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Abstract- Cloud computing has produced a paradigm shift in large-scale data outsourcing and computing.  As the cloud server 

itself cannot be trusted, it is essential to store the data in encrypted form, which however makes it unsuitable to perform 

searching, computation or analysis on the data. Searchable Symmetric Encryption (SSE) allows the user to perform keyword 

search over encrypted data without leaking information to the storage provider. Most of the existing SSE schemes have 

restrictions on the size and the number of index files, to facilitate efficient search. In this paper, we propose a dynamic SSE 

scheme that can operate on relatively larger, multiple index files, distributed across several nodes, without the need to 

explicitly merge them. The experiments have been carried out on the encrypted data stored in Amazon EMR cluster. The 

secure searchable inverted index, organized as a HashMap, is created instantly using Hadoop MapReduce framework during 

the search process, thus significantly eliminate the need to store keyword-document pairs on the server. The scheme allows 

dynamic update of existing index and document collection. The parallel execution of the pre-processing phase of the present 

research work reduces the processing time at the data owner. An implementation of our construction has been provided in this 

paper. Experimental results to validate the efficacy of our scheme are reported. 

 

Keywords- Secure searches; searchable symmetric encryption; keyword search; multiple index; dynamic update. 

 

1. Introduction 

 

The cloud computing paradigm provides a 

sophisticated environment for storage, processing 

and distribution of large-scale data among different 

users in an efficient manner. More enterprises and 

users started adopting cloud-based services and 

there is an upsurge on "Data-as-a-Service" (DaaS) 

applications [1]. However, there are still many 

security and privacy challenges impeding the wide 

adoption of cloud computing in this domain. The 

concern here is about losing control over sensitive 

data while storing them on the untrusted third-

party server. For example, in a healthcare cloud 

setting, even the existence of a record for a given 

patient should be kept private. i.e., the untrusted 

server should not even learn that a given person 

has a health complication or is a patient at a 

hospital. 

Encrypting the data before outsourcing could 

provide confidentiality, but at the same time it 

makes traditional data utilization services such as 
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searching and retrieving the data a difficult task. 

To enable searching over the data and recover 

matching records, the user must either store an 

index locally, or download the entire encrypted 

datasets, decrypt it locally, and then search for the 

desired results. Since indexes can grow large, the 

first approach obviously negates the benefits of 

cloud storage, while the second has high 

communication complexity. Another method lets 

the server decrypt the data, runs the query on the 

server side, and sends only the results back to the 

user. This allows the server to learn the data being 

queried and hence makes encryption less useful. 

Hence, it is desirable to provide end-end protection 

to the data. 

The question of performing computations on 

encrypted data has instigated several fascinating 

techniques. The problem of searching on encrypted 

data was first considered explicitly by Song, 

Wagner and Perrig [2]. The search on 

symmetrically encrypted data can achieve optimal 

security guarantee by considering the work on 

oblivious RAMs [4], and fully homomorphic 

encryption [5]. Unfortunately, these approaches 

require high computational overhead and thus 

remains impractical for large scale data 

outsourcing applications. The Searchable 

Symmetric Encryption (SSE) scheme strikes a 

good balance between security guarantees and 

practical performance with the smallest possible 

loss of data confidentiality and is best suitable for 

the design of searchable cryptographic cloud 

storage systems [6]. 

At a high level, a Searchable Encryption 

scheme employs a prebuilt encrypted search index 

at setup that lets users with appropriate tokens 

securely search over the encrypted data. Most of 

the existing SSE schemes mentioned in 

[7,8,9,11,14,15,17], are based on the notion that 

the searchable index is a single file stored in a 

centralized location. This assumption may not be 

suitable for many cloud-based applications that 

have large scale data stored in multiple locations. 

For example, in a healthcare domain the data may 

arise from different hospitals, diagnostic centers, 

embedded devices, sensors or mobile phones, thus 

makes it difficult to integrate and build a single 

searchable index at once. It is not reasonable to 

require the user to move all the data into a single 

location. Liu, Chu and Chen  [21], proposed a SSE 

scheme with support for multiple data sources. The 

scheme requires the index files to be merged by 

the server before performing the search. Recent 

SSE schemes [23,24,25,26] leverages distributed 

search over multiple servers in an attempt to 

mimize leakage. But none of the schemes 

addressed the problem of dynamic datasets which 

require frequent updates. 

