4

1 A unique identifier is assigned to this docu-
ment.

2 Then, an index is built for this document by
using the BuildIndex algorithm.

Algorithm 4 – Delete a document
The deletion algorithm includes:

1 Deleting the document and its index from the
server.

Algorithm 5 – Update a document
When the user wants to update a document, the user
takes the encrypted version of the related document
from the server. Whether downloading the index for
the document or not, depends on using standard or
counting Bloom filters.
If standard Bloom filters are used, the steps to
update the document are explained in detail below:

1 The encrypted document is decrypted and the
document is updated.

2 A new index is created for this document with
a new document identifier.

3 The document is encrypted again.
4 The new index and encrypted document are

sent to the server.

If counting Bloom filters are used, the user also
retrieves the counting bloom filter index of the
related document from the server. The steps to
update the document can be listed as follows:

1 The first step is similar to that of the standard
Bloom filter.

2 The user has the previous and updated version
of the document, thereby the UpdateIndex al-
gorithm can be called to update the counting
Bloom filter index.

3 The document is re-encrypted.
4 The updated index and the encrypted docu-

ment are transmitted to the server.

5. Performance Analysis

We implement the system based on our enhanced
scheme using java language on an Intel Core i5-
2410M 2.30 GHz CPU with 4GB RAM running
Windows 10 operating system. Both user and server
operations are performed on the single machine
so we do not consider latency that may occur in
practice. We use HMAC-SHA1 for the keyed hash
function, which has been suggested in the origi-
nal scheme and AES-128 with CBC and PKCS5
padding for encryption.

To evaluate the proposed scheme, we mainly com-
pare standard Bloom filters with counting Bloom
filters in our scheme in terms of four performance
metrics which are: (i) the false positive probability,
(ii) the query overhead, (iii) the storage overhead
and (iv) the update overhead. For this, all operations
are performed in memory. Furthermore, operations
such as encryption, which are the same for both the
filters, are not taken into account in comparisons.

We conduct some experiments on a real data set
of 500 RFC (Request for comments) [8] files that
are numbered from 2001 to 2500 with a total size
about 26 MB and some experiments on our own
data set which are created from RFC files. The
RFC file set includes a large number of technical
and organizational keywords about the Internet and
many of these keywords are unique to the file in
which they are used.

We use Apache Lucene [9] to extract keywords
from each RFC file by tokenizing the text, con-
verting the characters to lowercase, removing stop-
words and reducing words to a root form, namely
stemming. Therefore, when a keyword is searched,
initially all these operations are performed on this
keyword, and then the corresponding trapdoor and
codeword are computed.

In order to measure the performance of the certain

52



INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
L. Tekin et al., Vol.6, No.4

pieces of our code correctly, we utilize from Java
Microbenchmark Harness (JMH) [10] which is a
powerful tool to build, run and analyze micro-
benchmarks. We write benchmark codes for our
scenarios and execute them by specifying some
parameters, such as the number of warmup and
measurement iterations, the benchmark mode, and
so on. Now, we will explain five cases detailedly
below.

Case 1: Average query time (µs) against file size
(or number of words in a document)

In this experiment, 3 files of different lengths, such
as 100, 1000 and 10000 keywords, are derived
from the keywords in the RFC files. The keyword
“algorithm” is selected to search on the encrypted
files. In both the Bloom filters, number of hash
functions r is kept at 5. This search procedure
is repeated 100 times and the average results are
calculated.

Figure 2 gives information about how much average
query time of two filter types in µs is spent for
different file sizes. From the figure we demonstrate
that SBF has almost the same average query time as
CBF for all file sizes. This reason is that the number
of hash functions in both of the filters is kept at the
same value which is 5. We also see that file size
does not affect the query time.

Case 2: Total query time (ms) against number of
documents in the document set

For this experiment, we use 5 subsets of 20%, 40%,
60%, 80%, and 100% of the RFC files to show
impact of the number of documents in the document
set on the total query time. We choose the keyword
“communicate” to search on the encrypted subsets
of files. In the both Bloom filters, number of hash
functions r is kept at 5 as in case 1. The search
procedure is repeated 25 times and then total query
times are computed.

100 1000 10000
Number of words in a document

0

5

10

15

20

A
ve

ra
ge

 q
ue

ry
 ti

m
e 

(µ
s) SBF

CBF

Fig. 2: Average query time (µs) vs. number of words
in a document

100 200 300 400 500
Number of documents in the document set

0

2

4

6

8

10

T
ot

al
 q

ue
ry

 ti
m

e 
(m

s)

SBF
CBF

Fig. 3: Total query time (ms) vs. number of docu-
ments in the document set

Figure 3 illustrates total query time of the filters
for different number of documents in the document
set. According to the figure, SBF has almost the
same total query time as CBF for different number
of documents due to keeping the number of hash
functions in both of the filters at a certain level.
Moreover, as shown in the figure, the query time
of the filters increases linearly with the number of
documents.

