
INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
I. Getzi et al., Vol.7, No.3

126

A Dynamic Scheme for Secure Searches over

Distributed Massive Datasets in Cloud Environment

using Searchable Symmetric Encryption Technique

Irene Getzi*‡, Christopher D Durairaj**

* Department of Computer Science, Manonmaniam Sundaranar University, Abishekappati, Tirunelveli, 627 012,

Tamil Nadu, India

**Research Centre, School of Computer Science, VHNSN College (Affiliated to Madurai Kamaraj University, Madurai),

Virudhunagar, 626 001, Tamil Nadu, India

‡ Irene Getzi; Tel: +91 948 014 4908, e-mail: igetzis@gmail.com

ORCID ID: 0000-0003-0812-6938, 0000-0002-6071-1133

Research Paper Received: 16.06.2018 Revised: 25.07.2018 Accepted: 10.09.2018

Abstract- Cloud computing has produced a paradigm shift in large-scale data outsourcing and computing. As the cloud server

itself cannot be trusted, it is essential to store the data in encrypted form, which however makes it unsuitable to perform

searching, computation or analysis on the data. Searchable Symmetric Encryption (SSE) allows the user to perform keyword

search over encrypted data without leaking information to the storage provider. Most of the existing SSE schemes have

restrictions on the size and the number of index files, to facilitate efficient search. In this paper, we propose a dynamic SSE

scheme that can operate on relatively larger, multiple index files, distributed across several nodes, without the need to

explicitly merge them. The experiments have been carried out on the encrypted data stored in Amazon EMR cluster. The

secure searchable inverted index, organized as a HashMap, is created instantly using Hadoop MapReduce framework during

the search process, thus significantly eliminate the need to store keyword-document pairs on the server. The scheme allows

dynamic update of existing index and document collection. The parallel execution of the pre-processing phase of the present

research work reduces the processing time at the data owner. An implementation of our construction has been provided in this

paper. Experimental results to validate the efficacy of our scheme are reported.

Keywords- Secure searches; searchable symmetric encryption; keyword search; multiple index; dynamic update.

1. Introduction

The cloud computing paradigm provides a

sophisticated environment for storage, processing

and distribution of large-scale data among different

users in an efficient manner. More enterprises and

users started adopting cloud-based services and

there is an upsurge on "Data-as-a-Service" (DaaS)

applications [1]. However, there are still many

security and privacy challenges impeding the wide

adoption of cloud computing in this domain. The

concern here is about losing control over sensitive

data while storing them on the untrusted third-

party server. For example, in a healthcare cloud

setting, even the existence of a record for a given

patient should be kept private. i.e., the untrusted

server should not even learn that a given person

has a health complication or is a patient at a

hospital.

Encrypting the data before outsourcing could

provide confidentiality, but at the same time it

makes traditional data utilization services such as

mailto:igetzis@gmail.com

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
I. Getzi et al., Vol.7, No.3

127

searching and retrieving the data a difficult task.

To enable searching over the data and recover

matching records, the user must either store an

index locally, or download the entire encrypted

datasets, decrypt it locally, and then search for the

desired results. Since indexes can grow large, the

first approach obviously negates the benefits of

cloud storage, while the second has high

communication complexity. Another method lets

the server decrypt the data, runs the query on the

server side, and sends only the results back to the

user. This allows the server to learn the data being

queried and hence makes encryption less useful.

Hence, it is desirable to provide end-end protection

to the data.

The question of performing computations on

encrypted data has instigated several fascinating

techniques. The problem of searching on encrypted

data was first considered explicitly by Song,

Wagner and Perrig [2]. The search on

symmetrically encrypted data can achieve optimal

security guarantee by considering the work on

oblivious RAMs [4], and fully homomorphic

encryption [5]. Unfortunately, these approaches

require high computational overhead and thus

remains impractical for large scale data

outsourcing applications. The Searchable

Symmetric Encryption (SSE) scheme strikes a

good balance between security guarantees and

practical performance with the smallest possible

loss of data confidentiality and is best suitable for

the design of searchable cryptographic cloud

storage systems [6].

At a high level, a Searchable Encryption

scheme employs a prebuilt encrypted search index

at setup that lets users with appropriate tokens

securely search over the encrypted data. Most of

the existing SSE schemes mentioned in

[7,8,9,11,14,15,17], are based on the notion that

the searchable index is a single file stored in a

centralized location. This assumption may not be

suitable for many cloud-based applications that

have large scale data stored in multiple locations.

For example, in a healthcare domain the data may

arise from different hospitals, diagnostic centers,

embedded devices, sensors or mobile phones, thus

makes it difficult to integrate and build a single

searchable index at once. It is not reasonable to

require the user to move all the data into a single

location. Liu, Chu and Chen [21], proposed a SSE

scheme with support for multiple data sources. The

scheme requires the index files to be merged by

the server before performing the search. Recent

SSE schemes [23,24,25,26] leverages distributed

search over multiple servers in an attempt to

mimize leakage. But none of the schemes

addressed the problem of dynamic datasets which

require frequent updates.

Our Contributions: The present work

deviates from existing inverted index-based

techniques found elsewhere [27]. The proposed

SSE scheme aims to build an efficient privacy

preserving keyword search over highly dynamic

and largescale cloud-based storage. The scheme

uses a forward index to store the encrypted

document-keyword pairs. This approach allows for

straightforward index building as well as dynamic

update operations. The parallel implementation of

the search phase using Hadoop MapReduce

concept enables to maintain the search complexity

sublinear. An inverted index organized as

HashMap is created during the search phase which

allows for subsequent multiple searches by the

user during a session with constant search time.

The proposed construction extends SSE over

distributed data strored across multiple servers. In

addition, the MapReduce framework provide

mechanisms to divide and randomly distribute

index to multiple servers. Hence no single server

can have the possesion of the entire document or

index and thus have the capability to minimize

leakage. In addition, in the present work the index

files and the document collection are encrypted in

parallel to minimize the setup time considerably.

The rest of the paper is organized as follows:

The next section describes the related work done in

this area. Section 3 includes the general working

model of the SSE scheme and its security

requirements. The detailed description of our

construction is presented in Section 4. The

implementation of the work and the results are

discussed in section 5 and concluded in Section 6.