Our Contributions: The present work 

deviates from existing inverted index-based 

techniques found elsewhere [27]. The proposed 

SSE scheme aims to build an efficient privacy 

preserving keyword search over highly dynamic 

and largescale cloud-based storage. The scheme 

uses a forward index to store the encrypted 

document-keyword pairs. This approach allows for 

straightforward index building as well as dynamic 

update operations. The parallel implementation of 

the search phase using Hadoop MapReduce 

concept enables to maintain the search complexity 

sublinear. An inverted index organized as 

HashMap is created during the search phase which 

allows for subsequent multiple searches by the 

user during a session with constant search time.   

The proposed construction extends SSE over 

distributed data strored across multiple servers. In 

addition, the MapReduce framework provide 

mechanisms to divide and randomly distribute 

index to multiple servers. Hence no single server 

can have the possesion of the entire document or 

index and thus have the capability to minimize 

leakage. In addition, in the present work the index 

files and the document collection are encrypted in 

parallel to minimize the setup time considerably. 

The rest of the paper is organized as follows: 

The next section describes the related work done in 

this area. Section 3 includes the general working 

model of the SSE scheme and its security 

requirements. The detailed description of our 

construction is presented in Section 4. The 

implementation of the work and the results are 

discussed in section 5 and concluded in Section 6.  

 

2. Related Work 

 

Over a decade, the problem of searching on 

encrypted data is gaining momentum and created a 

new research area. The state-of-the-art 
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constructions achieve different trade-off between 

security, efficiency and query expressiveness. 

The searchable symmetric encryption scheme 

proposed by Song in [2], uses stream cipher for 

encryption and supports sequential search. The 

complexity of encryption and search algorithms 

are linear in time with the size of data files. Goh 

[3], introduced a secure index-based search 

technique using Bloom filters. Subsequent SSE 

schemes use different index structures that include 

linked list, array, look-up tables, and binary trees 

to extend the functionality and efficiency of SSE 

schemes. The schemes primarily used only static 

indexes that prevents user to dynamically add to 

the existing index or document collection. If 

update is required, the index file must be rebuilt. 

The adoption of inverted index approach 

proposed in [7], reduced the search time to 

sublinear time. The notion of dynamic updates 

introduced by Kamara, Papamanthou, and Roeder 

in [9] and the work that followed [10,11,12], uses 

additional data structures such as search tables, 

arrays, tree structures to manage newly added data 

or deleted data thus making their construction very 

complex. In addition, the update operations reveal 

a non-trivial amount of information. The notion of 

Blind Storage introduced in [13], precludes the 

remote server from learning the number of files 

uploaded and their sizes. 

Some of the recent works attempt to improve 

search efficiency and minimize leakage by using 

different approaches.  The scheme described in 

[14], utilizes inverted matrix for efficient index 

construction that hides the number of keywords. 

An optimal index size using bloom filters and 

integer arrays has been achieved in [15]. However, 

both the schemes are not suitable for dynamic 

updates. A search efficient scheme using relevance 

score was proposed for medical cloud data [16]. 

To allow authorized access to multiple users, the 

scheme uses attribute-based encryption and secure 

k-Nearest Neighbor algorithm. The scheme 

requires that for each dynamic update, the vector 

with a relevance score has to be computed and 

send to all the authorized search users. Yang, Li, 

Yan, Zhang, and Cui [17], introduced an elegant 

search method using inner product of vectors. 

However, the scheme uses a different key for each 

document and thus makes it impractical for 

largescale data that requires large number of keys 

and trapdoors to be generated.  

The ultimate challenge when it comes to SSE 

is to enable secure computing on massive data sets 

[18]. SSE schemes for large-scale data are 

proposed in the recent years. Cash et al. [20], 

proposed a scheme to work with very-large scale 

datasets of terabyte-scale data. The scheme 

required additional storage and very high 

computation capabilities. Liu, Chu and Chen [21], 

proposed the notion of Multi-Data-Source SSE, 

which allows the data to come from different 

sources. Though the scheme is efficient in terms of 

index size and search time, it offers less support 

for dynamic updates. Another work by Hirano et 

al. [22] proposed two approaches for searching 

through multiple encrypted indexes. The first 

approach needs to generate N trapdoors equal to 

the number of encrypted indexes. The second 

approach utilizes hash chains that allows server to 

generate all trapdoors from a core element given 

by the user. But the scheme has a security issue 

that it may leak the searched keyword, as the hash 

chain uses the public information, the unique index 

identifier as the salt. 

Recently, distributed query processing 

capabilities are considered in the SSE schemes. 