Case 3: Update time (ms) against number of added
words

In this experiment, 3 different-length files are de-
rived from the keywords in the RFC files as in case

53



INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
L. Tekin et al., Vol.6, No.4

1. We add 1, 10, 20 and 50 different words to these
files in order to measure the update overhead of the
two filter types. This update procedure is repeated
100 times.

Figure 4 shows the update overhead of the filters
when different number of words are added to the
files in three cases of 100,1000 and 10000-word
files. It can be seen that CBF outperforms SBF
for all cases. We also demonstrate that the update
overhead of SBF dramatically increases as file size
increases.

Case 4: Update time (ms) against number of deleted
words

In contrast to case 3, now we delete 1, 10, 20 and
50 different words from the created files in order to

measure the update overhead of the two filter types.
This procedure is also repeated 100 times.

Figure 5 depicts the update overhead of the filters
when different number of words are deleted from
the files in three cases of 100,1000 and 10000-word
files. As in the case 3, it can be viewed from the
Fig.5 that CBF outperforms SBF for all cases. Also,
the update overhead of SBF grew more quickly as
file size increases.

Case 5: Expected, currentAdded and currentDeleted
false positive probability of CBF against number of
added/deleted words

Figure 6 illustrates expected, currentAdded and cur-
rentDeleted false positive probability of CBF against
number of added/deleted words to/from varying-

1 10 20 50
Number of added words to a 100-word document

0

50

100

150

200

250

300

350

U
pd

at
e 

tim
e 

(m
s)

SBF
CBF

(a)

1 10 20 50
Number of added words to a 1000-word document

0

50

100

150

200

250

300

350

U
pd

at
e 

tim
e 

(m
s)

SBF
CBF

(b)

1 10 20 50
Number of added words to a 10000-word document

0

50

100

150

200

250

300

350

U
pd

at
e 

tim
e 

(m
s)

SBF
CBF

(c)

Fig. 4: Update time (ms) vs. number of added words for varying-length documents

1 10 20 50
Number of deleted words from a 100-word document

0

50

100

150

200

250

300

350

U
pd

at
e 

tim
e 

(m
s)

SBF
CBF

(a)

1 10 20 50
Number of deleted words from a 1000-word document

0

50

100

150

200

250

300

350

U
pd

at
e 

tim
e 

(m
s)

SBF
CBF

(b)

1 10 20 50
Number of deleted words from a 10000-word document

0

50

100

150

200

250

300

350

U
pd

at
e 

tim
e 

(m
s)

SBF
CBF

(c)

Fig. 5: Update time (ms) vs. number of deleted words for varying-length documents

54



INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
L. Tekin et al., Vol.6, No.4

0 10 20 30 40 50
Number of added/deleted words to/from a 100-words document

0.00

0.05

0.10

0.15

0.20

Fa
ls

e 
po

si
tiv

e 
pr

ob
ab

ili
ty

Expected
CurrentAdded
CurrentDeleted

(a)

0 10 20 30 40 50
Number of added/deleted words to/from a 1000-words document

0.00

0.05

0.10

0.15

0.20

Fa
ls

e 
po

si
tiv

e 
pr

ob
ab

ili
ty

Expected
CurrentAdded
CurrentDeleted

(b)

0 10 20 30 40 50
Number of added/deleted words to/from a 10000-words document

0.00

0.05

0.10

0.15

0.20

Fa
ls

e 
po

si
tiv

e 
pr

ob
ab

ili
ty

Expected
CurrentAdded
CurrentDeleted

(c)

Fig. 6: False positive probability of CBF vs. number of added/deleted words to/from varying-length
documents

length documents, such as 100, 1000 and 1000
words. According to the figure, false positive prob-
ability of CBF increases as words are added to the
filter, and decreases as words are deleted from the
filter. Additionally, the probability changes much
more rapidly in the small documents.

6. Discussion

Dynamic Searchable Symmetric Encryption
schemes allow the document collection to
be modified after setup phase. Chang and
Mitzenmacher [11] proposed two schemes in
which a keyword dictionary can be stored or not
stored on the mobile device of the user. A masked
index string is created for each document in their
approach, and so the search time is linear in
the number of documents as in this paper. Also,
they studied secure updating of the documents.
In their approach, deletion of a document along
with its encrypted index is simple, but updating
a document is required to delete this document
with its encrypted index, and then building a new
encrypted index for a new document. Whereas,
in our approach updating a document can be
performed by only updating the corresponding
existing index of it.