2. Related Work

Over a decade, the problem of searching on

encrypted data is gaining momentum and created a

new research area. The state-of-the-art

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
I. Getzi et al., Vol.7, No.3

128

constructions achieve different trade-off between

security, efficiency and query expressiveness.

The searchable symmetric encryption scheme

proposed by Song in [2], uses stream cipher for

encryption and supports sequential search. The

complexity of encryption and search algorithms

are linear in time with the size of data files. Goh

[3], introduced a secure index-based search

technique using Bloom filters. Subsequent SSE

schemes use different index structures that include

linked list, array, look-up tables, and binary trees

to extend the functionality and efficiency of SSE

schemes. The schemes primarily used only static

indexes that prevents user to dynamically add to

the existing index or document collection. If

update is required, the index file must be rebuilt.

The adoption of inverted index approach

proposed in [7], reduced the search time to

sublinear time. The notion of dynamic updates

introduced by Kamara, Papamanthou, and Roeder

in [9] and the work that followed [10,11,12], uses

additional data structures such as search tables,

arrays, tree structures to manage newly added data

or deleted data thus making their construction very

complex. In addition, the update operations reveal

a non-trivial amount of information. The notion of

Blind Storage introduced in [13], precludes the

remote server from learning the number of files

uploaded and their sizes.

Some of the recent works attempt to improve

search efficiency and minimize leakage by using

different approaches. The scheme described in

[14], utilizes inverted matrix for efficient index

construction that hides the number of keywords.

An optimal index size using bloom filters and

integer arrays has been achieved in [15]. However,

both the schemes are not suitable for dynamic

updates. A search efficient scheme using relevance

score was proposed for medical cloud data [16].

To allow authorized access to multiple users, the

scheme uses attribute-based encryption and secure

k-Nearest Neighbor algorithm. The scheme

requires that for each dynamic update, the vector

with a relevance score has to be computed and

send to all the authorized search users. Yang, Li,

Yan, Zhang, and Cui [17], introduced an elegant

search method using inner product of vectors.

However, the scheme uses a different key for each

document and thus makes it impractical for

largescale data that requires large number of keys

and trapdoors to be generated.

The ultimate challenge when it comes to SSE

is to enable secure computing on massive data sets

[18]. SSE schemes for large-scale data are

proposed in the recent years. Cash et al. [20],

proposed a scheme to work with very-large scale

datasets of terabyte-scale data. The scheme

required additional storage and very high

computation capabilities. Liu, Chu and Chen [21],

proposed the notion of Multi-Data-Source SSE,

which allows the data to come from different

sources. Though the scheme is efficient in terms of

index size and search time, it offers less support

for dynamic updates. Another work by Hirano et

al. [22] proposed two approaches for searching

through multiple encrypted indexes. The first

approach needs to generate N trapdoors equal to

the number of encrypted indexes. The second

approach utilizes hash chains that allows server to

generate all trapdoors from a core element given

by the user. But the scheme has a security issue

that it may leak the searched keyword, as the hash

chain uses the public information, the unique index

identifier as the salt.

Recently, distributed query processing

capabilities are considered in the SSE schemes.

Kuzu, Islam, and Kantarcioglu [23] proposed a

scheme that vertically partitioned the data into

multiple servers. The inverted index construction

depends upon the frequency distribution of the

keywords over the document and organized as a

list or block vector. In addition, the update

operation requires additional data structures that

may leak information and has communication

overhead. The schemes [24,25,26], attempt to

minimize the leakage by distributing sets of

encrypted blocks randomly to different servers so

that no server has information on the entire

datasets. However, the schemes have

communication overhead or require the user to

store additional information about the blocks of

data stored in each server. In addition, the

schemes do not have options for dynamic updates.

Horvath and Vajda [28] revisited the role of

sequential scan in SSE and claim that their

construction offers efficient search under the

assumptions, that only partial database needs to be

scanned for many real-world scenarios.

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
I. Getzi et al., Vol.7, No.3

129

The problem we focus in this work is to

provide secure and efficient search over very

largescale, highly dynamic datasets that require

frequent updates. The proposed system enables us

to search securely through multiple index files

distributed across several servers. The parallel

execution at Setup and Search phases produces

efficient results. Also, the scheme does not require

storage at the user, additional data structures for

updates, and it minimizes the communication

overhead between the user and the server.

3. Preliminaries

This section intends to provide information on

the working principle of SSE scheme and contains

the notations used in the security algorithms of

SSE. The SSE scheme allows the data owner to

store an encrypted document collection D = (D1,

D2,...,Dn) on an honest-but-curious server S, while

preserving the ability to search through them

through tokens. The search token represents an

encrypted query that can be generated only by

users with the appropriate secret key. Searchable

Symmetric Encryption Scheme (SSE) is a

collection of five polynomial-time algorithms

(KeyGen, Enc, TokenGen, Search and update)

such that:

K←KeyGen(1
k
): a probabilistic key generation

algorithm that is run by the data owner to setup the

scheme. It takes a security parameter 1
k,

and

outputs secret keys K for the scheme.

(IE, DE) ← Enc (K, D, I): run by the owner that

takes as input a secret key K, Index I, and a

document collection D. It outputs an encrypted

index IE, and a sequence of ciphertexts DE.

Tw ← TokenGen (K, w): run by the owner / user

to generate a token for a given word. It takes a

secret key K and a keyword w as inputs and returns

a token Tw.

Id(w) ← Search (IE, Tw): run by the server S to

search for the documents in D that contain word w.

It takes an encrypted index IE, encrypted collection

DE and a token Tw and returns Id(w), the set of

identifiers of documents containing w.

(I′E , D′E)←Update(IE, upd), DE): run by the data

owner to perform an update operation upd:=

(addDoc, Id, W) or upd:= (delDoc, Id) where Id is

the document identifier to be added or removed,

and W := (w1, w2,…wk) is the list of unique

keywords related to the document to be added to

the index. The Update algorithm adds (or deletes)

the document to (or from) DE, and results in an

updated index I′E and updated data collection D′E.