Kuzu, Islam, and Kantarcioglu [23] proposed a 

scheme that vertically partitioned the data into 

multiple servers. The inverted index construction 

depends upon the frequency distribution of the 

keywords over the document and organized as a 

list or block vector. In addition, the update 

operation requires additional data structures that 

may leak information and has communication 

overhead. The schemes [24,25,26], attempt to 

minimize the leakage by distributing sets of 

encrypted blocks randomly to different servers so 

that no server has information on the entire 

datasets. However, the schemes have 

communication overhead or require the user to 

store additional information about the blocks of 

data stored in each server.  In addition, the 

schemes do not have options for dynamic updates. 

Horvath and Vajda [28] revisited the role of 

sequential scan in SSE and claim that their 

construction offers efficient search under the 

assumptions, that only partial database needs to be 

scanned for many real-world scenarios. 
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The problem we focus in this work is to 

provide secure and efficient search over very 

largescale, highly dynamic datasets that require                 

frequent updates. The proposed system enables us 

to search securely through multiple index files 

distributed across several servers. The parallel 

execution at Setup and Search phases produces 

efficient results. Also, the scheme does not require 

storage at the user, additional data structures for 

updates, and it minimizes the communication 

overhead between the user and the server. 

 

3. Preliminaries 

 

This section intends to provide information on 

the working principle of SSE scheme and contains 

the notations used in the security algorithms of 

SSE. The SSE scheme allows the data owner to 

store an encrypted document collection D = (D1, 

D2,...,Dn) on an honest-but-curious server S, while 

preserving the ability to search through them 

through tokens. The search token represents an 

encrypted query that can be generated only by 

users with the appropriate secret key. Searchable 

Symmetric Encryption Scheme (SSE) is a 

collection of five polynomial-time algorithms 

(KeyGen, Enc, TokenGen, Search and update) 

such that: 

K←KeyGen(1
k
): a probabilistic key generation 

algorithm that is run by the data owner to setup the 

scheme. It takes a security parameter 1
k, 

and 

outputs secret keys K for the scheme.  

(IE, DE) ← Enc (K, D, I): run by the owner that 

takes as input a secret key K, Index I, and a 

document collection D. It outputs an encrypted 

index IE, and a sequence of ciphertexts DE.  

Tw ← TokenGen (K, w):  run by the owner / user 

to generate a token for a given word. It takes a 

secret key K and a keyword w as inputs and returns 

a token Tw. 

Id(w) ← Search (IE, Tw): run by the server S to 

search for the documents in D that contain word w. 

It takes an encrypted index IE, encrypted collection 

DE and a token Tw and returns Id(w), the set of 

identifiers of documents containing  w. 

(I′E ,  D′E)←Update( IE, upd), DE):  run by the data 

owner to perform  an update operation  upd:= 

(addDoc, Id, W) or upd:= (delDoc, Id) where Id is 

the document identifier to be added or removed, 

and W := (w1, w2,…wk) is the list of unique 

keywords related to the document to be added to 

the index. The Update algorithm adds (or deletes) 

the document to (or from) DE, and results in an 

updated index I′E and updated data collection D′E. 

The KeyGen algorithm generates keys for the 

encryption phase. The user generates associated 

keywords index for data files, and encrypts index I 

and document collection D = (D1, D2,...,Dn) that 

have unique identifiers ID = (Id1, Id2,...,Idn) and a 

set of keywords W = (w1, w2,...,wm). Then user 

uploads the encrypted documents DE and secure 

index IE to the server. The index IE efficiently 

maps a keyword  to a set of identifiers to that 

correspond to a set of files. The receiver picks a 

target keyword and generate token for this Tw 

keyword by running TokenGen algorithm, then 

sends it to the server. As the server receives the 

search query, it runs the Search algorithm with the 

encrypted index and token and return the 

documents that contains the token. 

In this work, a dynamic SSE scheme, which 

can search securely over very large-scale cloud 

data, is presented. The section that follows 

contains the detailed description of our scheme.   

                                    

4. Construction of the Present Work 

 

In this section, we propose a dynamic SSE 

scheme suitable to work with distributed colossal 

data storage that arises from multiple sources.  The 

scheme makes use of parallel processing 

capabilities to achieve better performance. At 

Setup phase, the document collection, consists of 

several text and image files are encrypted in 

parallel and send to the cloud server along with the 

search index, which contains the essential 

keywords required to search through the 

documents. The documents and index files can be 

uploaded to distributed locations. During the 

search phase, the scheme uses MapReduce concept 

to enable efficient keyword search through the 

distributed collection. The Fig.1, shows the 

schematic diagram of the present work. 

We assume that each document Di is associated 

with a unique document identifier Idi, generated by 

the owner. The metadata or keywords Wi 
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associated with the documents are used to build 

the index file I. The main idea of the SSE scheme  

is to transform each unique keyword w to a 

searchable representation Cw, in a way that the user 

can search for documents in which the keyword 

occurs {Wi

 
|w ∈ Wi} by issuing a token Tw.  