The dynamic SSE schemes [12, 13, 14] are based

on inverted-index so for each unique keyword a
searchable index is generated. [13] and [14] support
the ability to add and delete documents efficiently,
however they do not take into account updating the
contents of documents. If a document is added, the
user will generate the add token for this document
by producing values for each unique keyword in it,
and then send the add token to the server which will
update the encrypted index. If a document is deleted,
this time the user will create a delete token and
send it to the server which will update the encrypted
index. [12] enables only adding new documents to
the document collection as updates. In this scheme,
search is logarithmic in the number of keywords,
but the size of the encrypted index is large and the
number of updates supported is limited.

As a result, although our improved scheme has
linear search time and IND2-CKA security model
which provides security if search queries are inde-
pendent of the previous queries, it is efficient in
terms of update time.

7. Conclusion

This paper suggests an improved Secure Index
scheme to perform searches and updates on en-
crypted documents. The old scheme supports up-
dating a document but it requires to rebuild the

55



INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
L. Tekin et al., Vol.6, No.4

standard Bloom filter index of the document. On
the other hand, our scheme can handle updating
a document by only updating the counting Bloom
filter index. Then, we implement our scheme with
standard and counting Bloom filters, and compare
the performance of the filters regarding different
metrics. Comprehensive experiments demonstrate
that the proposed scheme performs better in terms of
the update overhead by achieving the same accuracy
and almost the same query overhead, and using
slightly larger space. Especially if large documents
are used, update operation takes much less time.

Acknowledgments

This work was presented at the ISCTurkey 2017
Conference.

References

[1] B.H. Bloom, “Space/time trade-offs in hash coding with allow-
able errors”, Communications of the ACM, Vol.13, No.7, pp.422-
426, 1970.

[2] E.-J. Goh. Secure Indexes. Cryptology ePrint Archive, Report
2003/216. http://eprint.iacr.org/2003/216, 2003.

[3] L. Fan, P. Cao, J.M. Almeida, and A.Z. Broder, “Summary cache:
a scalable wide-area web cache sharing protocol”, IEEE/ACM
Transactions on Networking (TON), Vol.8, No.3, pp.281-293,
2000.

[4] Q. Tang. Search in Encrypted Data: Theoretical Models and Prac-
tical Applications. Cryptology ePrint Archive, Report 2012/648.
http://eprint.iacr.org/2012/648, 2012.

[5] D.X. Song, D. Wagner, and A. Perrig, “Practical techniques for
searches on encrypted data”, IEEE Symposium on Security and
Privacy, pp.44-55, 2000.

[6] D. Boneh, G. Di Crescenzo, R. Ostrovsky, and G. Persiano.
Public key encryption with keyword search. Eurocrypt, Vol.3027,
pp.506-522, 2004.

[7] S. Tarkoma, C.E. Rothenberg, E. Lagerspetz, “Theory and prac-
tice of bloom filters for distributed systems”, IEEE Communica-
tions Surveys and Tutorials, Vol.14, No.1, pp.131-155, 2012.

[8] http://www.ietf.org/rfc.html, RFC, Request For Comments
Database, Latest Access Time is 14 July 2017.

[9] https://lucene.apache.org, ApacheLucene, Latest Access Time is
30 June 2017.

[10] http://openjdk.java.net/projects/code-tools/jmh/, JMH, Java Mi-
crobenchmark Harness, Latest Access Time is 27 August 2017.

[11] Y.-C. Chang and M. Mitzenmacher, “Privacy preserving key-
word searches on remote encrypted data”, ACNS, Vol.5, pp.442-
455, 2005.

[12] P. van Liesdonk, S. Sedghi, J. Doumen, P. Hartel, and W. Jonker,
“Computationally Efficient Searchable Symmetric Encryption”,
Secure data management, Vol.6358, pp.87-100, 2010.

[13] S. Kamara, C. Papamanthou, and T. Roeder, “Dynamic search-
able symmetric encryption”, ACM Conference on Computer and
Communications Security, pp.965-976, 2012.

[14] R. Ramasamy, S.S. Vivek, P. George, and B.S.R. Kshatriya.
Dynamic Verifiable Encrypted Keyword Search Using Bitmap
Index and Homomorphic MAC. Cryptology ePrint Archive, Re-
port 2017/676. http://eprint.iacr.org/2017/676, 2017.

56