The KeyGen algorithm generates keys for the

encryption phase. The user generates associated

keywords index for data files, and encrypts index I

and document collection D = (D1, D2,...,Dn) that

have unique identifiers ID = (Id1, Id2,...,Idn) and a

set of keywords W = (w1, w2,...,wm). Then user

uploads the encrypted documents DE and secure

index IE to the server. The index IE efficiently

maps a keyword to a set of identifiers to that

correspond to a set of files. The receiver picks a

target keyword and generate token for this Tw

keyword by running TokenGen algorithm, then

sends it to the server. As the server receives the

search query, it runs the Search algorithm with the

encrypted index and token and return the

documents that contains the token.

In this work, a dynamic SSE scheme, which

can search securely over very large-scale cloud

data, is presented. The section that follows

contains the detailed description of our scheme.

4. Construction of the Present Work

In this section, we propose a dynamic SSE

scheme suitable to work with distributed colossal

data storage that arises from multiple sources. The

scheme makes use of parallel processing

capabilities to achieve better performance. At

Setup phase, the document collection, consists of

several text and image files are encrypted in

parallel and send to the cloud server along with the

search index, which contains the essential

keywords required to search through the

documents. The documents and index files can be

uploaded to distributed locations. During the

search phase, the scheme uses MapReduce concept

to enable efficient keyword search through the

distributed collection. The Fig.1, shows the

schematic diagram of the present work.

We assume that each document Di is associated

with a unique document identifier Idi, generated by

the owner. The metadata or keywords Wi

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
I. Getzi et al., Vol.7, No.3

130

associated with the documents are used to build

the index file I. The main idea of the SSE scheme

is to transform each unique keyword w to a

searchable representation Cw, in a way that the user

can search for documents in which the keyword

occurs {Wi

|w ∈ Wi} by issuing a token Tw.

Our basic scheme comprises of the setup,

search and update phases and the associated

algorithms as described below.

4.1 Setup Phase

During the setup phase protocol, the data

owner encrypts the data files and builds searchable

indexes. It makes use of two algorithms namely:

 Key Generation: The key generation

algorithm (Alg. 4.1.1) uses a random λ-bit

string of length 128 bits and generates two

secret keys, Km, Kw (Keysize 128 bits) for

encrypting data files and index. In our scheme,

the key was generated randomly by using Java

Crypto API and stored in a text file for further

use by the data owner. The key can be shared

using any secure key distribution protocols to

the user with whom the owner wishes to share

the data.

 Pre-processing / Index Building: The data

owner uses BuildIndex algorithm (Alg. 4.1.2)

to build a local index for his datasets. For

example, in healthcare system, the patient’s

medical images, reports, and related

healthcare data from diagnostic centers or

smart devices or sensors constitute the

dataset/s. The metadata that includes

information such as patientID, date of

investigation, along with the document

identifier can constitute the index file. In our

scheme, we use multiple index files of varying

sizes to test the efficacy of the scheme. The

index files are organized as a collection of

CSV files. The index files as well as the

document collections are encrypted using

Advanced Encryption Standard (AES)

algorithm in CBC mode (Cipher Chaining

Block Mode) and are uploaded to the server.

To speed up the execution time, the input data

is split into multiple chunks and are encrypted

in parallel using Java Executor Service.

Algorithm 4.1.1. KeyGen

Input: λ: A security parameter

Output: Km, Kw: Secret keys for encrypting

documents and index K=(Km, Kw) ← {0, 1}
λ

(Randomly generates Km, Kw from {0, 1}
λ
)

Fig. 2, provides the work-flow of the setup phase

that computes the encryption of document

collection and index.

Fig. 1. Schematic diagram of proposed scheme (The actors are Data owner (A), Data user (B) and Cloud provider (C))

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
I. Getzi et al., Vol.7, No.3

131

Algorithm 4.1.2. BuildIndex

Input: Secret Keys K= (Km, Kw), Document Collections: ,

 List of document Identifiers Idi, and their metadata stored as CSV files I

Output: Encrypted document collection DE and secure Index files IE

a) Initialization:

 Parse D and build W, the set of distinct words w that describes the content in D. For each

document Di, add a tuple (Idi, {w, w∈ W}) in the index file I, organized as a CSV file.

b) Encryption:

 For each entry in D, do

 For each entry in I, do

 split I into n

 for each child Ii of I, do

 read (Idi, {w, w∈ W})

 merge IiE to IE

 return DE, IE

 Upload DE and IE to the cloud server.

4.2 Search Phase

Whenever the user wants to retrieve the set of

encrypted data items from the server, it generates

search tokens using algorithm TokenGen. Upon

receiving an encrypted search token Tw from the

user, the storage provider uses the searchIndex

algorithm to search through the encrypted index

and returns the set of identifiers of documents that

contains the search keyword w.

 TokenGen: The algorithm (Alg. 4.2.1) is run by

the data owner /user to generate a search token

for a given word. It takes a secret key Kw and a

keyword w as inputs, and returns a token Tw.

The token is used to locate the correct entry in

the index file.

 searchIndex: Our scheme (Alg. 4.2.2) uses

multiple index files that can be stored in

different nodes or clusters. To cope up with

large scale data, the MapReduce computing

framework is used as an efficient tool to search

through the encrypted data. The multiple

encrypted index files are fed to different

mappers. At each mapper, the files to be

processed are divided into equal splits and are

assigned to a map task. The map task scans the

CSV file, and if the token is found, sends the

corresponding document identifier to the output

list. The reducer combines the results generated

by the mappers and fetches the corresponding

encrypted documents from HDFS (Hadoop

Distributed File System) and sent it to the user.

Fig.2. Diagrammatic representation of Set-up Phase

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
I. Getzi et al., Vol.7, No.3

132

Algorithm 4.2.2. searchIndex

Input: Search Token Tw, Encrypted Index

files IE, Encrypted Document collection DE

Output: resId, the List of document

identifiers Idi that contains the search

keywords w

The MapReduce Framework of Hadoop is

used to search through the encrypted indexes.

Map Task: Map (IE, Tw)

 for each tuple t ∈ IE do

 Id← t[0];

 for each word Cw in tuple t do

 if Tw == Cw then

 return (Cw, Id)

Reduce Task: Reduce (Cw, [Id1, Id2,…] pairs

 from map task)

resId = []

for each Cw in map results

 resId ← resId.append(I

for each Id in resId:

 Fetchdocuments(Id);

sendToUser(dE);

done

The detailed process flow of the search phase

is depicted in Fig. 3.