Our basic scheme comprises of the setup, 

search and update phases and the associated 

algorithms as described below. 

 

4.1 Setup Phase 

 

During the setup phase protocol, the data 

owner encrypts the data files and builds searchable 

indexes. It makes use of two algorithms namely: 

 Key Generation: The key generation 

algorithm (Alg. 4.1.1) uses a random λ-bit 

string of length 128 bits and generates two 

secret keys, Km, Kw (Keysize 128 bits) for 

encrypting data files and index. In our scheme, 

the key was generated randomly by using Java 

Crypto API and stored in a text file for further 

use by the data owner. The key can be shared 

using any secure key distribution protocols to 

the user with whom the owner wishes to share 

the data. 

 Pre-processing / Index Building: The data 

owner uses BuildIndex algorithm (Alg. 4.1.2) 

to build a local index for his datasets. For 

example, in healthcare system, the patient’s 

medical images, reports, and related 

healthcare data from diagnostic centers or 

smart devices or sensors constitute the 

dataset/s. The metadata that includes 

information such as patientID, date of 

investigation, along with the document 

identifier can constitute the index file. In our 

scheme, we use multiple index files of varying 

sizes to test the efficacy of the scheme. The 

index files are organized as a collection of 

CSV files. The index files as well as the 

document collections are encrypted using 

Advanced Encryption Standard (AES) 

algorithm in CBC mode (Cipher Chaining 

Block Mode) and are uploaded to the server. 

To speed up the execution time, the input data 

is split into multiple chunks and are encrypted 

in parallel using Java Executor Service. 

Algorithm 4.1.1. KeyGen 

Input: λ:  A security parameter 

Output: Km, Kw: Secret keys for encrypting 

documents and index K=(Km, Kw ) ←  {0, 1}
λ 
 

(Randomly generates Km, Kw  from {0, 1}
λ
) 

                                                                      

Fig. 2, provides the work-flow of the setup phase 

that computes the encryption of document 

collection and index. 

 

Fig. 1. Schematic diagram of proposed scheme (The actors are Data owner (A), Data user (B) and Cloud provider (C)) 
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Algorithm 4.1.2. BuildIndex 

Input: Secret Keys K= (Km, Kw), Document Collections: , 

 List of document Identifiers Idi, and their metadata stored as CSV files I 

Output: Encrypted document collection DE and secure Index files IE 

a) Initialization: 

 Parse D and build W, the set of distinct words w that describes the content in D. For each 

document Di, add a tuple (Idi, {w, w∈ W}) in the index file I, organized as a CSV file. 

b) Encryption: 

     For each entry in D, do 

                   

    For each entry in I, do 

             split I into n 

             for each child Ii of I, do 

                   read (Idi, {w, w∈ W}) 

                    

              merge IiE to IE 

       return DE, IE        

    Upload DE  and IE  to the cloud server. 

 

4.2 Search Phase 

 

Whenever the user wants to retrieve the set of 

encrypted data items from the server, it generates 

search tokens using algorithm TokenGen. Upon 

receiving an encrypted search token Tw from the 

user, the storage provider uses the searchIndex                             

algorithm to search through the encrypted index 

and returns the set of identifiers of documents that 

contains the search keyword w.  

 TokenGen: The algorithm (Alg. 4.2.1) is run by 

the data owner /user to generate a search token 

for a given word. It takes a secret key Kw and a 

keyword w as inputs, and returns a token Tw. 

The token is used to locate the correct entry in 

the index file. 

 searchIndex: Our scheme (Alg. 4.2.2) uses 

multiple index files that can be stored in 

different nodes or clusters. To cope up with 

large scale data, the MapReduce computing 

framework is used as an efficient tool to search 

through the encrypted data. The multiple 

encrypted index files are fed to different 

mappers. At each mapper, the files to be 

processed are divided into equal splits and are 

assigned to a map task. The map task scans the 

CSV file, and if the token is found, sends the 

corresponding document identifier to the output 

list. The reducer combines the results generated 

by the mappers and fetches the corresponding 

encrypted documents from HDFS (Hadoop 

Distributed File System) and sent it to the user. 

 
 

Fig.2. Diagrammatic representation of Set-up Phase 
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Algorithm 4.2.2. searchIndex 

Input: Search Token Tw, Encrypted Index 

files IE, Encrypted Document collection DE 

Output: resId, the List of document 

identifiers Idi that contains the search 

keywords w 

The MapReduce Framework of Hadoop is 

used to search through the encrypted indexes. 

Map Task: Map (IE, Tw) 

   for each tuple t ∈ IE do 

      Id← t[0]; 

      for each word Cw in tuple t do 

            if Tw == Cw then    

       return (Cw, Id)                                                                                                                           

      

Reduce Task: Reduce (Cw, [Id1, Id2,…] pairs 

                              from map task) 

resId = [] 

for each Cw in map results 

      resId ← resId.append(I 

for each Id in resId: 

      Fetchdocuments(Id); 

sendToUser(dE); 

done 

 

The detailed process flow of the search phase 

is depicted in Fig. 3. 

4.3 Update Phase 

 

Our construction  allows dynamic update  of 

document collection as well as Index file as 

described in (Alg. 4.3.1). When a new file is 

uploaded to a document collection, the metadata 

corresponding to document is appended to the 

existing index file. The scheme is easily scalable to 

support adding new document collection as well. 

The forward indexing allows the scheme to 

perform dynamic updates without additional 

overhead. 

The addDoc algorithm, allows straightforward 

addition of a new document to the existing 

collection. The document is encrypted using the 

key K and added to the document collection DE. 

The keywords W are encrypted and appended to IE.   

Algorithm 4.3.1. Update 

Input: Document DId , Encrypted Index files IE, 

         Keys K, a set of keywords W, Encrypted 

         Document collection DE. 

Output: results in an updated index I′E and an 

                      Document collection D′E. 

 

(I′E

 
,  D′E)←Update( IE

 
, upd), DE):  run by the 

data owner to perform an update operation 

upd:= (addDoc, Id, W) or upd:= (delDoc, Id) 

as described below: 

a) addDoc(DId, Id, W) 

        DE (Id) ← E(Km, DId) // Encrypt document 

     tuple t← Id 

     For each keyword w in W, 

          Cw ← E(Kw, w) 

           t←  t.append(Cw) 

     D′E  ←  DE  +  DE (Id)  // Upload DE (Id) to DE 

     I′E  ←  IE  + t  // Append IE  with t 

 

b) delDoc(DId, Id) 

         Send Id to Document Collection 

      D′E  ← DE  - DE (Id) 

     Search IE  for Id using MapReduce 

         If Found 

 I′E  ← IE  -  I(Id)  // Delete tuple 

 

5. Implementation and Results 
 

The proposed scheme has been successfully 

implemented using Java as a tool. The details of 

 

Fig.3. Diagrammatic representation of Search Phase 
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the implementation and the results are discussed in 

the following section. 

 Our Prototype Summary: Our model includes 

processing at three levels: pre-processing / 

setup at owner, at the user and the server during 

search. The setup phase generates the encrypted 

documents and index files. The user generates a 

token to search through encrypted documents 

and decrypts server responses. The server uses 

the encrypted index to answer user requests and 

provide mechanism for updating the index and 

document collection. 

 Experimental Platform: The experiments at 

setup phase has been implemented in Java and 

run on DELL system, equipped with Intel Core 

i5-6402P @ 2.80 GHz x 4 computer with 8GB 

RAM running Ubuntu 14.04. Each data point in 

Fig. 4 and Fig. 5 is an average of five 

executions. The server-side experiments were 

performed using Hadoop MapReduce 

framework on Amazon EMR cluster on a 

r4.2xlarge instance running Linux containing 

eight High Frequency Intel Xeon E5-2686 v4 

(Broadwell) Processors and 61GB of RAM with 

EBS volume of 32MB. 

 Dataset: We chose two types of real-world 

datasets, a collection of 1000 text documents of 

25 MB and a set of 1000 png images of total 

size 100 MB. To check the performance of the 

present scheme, different sizes of index files 

were used as shown in Table 1. The index files 

are CSV files that contain metadata that forms 

the set of keywords that can be used for 

searching through the document collection. The 

first field of the index file contains the 

document identifier. Each row contains the set 

of keywords that describes the corresponding 

document. 

 

5.1 Setup Phase 

 

  The document collections are encrypted using 

Advanced Encryption Standard (AES) algorithm in 

Cipher Block Chaining mode. The key is 

generated randomly and stored in a secure location 

at the data owner for later use to decrypt the files. 

To speed up the process, the files in the document 

collection are encrypted in parallel using Java 

Executor Service. The experiments were 

performed in varying the number of threads from 

2, 4, 8, 16, … , 1024 in powers of 2. From the 

Fig.4(a) and Fig.4(b), it can be seen that the 

execution time considerably decreases with the 

parallel execution.   