4.3 Update Phase

Our construction allows dynamic update of

document collection as well as Index file as

described in (Alg. 4.3.1). When a new file is

uploaded to a document collection, the metadata

corresponding to document is appended to the

existing index file. The scheme is easily scalable to

support adding new document collection as well.

The forward indexing allows the scheme to

perform dynamic updates without additional

overhead.

The addDoc algorithm, allows straightforward

addition of a new document to the existing

collection. The document is encrypted using the

key K and added to the document collection DE.

The keywords W are encrypted and appended to IE.

Algorithm 4.3.1. Update

Input: Document DId , Encrypted Index files IE,

 Keys K, a set of keywords W, Encrypted

 Document collection DE.

Output: results in an updated index I′E and an

 Document collection D′E.

(I′E

, D′E)←Update(IE

, upd), DE): run by the

data owner to perform an update operation

upd:= (addDoc, Id, W) or upd:= (delDoc, Id)

as described below:

a) addDoc(DId, Id, W)

 DE (Id) ← E(Km, DId) // Encrypt document

 tuple t← Id

 For each keyword w in W,

 Cw ← E(Kw, w)

 t← t.append(Cw)

 D′E ← DE + DE (Id) // Upload DE (Id) to DE

 I′E ← IE + t // Append IE with t

b) delDoc(DId, Id)

 Send Id to Document Collection

 D′E ← DE - DE (Id)

 Search IE for Id using MapReduce

 If Found

 I′E ← IE - I(Id) // Delete tuple

5. Implementation and Results

The proposed scheme has been successfully

implemented using Java as a tool. The details of

Fig.3. Diagrammatic representation of Search Phase

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
I. Getzi et al., Vol.7, No.3

133

the implementation and the results are discussed in

the following section.

 Our Prototype Summary: Our model includes

processing at three levels: pre-processing /

setup at owner, at the user and the server during

search. The setup phase generates the encrypted

documents and index files. The user generates a

token to search through encrypted documents

and decrypts server responses. The server uses

the encrypted index to answer user requests and

provide mechanism for updating the index and

document collection.

 Experimental Platform: The experiments at

setup phase has been implemented in Java and

run on DELL system, equipped with Intel Core

i5-6402P @ 2.80 GHz x 4 computer with 8GB

RAM running Ubuntu 14.04. Each data point in

Fig. 4 and Fig. 5 is an average of five

executions. The server-side experiments were

performed using Hadoop MapReduce

framework on Amazon EMR cluster on a

r4.2xlarge instance running Linux containing

eight High Frequency Intel Xeon E5-2686 v4

(Broadwell) Processors and 61GB of RAM with

EBS volume of 32MB.

 Dataset: We chose two types of real-world

datasets, a collection of 1000 text documents of

25 MB and a set of 1000 png images of total

size 100 MB. To check the performance of the

present scheme, different sizes of index files

were used as shown in Table 1. The index files

are CSV files that contain metadata that forms

the set of keywords that can be used for

searching through the document collection. The

first field of the index file contains the

document identifier. Each row contains the set

of keywords that describes the corresponding

document.

5.1 Setup Phase

 The document collections are encrypted using

Advanced Encryption Standard (AES) algorithm in

Cipher Block Chaining mode. The key is

generated randomly and stored in a secure location

at the data owner for later use to decrypt the files.

To speed up the process, the files in the document

collection are encrypted in parallel using Java

Executor Service. The experiments were

performed in varying the number of threads from

2, 4, 8, 16, … , 1024 in powers of 2. From the

Fig.4(a) and Fig.4(b), it can be seen that the

execution time considerably decreases with the

parallel execution.

Table 1. Encrypted Index Files: document identifier

(Column A), size of the index file (Column B, number of

keywords words in the document Column C)

Document Id (A) File Size

(in GB) (B)

No. of keywords

(C)

sseIndx0A 0.02 741,870

sseIndx1A 0.04 1,285,499

sseIndx2A 0.06 2,628,837

sseIndx3A 0.125 4,777,216

sseIndx4A 0.25 7,875,647

sseIndx5A 0.5 21,925,296

sseIndx6A 1.00 40,905,048

sseIndx7A 2.50 93,722,000

sseIndx8A 4.00 507,444,000

 (a)

(b)

Fig. 4. Parallel Execution of Document Collection -

Varying # of Threads (Execution time for .png files (a),

text collection (b))

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
I. Getzi et al., Vol.7, No.3

134

The data parallelism produces better results

with increase in size of the document collection;

the execution time of parallel encryption of image

collection is reduced to 1/3 of the non-parallel

implementation. This approach is suitable for

massive datasets.

Our scheme uses large-scale index files as it

requires by many real-time applications. A search

index file, organized as a CSV file, is divided into

equal chunks of lines depends on the number of

threads and executed in parallel. For each line, the

individual keywords are extracted, encrypted using

AES algorithm. The results are collected, and the

encrypted index file is uploaded to the server. An

index file of size 123 MB with 1,048,578 lines and

16,777,216 keywords is selected for testing and the

results are depicted in Fig. 5. The parallel

execution reduces the execution time by 50%.

5.2 Search Phase

The search phase consists of two algorithms. The

scheme allows the user to retrieve the documents

through the keywords. The secure tokens are

generated by the user for the given keyword, and

sent to the remote server. To realize the distributed

computing environment, the server application is

implemented using Hadoop MapReduce

framework. The index files are distributed to

different nodes using HDFS. The index files are

searched in parallel and the encrypted documents

linked to the token are returned to the user.

The server-side experiments are conducted at

amazon cloud by varying the number of nodes. To

perform empirical analysis, we use multiple index

files of varying sizes ranging from 0.25 GB to 4

GB. The experiments are repeated for clusters with

1 master node and varying the number of core

nodes to 1, 2, 4 and 8. In contrast to the existing

schemes, our scheme uses very large index files

that consist of keywords ranging from few

thousands to 50 million and still produces efficient

results.

Initially, with single and two nodes clusters,

the search time is linear with the index file size.

There is a significant reduction in the search time

with increase in the number of nodes as shown in

Fig. 6. As the number of nodes increases, it

produces consistent search time irrespective of

different index file sizes. Since the MapReduce

framework can handle split size of 128 MB at a

time, the scheme produces efficient results with

just four nodes. Thus, the scheme is suitable for

handling very large-scale datasets.

Our scheme allows searching through multiple

index files distributed across multiple nodes. The

experiments are repeated by varying the number of

index files at each node. As shown in Fig. 7 and

Fig. 8, the usage of multiple files does not affect

 Fig. 5. Parallel Execution of Index Varying # of Threads

Fig. 6. Search time Evaluation: Varying # of Index files – Single Index (a), 4 Files (b), 8 Files

(c) and 16 Files (d)

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
I. Getzi et al., Vol.7, No.3

135

the performance. Strikingly, as the number of

index files increases, the scheme produces better

results for larger file sizes. The search time is

consistent for files with size greater than 0.5 GB

irrespective of number of index files. Thus, the

scheme is suitable for handling multiple index files

located at distributed locations.

The scheme allows multiple searches during a

session. The inverted index created at runtime

during the search phase allows subsequent

searches would be performed with constant search

time.

6. Performance Evaluation

In this section, we evaluate the performance of

our present work compared with the other SSE

schemes proposed for large-scale cloud strorage.

The schemes are evaluated respectively, in terms

of index structure, index size, search time, update

complexity, leakage, and query processing and the

results are tabulated in Table 2.

The present work deviates from the existing

methods in the following aspects; the ability to

work with larger and distributed indexes through

MapReduce framework, and creation of inverted

index at search phase to facilitate multiple

keyword search. As mentioned in section 5, the

parallel implementation of the Setup and Search

phases offer significant reduction in the execution

time.

In most of the real-world cloud-based

applications, the data collection has seen rapid

expansion with frequent updates [28]. Inverted

index based approaches may not be practical for

such applications. Our scheme based on forward

indexing offers straightforward update of dynamic

storage. The linear search complexity inherent to

forward indexing, has been addressed. The

distributed processing of search algorithm with

MapReduce framework offers sub-linear search.

Unlike the other schemes [21,23,24,28], the

search operation could be done in a few seconds

even for the index with more than 500,000,000

keywords and thus eliminates the need to have

smaller indexes as described in [15,21,24]. An

inverted index, created at runtime of search phase,

Fig. 8. Search time Evaluation: Varying # File Size and # of nodes – 0.5 GB (a), 1 GB (b), 2

GB (c) and 4 GB (d)

ime Evaluation: Varying # of Index files – Single Index (a), 4 Files (b), 8 Files (c) and 16 Files

Fig. 7. Search time Evaluation: Varying # File Size and # of index files – 0.5 GB (a), 1 GB (b),

2 GB (c) and 4 GB (d)

 Search time Evaluation: Varying # of Index files – Single Index (a), 4 Files (b), 8 Files (c) and

16 Files (d)

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
I. Getzi et al., Vol.7, No.3

136

allows the user to perform multiple searches

during a session. The HashMap structure of the

index, further reduces the search complexity to

O(r/s) for subsequent query processing. Unlike

[20,21,24,26], updating the data collection and

index, with a new entry is straightforward in our

approach and do not require any additional

overhead or data structures.

6.1 Security Analysis

In this present construction, the cloud servers

are considered as honest-but-curious Adversaries.

The scheme uses block cipher AES, which has the

underlying PRP, PRF defined as F : {0, 1}
λ

× {0,

1}
∗

→ {0, 1}
n
, for λ ∈ N, which is

computationally indistinguishable from a random

function when observed by any probabilistic

polynomial-time adversary A = (A1, A2..., Ak) . To

analyse the

proposed scheme, the well known model described

in [4] is used.

The SSE security model is parametrized by the

leakage functions L1, L2, and L3 indicating the

information leakage during Setup, Search and

Update protocols. We assume that each adversary

have control over only a single server except the

master node. The leakage functions for a single

server design are described as follows:

L1 (IE , DE) : Given an encrypted Index collection

IE and document collection DE, L1 outputs the size

of each document |Di|, the identifiers of each

document Idi, length of the index |I| and the

keyword distributions for a single server.

L2 (IE , Tw , DE, t) : Given a Token Tw, at time t, L2

outputs the document identifiers Idi containing

keyword w, the number of matched documents (i.e

the access pattern), and if the query is repeated, the

Table 2. Comparisons with a few SSE schemes

Scheme Index Size Search Time Update

Complexity

Index

Structure

Leakage Distributed

processing

[14] O(W *2
d
) O(n) Static SSE Inverted

 Matrix

N, m, r No

[15] O(mn) O(log m+r) Static SSE Inverted &

Bloom filters

N, m No

[20] O(N) O(r/p) O(N) Inverted N, n No

[21] O(n) O(n) O(N) Inverted N, n No

[23] O(N) O(r) Static SSE Inverted

Tree

N, n Yes

[24] O(Wn) +

O(N)/s

O(n)/s O(m) Inverted N/s, n/s, r/s Yes

[26] O((N + n)l/s) avg(r/s) O((N + n)l/s) Inverted W + n,

((N + n)l)/s

Yes

[28] O(mn) O(nm) O(m) Forward N, n, m No

Ours O((mn)l/s) O(mn/c)/s

O(r)/s
*

O(m) Forward &

Inverted
*

N/s, n/s, m/s, r/s Yes

 n is the number of documents; m is the number of keywords per document;

 N is the number of document-keyword pairs; p denotes the number of processors

 r is the number of documents matching the query keyword; s denotes the number of servers

 l represents the number of blocks ; c denotes the number of splits / map tasks

 W is the totalnumber of keywords; d is the atmost length of the keyword

 * for subsequent keyword search

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
I. Getzi et al., Vol.7, No.3

137

set of tokens used by previous searches. (i.e the

search pattern).

L3 (IE , Tw , W, Id) : Given a document Id, and

related keywords W, L3 outputs the the number of

keywords added or removed, the document

identifier, updated index size.