Table 1. Encrypted Index Files: document identifier 

(Column A), size of the index file (Column B, number of 

keywords words in the document Column C) 

Document Id (A) File Size                   

(in GB)     (B) 

No. of keywords 

(C) 

sseIndx0A 0.02 741,870 

sseIndx1A 0.04 1,285,499 

sseIndx2A 0.06 2,628,837 

sseIndx3A 0.125 4,777,216 

sseIndx4A 0.25 7,875,647 

sseIndx5A 0.5 21,925,296 

sseIndx6A 1.00 40,905,048 

sseIndx7A 2.50 93,722,000 

sseIndx8A 4.00 507,444,000 

 

                             (a) 

 

 
(b) 

 
Fig. 4. Parallel Execution of Document Collection -                  

Varying # of Threads (Execution time for .png files (a), 

text collection (b)) 
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The data parallelism produces better results 

with increase in size of the document collection; 

the execution time of parallel encryption of image 

collection is reduced to 1/3 of the non-parallel 

implementation. This approach is suitable for 

massive datasets. 

Our scheme uses large-scale index files as it 

requires by many real-time applications. A search 

index file, organized as a CSV file, is divided into 

equal chunks of lines depends on the number of 

threads and executed in parallel. For each line, the 

individual keywords are extracted, encrypted using 

AES algorithm. The results are collected, and the 

encrypted index file is uploaded to the server. An 

index file of size 123 MB with 1,048,578 lines and 

16,777,216 keywords is selected for testing and the 

results are depicted in Fig. 5. The parallel 

execution reduces the execution time by 50%. 

5.2 Search Phase 

The search phase consists of two algorithms. The 

scheme allows the user to retrieve the documents 

through the keywords. The secure tokens are 

generated by the user for the given keyword, and 

sent to the remote server. To realize the distributed 

computing environment, the server application is 

implemented using Hadoop MapReduce 

framework. The index files are distributed to 

different nodes using HDFS. The index files are 

searched in parallel and the encrypted documents 

linked to the token are returned to the user. 

The server-side experiments are conducted at 

amazon cloud by varying the number of nodes.  To 

perform empirical analysis, we use multiple index 

files of varying sizes ranging from 0.25 GB to 4 

GB. The experiments are repeated for clusters with 

1 master node and varying the number of core 

nodes to 1, 2, 4 and 8.  In contrast to the existing 

schemes, our scheme uses very large index files 

that consist of keywords ranging from few 

thousands to 50 million and still produces efficient 

results.  

Initially, with single and two nodes clusters, 

the search time is linear with the index file size. 

There is a significant reduction in the search time 

with increase in the number of nodes as  shown in 

Fig. 6. As the number of nodes increases, it 

produces consistent search time irrespective of 

different index file sizes.  Since the MapReduce 

framework can handle split size of 128 MB at a 

time, the scheme produces efficient results with 

just four nodes. Thus, the scheme is suitable for 

handling very large-scale datasets.  

Our scheme allows searching through multiple 

index files distributed across multiple nodes. The 

experiments are repeated by varying the number of 

index files at each node. As shown in Fig. 7 and 

Fig. 8, the usage of multiple files does not affect 

 

  Fig. 5. Parallel Execution of Index Varying # of Threads 
 

 
 

Fig. 6. Search time Evaluation: Varying # of Index files – Single Index (a), 4 Files (b), 8 Files 

(c) and 16 Files (d) 
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the performance. Strikingly, as the number of 

index files increases, the scheme produces better 

results for larger file sizes. The search time is 

consistent for files with size greater than 0.5 GB 

irrespective of number of index files. Thus, the 

scheme is suitable for handling multiple index files 

located at distributed locations. 

The scheme allows multiple searches during a 

session. The inverted index created at runtime 

during the search phase allows subsequent 

searches would be performed with constant search 

time. 

 

6. Performance Evaluation 
 

In this section, we evaluate the performance of 

our present work compared with the other SSE 

schemes proposed for large-scale cloud strorage. 

The schemes are evaluated respectively, in terms 

of index structure, index size, search time,  update  

complexity, leakage, and query processing and the 

results are tabulated in Table 2. 

The present work deviates from the existing 

methods in the following aspects; the ability to 

work with larger and distributed indexes through 

MapReduce framework, and creation of inverted 

index at search phase to facilitate multiple 

keyword search. As mentioned in section 5, the 

parallel implementation of the Setup and Search 

phases offer significant reduction in the execution 

time.  

In most of the real-world cloud-based 

applications, the data collection has seen rapid 

expansion with frequent updates [28]. Inverted 

index based approaches may not be practical for 

such applications. Our scheme based on forward 

indexing offers straightforward update of dynamic 

storage. The linear search complexity inherent to 

forward indexing, has been addressed. The 

distributed processing of search algorithm with 

MapReduce framework offers sub-linear search.  

Unlike the other schemes [21,23,24,28], the 

search operation could be done in a few seconds 

even for the index with more than 500,000,000 

keywords and thus eliminates the need to have 

smaller indexes as described in [15,21,24]. An 

inverted index, created at runtime of search phase,  

 

 
 

Fig. 8. Search time Evaluation: Varying # File Size and # of nodes –  0.5 GB (a), 1 GB (b), 2 

GB (c) and 4 GB (d) 

ime Evaluation: Varying # of Index files – Single Index (a), 4 Files (b), 8 Files (c) and 16 Files 

 
 

Fig. 7. Search time Evaluation: Varying # File Size and # of index files –  0.5 GB (a), 1 GB (b), 

2 GB (c) and 4 GB (d) 

 Search time Evaluation: Varying # of Index files – Single Index (a), 4 Files (b), 8 Files (c) and 

16 Files (d) 
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allows the user to perform multiple searches 

during a session. The HashMap structure of the 

index, further reduces the search complexity to 

O(r/s) for subsequent query processing. Unlike 

[20,21,24,26], updating the data collection and 

index, with a new entry is straightforward in our 

approach and do not require any additional 

overhead or data structures. 

 

6.1 Security Analysis 

 

In this present construction, the cloud servers 

are considered as honest-but-curious Adversaries. 

The scheme uses block cipher AES, which has the 

underlying PRP, PRF defined as F : {0, 1}
λ 

× {0, 

1}
∗  

→ {0, 1}
n
, for λ ∈  N, which is 

computationally indistinguishable from a random 

function when observed by any probabilistic 

polynomial-time adversary A = (A1, A2..., Ak) . To 

analyse the   

 

 

proposed scheme, the well known model described 

in [4] is used.  

The SSE security model is parametrized by the 

leakage functions L1, L2, and L3 indicating the 

information leakage during Setup,  Search and 

Update protocols. We assume that each adversary 

have control over only a single server except the 

master node. The leakage functions for a single 

server design are described as follows: 

L1 (IE , DE) : Given an encrypted Index collection 

IE  and document collection DE, L1 outputs the size 

of each document |Di|, the identifiers of each 

document Idi, length of the index |I| and the 

keyword distributions for a single server. 

L2 (IE , Tw , DE, t) : Given a Token Tw, at time t, L2 

outputs the document identifiers Idi containing  

keyword w, the number of matched documents (i.e 

the access pattern), and if the query is repeated, the 

Table 2. Comparisons with a few SSE schemes 

 

Scheme Index Size Search Time  Update 

Complexity 

Index 

Structure 

Leakage Distributed 

processing 

[14] O(W *2
d
) O(n) Static SSE Inverted 

 Matrix 

N, m, r No 

[15] O(mn) O(log m+r) Static SSE Inverted & 

Bloom filters 

N, m No 

[20] O(N) O(r/p) O(N) Inverted N, n No 

[21] O(n) O(n) O(N) Inverted N, n No 

[23] O(N) O(r) Static SSE Inverted 

Tree 

N, n Yes 

[24] O(Wn) + 

O(N)/s 

O(n)/s O(m) Inverted N/s, n/s, r/s Yes 

[26] O((N + n)l/s) avg(r/s) O((N + n)l/s) Inverted W + n,                

((N + n)l)/s 

Yes 

[28] O(mn) O(nm ) O(m) Forward N, n, m No 

Ours O((mn)l/s) O(mn/c)/s   

O(r)/s 
*
 

O(m) Forward & 

Inverted
*
 

N/s, n/s, m/s, r/s Yes 

 n  is the number of documents;  m is the number of keywords per document; 

 N is the number of document-keyword pairs;  p denotes the number of processors 

 r is the number of documents matching the query keyword;  s denotes the number of servers 

 l represents the number of blocks ;  c denotes the number of splits / map tasks 

 W is the totalnumber of keywords;  d is the atmost length of the keyword 

 * for subsequent keyword search 
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set of tokens  used by previous searches. (i.e the 

search pattern). 

L3 (IE , Tw , W, Id) : Given a document Id, and 

related keywords W, L3  outputs the the number of 

keywords added or removed, the document 

identifier, updated index size. 