Let λ ∈ N be the security parameter and E, the

secure encryption scheme. For an adversary A and

a simulator S, we conduct two probabilistic games

RealA(λ) and SimA,S(λ), of which, RealA(λ)

conducted by adversary A and challenger C and

while SimA,S(λ), simulated by A and S using only

the available information that an adversary can get

from leakage functions.

RealA (λ) : The challenger C runs KeyGen(1
λ) to

generate a random secret key K for E. A sends D to

C. Then C returns IE ← BuildIndex(K, D) and DE ←

E(K, D) to E. Then A submits q polynomial queries,

Q = (w1, w2,...,wq). For each keyword, A receives a

Token Tw ← TokenGen (K, w) from C and picks

the next keyword as a function of previously

obtained tokens and search outcomes. Finally, A
outputs a bit b ∈ {0, 1}.

Sim A ,S (λ) : A chooses a set of documents D and

sends it to S. Given L1 (IE , DE), S computes (I
*

E ,

D
*

E) and sends them to A . In the search phase, A
makes q queries expressed as Q. For each

keyword, S learns from L2 (IE , Tw , DE, t) and returns

Tw to A. Finally, A outputs a bit b' ∈ {0, 1}.

We say that our scheme satisfies adaptive

semantic security if for all probabilistic

polynomial-time (PPT) adversaries A, there exists

a PPT simulator S such that:

|Pr[RealA (λ) = 1]| − |Pr[SimA ,S (λ) = 1]| ≤ negl(λ) ,

where negl(λ) is a negligible function.

The SSE security model can be extended to

multi-server setting. If an adversary A who controls

all servers Sj ∈ S, then A has access to the whole

of (Dsj, ISj) Sj ∈ S. and can form a single index

table I from all Isj. Similarly, A can consolidate all

the previous query responses to perform statistical

attacks. In this case, A has the same information as

an adversary of the single server SSE scheme, and

hence gain equal advantage.

We assume that our servers are non-colluding

and hence each adversary A has control over only

partial documents and partial indexes stored on a

single server except for the one that can attack the

master node. For a single server SSE, the scheme

can be proved semantically secure against A. The

simulator S can adaptively generates (I'E , T'w ,

D'E)) as follows.

➢ As the size of each DE is known to S
through L1, it can simulate the encrypted

documents D'j ← {0, 1}
|Dj |

 for (j=1,...,n). Let D' =

(D'1, ...,D'n). S creates I'E and randomly chooses

Si{0, 1}
n

and stores it in each entry of I'E. Then S

sends (D'E , I'E) to A .

➢ For q queries, S checks whether it has seen

wi earlier, from the search pattern revealed by L2. If

yes, then S retrieves the token previously generated

for wi and uses it as T'wi. However, if wi has

appeared for the first time, then S generates a token

T'wi returns T'wi to A.

Since the underlying symmetric functions PRF,

PRP, E are secure cryptographic primitives, our

scheme will guarantee that each encrypted

document Di and a real ciphertext D'i is

indistinguishable. Similar discussion can be

applied for index construction and token

generation, and thus makes A unable to distinguish

between I'E and real index IE, Twi in RealA (λ) and

T'wi in Sim A ,S (λ) without the knowledge of the

key K.

A scheme offers better security, if it can control

the leak. Our scheme can minimize the access

pattern leakage without using complex structures

as required by [14,15,16,24,26]. Since the

documents and indexes are partitioned horizontally

and sent to multiple servers S, it is now hard for an

Adversary which controls only a subset of S, to

know the actual size of the documents, indexes,

and the distribution of keyword-document pairs.

Thus, our scheme controls L1.

 Multiserver block-based SSE design provides

higher security for SSE [25]. The MapReduce

framework used in the search phase, split the

indexes into blocks and randomly assign them to

multiple tasks which makes it even more harder for

the adversary to know the keyword and document

distribution as in [25, 26].

The update operation is straightforward in our

scheme, which can leak only the number of

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
I. Getzi et al., Vol.7, No.3

138

keywords added, in contrary to the other

implementations [16,21,26]. The schemes may

leak the documents that have the same keywords.

Since the data and indexes are distributed, the

other servers may not learn when and where the

update had happened. In addition, the frequent

updates to the storage and index, offer inconsistent

search results over time, and thus prevents the

adversary from learning from the previous search

patterns. Thus, the present constuction controls L2,

and L3. Moreover, the creation of inverted index

during search phase and its construction using

HashMap provides location transparency and

prevents the leakage of keyword-document pair

distribution. Thus, the present work offers

efficient, secure and practical solution and is more

relevant for highly dynamic large-scale cloud

storage.

7. Conclusion

In this work, we have implemented a Dynamic

Searchable Symmetric Encryption scheme that can

perform secure searches on the encrypted data

stored on the real cloud architecture. As the data

generated in the cloud-based applications are

usually very large and is often uploaded to

distributed locations, we have designed the scheme

that is suitable for handling multiple index files of

larger sizes. The data distributed across multiple

locations are handled in parallel without

compromising on the security. The security of the

scheme can be further improved by using a

probabilistic algorithm. To speed up the pre-

processing phase, the document collection and

index files have been executed in parallel. The

scheme supports dynamic update of the encrypted

collection with minimal updates and

communication overhead. The search phase has

been implemented at Amazon Web Services using

Hadoop MapReduce concept. The scheme

performs efficient search through very large index

files with millions of keywords. The parallel

execution of distributed files at the server,

produces minimal search time even for larger file

sizes. Remarkably, the search time remains

consistent with increase in the number of files.

Thus, the scheme is suitable for any real-time

application that involves large-scale datasets stored

across multiple clouds.

References

[1]. Z. Zheng, J. Zhu, M. R. Lyu, "Service-generated Big

data and Big data-as-a-service: An overview", In

Proceedings of IEEE International Congress on Big Data,

pp. 403-410, 27 June -2 July 2013.

DOI=10.1109/BigData.Congress.2013.60.

[2]. D. X. Song, D. Wagner, and A. Perrig, “Practical

techniques for searching on encrypted data. In

proceedings of IEEE Symposium on Security and

Privacy”, SP’00, pages 44–55, 14 -17 May 2000.

DOI= 10.1109/SECPRI.2000.848445

[3]. E. J. Goh, “Secure Indexes”, Cryptology ePrint Archive,

Report2003/216, 2003. http://eprint.iacr.org/2003/216.pdf

[4]. O. Goldreich and R. Ostrovsky. “Software Protection and

Simulation on Oblivious RAMs”, Journal of the ACM

(JACM), Vol. 43, No. 3, pp. 431–473, 1996.

DOI=10.1145/233551.233553

[5]. C. Gentry, “Fully homomorphic encryption using ideal

lattices”, In Proceedings of the ACM symposium on

Theory of computing (STOC ’09), pp.169-178, ACM, 31

May – 02 June, 2009. DOI=10.1145/1536414.1536440

[6]. S. Kamara, K. Lauter, “Cryptographic cloud storage”, In

Financial Cryptography and Data Security, FC2010”, Vol.

6054 of LNCS, Springer-Verlag, pp. 136–149, 2010.

DOI = 10.1007/978-3-642-14992-4_13

[7]. R. Curtmola, J. Garay, S. Kamara, and R. Ostrovsky,

“Searchable symmetric encryption: Improved definitions

and efficient constructions”, In Proceedings of the 2006

ACM Conference on Computer and Communications

Security, CCS’06, pp. 79–88, 30 October – 03 November,

2006. https://eprint.iacr.org/2006/210.pdf

[8]. C. Bösch, P. Hartel, W. Jonker, A. Peter, “A survey of

provably secure searchable encryption”, ACM

Computing Survey (CSUR), Vol. 47, No. 2, pp. 1–18,

2015. DOI=10.1145/2636328

[9]. S. Kamara, C. Papamanthou, and T. Roeder, “Dynamic

searchable symmetric encryption”, In Proceedings of the

ACM Conference on Computer and Communications

Security, CCS’12, pp.965–976, 16 – 18 October, 2012.

DOI=10.1145/2382196.2382298

[10]. S. Kamara and C. Papamanthou, “Parallel and dynamic

searchable symmetric encryption”, In Financial

Cryptography and Data Security, Vol. 7859 of LNCS, pp.

258–274, 2013. www.ifca.ai/pub/fc13/78590253.pdf

[11]. E. Stefanov, C. Papamanthou, and E. Shi, “Practical

dynamic searchable encryption with small leakage”, In

proceedings of Network and Distributed System Security

Symposium,NDSS’14,2014.

https://eprint.iacr.org/2013/832.pdf

[12]. F. Hahn, F. Kerschbaum, “Searchable Encryption with

Secure and Efficient Updates”, In Proceedings of the

ACM SIGSAC Conference on Computer and

Communications Security, CCS’14, pp. 310-320, 03 – 07

November, 2014. DOI=10.1145/2660267.2660297

https://ieeexplore.ieee.org/document/6597164/
https://ieeexplore.ieee.org/document/6597164/
https://ieeexplore.ieee.org/document/848445/
http://eprint.iacr.org/2003/216.pdf
https://dl.acm.org/citation.cfm?id=233553
https://dl.acm.org/citation.cfm?id=233553
https://dl.acm.org/citation.cfm?id=233553
https://dl.acm.org/citation.cfm?doid=1536414.1536440
https://link.springer.com/chapter/10.1007/978-3-642-14992-4_13
https://link.springer.com/chapter/10.1007/978-3-642-14992-4_13
https://link.springer.com/chapter/10.1007/978-3-642-14992-4_13
https://eprint.iacr.org/2006/210.pdf
https://dl.acm.org/citation.cfm?id=2636328
https://dl.acm.org/citation.cfm?id=2636328
https://dl.acm.org/citation.cfm?id=2636328
https://dl.acm.org/citation.cfm?id=2636328
https://dl.acm.org/citation.cfm?id=2636328
https://dl.acm.org/citation.cfm?id=2636328
https://dl.acm.org/citation.cfm?id=2382298
http://www.ifca.ai/pub/fc13/78590253.pdf
https://eprint.iacr.org/2013/832.pdf
https://dl.acm.org/citation.cfm?doid=2660267.2660297
https://dl.acm.org/citation.cfm?doid=2660267.2660297

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
I. Getzi et al., Vol.7, No.3

139

[13]. M. Naveed, M. Prabhakaran, and C. Gunter, “Dynamic

searchable encryption via blind storage”, In Proceedings

of the IEEE Symposium on Security and Privacy, S&P,

18 – 21 May 2014. DOI=10.1109/SP.2014.47

[14]. X. Jiang, X. Ge, J. Yu, F. Kong, X. Cheng and R. Hao,

“An Efficient Symmetric Searchable Encryption Scheme

for Cloud Storage”, Journal of Internet Services and

Information Security (JISIS), Vol. 7, No. 2, pp. 1-18, May

2017.

https://pdfs.semanticscholar.org/2a0e/df98524c92931478

cd3fbc32afb6caa7a57d.pdf

[15]. R. Miyoshi, H. Yamamoto, H. Fujiwara, and T.

Miyazaki, “Practical and Secure Searchable Symmetric

Encryption with a Small Index”, In Secure IT Systems,

NordSec 2017, Vol. 10674 of LNCS, Springer, pp. 53-69,

November 2017. DOI=10.1007/978-3-319-70290-2_4

[16]. H. Li, Y. Yang, Y. Dai, S. Yu, and Y. Xiang, “Achieving

Secure and Efficient Dynamic Searchable Symmetric

Encryption over Medical Cloud Data”, IEEE

Transactions on Cloud Computing, November 2017.

DOI = 10.1109/TCC.2017.2769645

[17]. J. Yang, S. Li, X. Yan, B. Zhang, and B. Cui

“Searchable Symmetric Encryption Based on the Inner

Product for Cloud Storage”, International Journal of Web

and Grid Services, Vol. 14, No. 1, pp.70–87, January

2018. DOI=https://doi.org/10.1504/IJWGS.2018.088393

[18]. N. P. Smart, Future Directions in Computing on

Encrypted Data, Technical Report,ECRYPT-CSA,

http://www.ecrypt.eu.org/csa/documents/D2.2Computing

onEncryptedData.pdf, November 2015.

[19]. M. I. Salam, W. Yau, J. Chin, S. Heng, H. Ling, R.

Phan, G. S. Poh, S. Tan and W. Yap, “Implementation of

searchable symmetric encryption for privacy-preserving

keyword search on cloud storage”, Journal of Human-

centric Computing and Information Sciences, Vol. 5, No.

19, 2015. DOI = 10.1186/s13673-015-0039-9

[20]. D. Cash, J. Jaeger, S. Jarecki, C. Jutla, H. Krawczyk,

M.-C. Rosu, and M. Steiner, “Dynamic searchable

encryption in very large databases: Data structures and

implementation”, In Proceedings of Network and

Distributed System Security Symposium NDSS’14. 2014.

https://eprint.iacr.org/2014/853.pdf

[21]. C. Liu, L. Zhu, and J. Chen, “Efficient Searchable

Symmetric Encryption for Storing Multiple Source Data

on Cloud”, In Proceedings of the IEEE Conference

Trustcom/BigDataSE/ISPA, 20 – 22 August 2015.

DOI=10.1109/Trustcom.2015.406

[22]. T. Hirano, M. Hattori,Y. Kawai, N. Matsuda, M.

Iwamoto, K. Ohta, Y. Sakai, T. Munaka, “Simple, secure,

and efficient searchable symmetric encryption with

multiple encrypted indexes”, Advances in Information

and Computer Security, IWSEC 2016, Vol. 9836 of

LNCS, pp. 91–110. Springer, Cham, 12-14, September

2016. DOI = 10.1007/978-3-319-44524-3_6

[23]. M. Kuzu, M.S. Islam, and M. Kantarcioglu, “, In

proceedings of the 5th ACM Conference on Data and

Application Security and Privacy, CODASPY '15, pp.

271-278,02–04 March 2015.

DOI=10.1145/2699026.2699116

[24]. Y. Ishai, E. Kushilevitz, S. Lu, and R. Ostrovsky,

“Private Large-Scale Databases with Distributed

Searchable Symmetric Encryption”, Topics in

Cryptology - CT-RSA 2016, Vol. 9610 of LNCS,

Springer, pp. 90-107, February 2016. DOI =

10.1007/978-3-319-29485-8_6

[25]. M. Mohamad, J. Chin, and G. Poh, “On the Security

Advantages of Block-Based Multiserver Searchable

Symmetric Encryption” , In the proceedings of IEEE 14
th

Annual Conference on Privacy, Security and Trust (PST),

pp. 349 – 352, 12-14 December 2016.

DOI = 10.1109/PST.2016.7906985

[26]. G.S. Poh, M.S. Mohamad, & J.J Chin, “Searchable

symmetric encryption over multiple servers”,

Cryptography and Communications, Volume 10, Issue 1,

pp.139–158,January2018.

https://doi.org/10.1007/s12095-017-0232-y

[27]. F. Han, J. Qin, J. Hu, “Secure searches in the cloud: A

survey”, Future Generation Computer Systems, Vol. 62,

pp.66-75, September 2016.

https://doi.org/10.1016/j.future.2016.01.007

[28]. M. Horvath and I. Vajda, "Searchable Symmetric

Encryption for Restricted Search", Journal of

Communications Software and Systems, Vol.14, No. 1,

pp.104-111, March 2018.

DOI = https://doi.org/10.24138/jcomss.v14i1.419

https://ieeexplore.ieee.org/document/6956592/
https://pdfs.semanticscholar.org/2a0e/df98524c92931478cd3fbc32afb6caa7a57d.pdf
https://pdfs.semanticscholar.org/2a0e/df98524c92931478cd3fbc32afb6caa7a57d.pdf
https://pdfs.semanticscholar.org/2a0e/df98524c92931478cd3fbc32afb6caa7a57d.pdf
https://pdfs.semanticscholar.org/2a0e/df98524c92931478cd3fbc32afb6caa7a57d.pdf
https://pdfs.semanticscholar.org/2a0e/df98524c92931478cd3fbc32afb6caa7a57d.pdf
https://pdfs.semanticscholar.org/2a0e/df98524c92931478cd3fbc32afb6caa7a57d.pdf
https://pdfs.semanticscholar.org/2a0e/df98524c92931478cd3fbc32afb6caa7a57d.pdf
https://doi.org/10.1007/978-3-319-70290-2_4
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6245519
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6245519
https://doi.org/10.1109/TCC.2017.2769645
https://doi.org/10.1504/IJWGS.2018.088393
https://doi.org/10.1504/IJWGS.2018.088393
https://doi.org/10.1504/IJWGS.2018.088393
https://doi.org/10.1504/IJWGS.2018.088393
https://doi.org/10.1504/IJWGS.2018.088393
https://doi.org/10.1504/IJWGS.2018.088393
http://www.ecrypt.eu.org/csa/documents/D2.2ComputingonEncryptedData.pdf
http://www.ecrypt.eu.org/csa/documents/D2.2ComputingonEncryptedData.pdf
https://hcis-journal.springeropen.com/track/pdf/10.1186/s13673-015-0039-9
https://hcis-journal.springeropen.com/track/pdf/10.1186/s13673-015-0039-9
https://hcis-journal.springeropen.com/track/pdf/10.1186/s13673-015-0039-9
https://eprint.iacr.org/2014/853.pdf
https://ieeexplore.ieee.org/document/7345314/
https://doi.org/10.1007/978-3-319-44524-3_6
https://doi.org/10.1109/PST.2016.7906985
https://doi.org/10.1007/s12095-017-0232-y
https://doi.org/10.1007/s12095-017-0232-y
https://doi.org/10.1007/s12095-017-0232-y
https://doi.org/10.1007/s12095-017-0232-y
https://doi.org/10.1007/s12095-017-0232-y
https://doi.org/10.1016/j.future.2016.01.007
https://doi.org/10.1016/j.future.2016.01.007
https://doi.org/10.1016/j.future.2016.01.007
https://doi.org/10.1016/j.future.2016.01.007
https://doi.org/10.24138/jcomss.v14i1.419
https://doi.org/10.24138/jcomss.v14i1.419
https://doi.org/10.24138/jcomss.v14i1.419
https://doi.org/10.24138/jcomss.v14i1.419
file:///D:/downloads/DOI%20=
file:///D:/downloads/DOI%20=