Let λ ∈  N be the security parameter and E, the 

secure encryption scheme. For an adversary A and 

a simulator S, we conduct two probabilistic games 

RealA(λ) and SimA,S(λ), of which, RealA(λ) 

conducted by adversary A and challenger C and 

while SimA,S(λ), simulated by A and S using only 

the available information that an adversary can get 

from leakage functions. 

RealA (λ) : The challenger C runs KeyGen(1
λ) to 

generate a random secret key K for E. A  sends D to 

C. Then C returns IE ← BuildIndex(K, D) and DE ← 

E(K, D) to E. Then A submits q polynomial queries, 

Q = (w1, w2,...,wq). For each keyword, A  receives a 

Token Tw ← TokenGen (K, w) from C  and picks 

the next keyword as a function of previously 

obtained tokens and search outcomes. Finally, A 
outputs a bit b ∈  {0, 1}. 

Sim A ,S  (λ) : A  chooses a set of documents D and 

sends it to S. Given L1 (IE , DE), S computes (I
*

E , 

D
*

E) and sends them to A . In the search phase, A  
makes q queries expressed as Q. For each 

keyword, S learns from L2 (IE , Tw , DE, t) and returns 

Tw  to A. Finally, A outputs a bit b' ∈  {0, 1}. 

We say that our scheme satisfies adaptive 

semantic security if for all probabilistic 

polynomial-time (PPT) adversaries A, there exists 

a PPT simulator S such that:                                      

|Pr[RealA (λ) = 1]| − |Pr[SimA ,S  (λ) = 1]| ≤ negl(λ) , 

where negl(λ) is a negligible function. 

The SSE security model can be extended to 

multi-server setting. If an adversary A who controls 

all servers Sj ∈  S, then A has access to the whole 

of (Dsj, ISj) Sj ∈  S. and can form a single index 

table I from all Isj. Similarly, A can consolidate all 

the previous query responses to perform statistical 

attacks. In this case, A has the same information as 

an adversary of the single server SSE scheme, and 

hence gain equal advantage. 

We assume that our servers are non-colluding 

and hence each adversary A has control over only 

partial documents and partial indexes stored on a 

single server except for the one that can attack the 

master node. For a single server SSE, the scheme 

can be proved semantically secure against A. The 

simulator S can adaptively generates (I'E , T'w , 

D'E)) as follows. 

➢ As the size of each DE is known to S 
through L1, it can simulate the encrypted 

documents D'j ← {0, 1}
|Dj |

  for (j=1,...,n). Let D' = 

(D'1, ...,D'n). S  creates I'E and randomly chooses 

Si{0, 1}
n 

and stores it in each entry of I'E. Then S 

sends (D'E , I'E) to A . 

➢ For q queries, S checks whether it has seen 

wi earlier, from the search pattern revealed by L2. If 

yes, then S retrieves the token previously generated 

for wi and uses it as T'wi. However, if wi has 

appeared for the first time, then S generates a token 

T'wi returns  T'wi  to A. 

Since the underlying symmetric functions PRF, 

PRP, E are secure cryptographic primitives, our 

scheme will guarantee that each encrypted 

document Di and a real ciphertext D'i is 

indistinguishable. Similar discussion can be 

applied for index construction and token 

generation, and thus makes A unable to distinguish 

between I'E  and real index IE, Twi in RealA (λ) and  

T'wi  in Sim A ,S  (λ) without the knowledge of the 

key K.   

A scheme offers better security, if it can control 

the leak. Our scheme can minimize the access 

pattern leakage without using complex structures 

as required by [14,15,16,24,26]. Since the 

documents and indexes are partitioned horizontally 

and sent to multiple servers S, it is now hard for an 

Adversary which controls only a subset of S, to 

know the actual size of the documents, indexes, 

and the distribution of keyword-document pairs. 

Thus, our scheme controls L1. 

 Multiserver block-based SSE design provides 

higher security for SSE [25]. The MapReduce 

framework used in the search phase, split the 

indexes into blocks and randomly assign them to 

multiple tasks which makes it even more harder for 

the adversary to know the keyword and document 

distribution as  in [25, 26].   

The update operation is straightforward in our 

scheme, which can leak only the number of 
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keywords added, in contrary to the other 

implementations [16,21,26]. The schemes may 

leak the documents that have the same keywords. 

Since the data and indexes are distributed, the 

other servers may not learn when and where the 

update had happened. In addition, the frequent 

updates to the storage and index, offer inconsistent  

search results over time, and thus prevents the 

adversary from learning from the  previous search 

patterns. Thus, the present constuction controls L2, 

and L3. Moreover, the creation of inverted index 

during search phase and its construction using 

HashMap provides location transparency and 

prevents the leakage of keyword-document pair 

distribution. Thus, the present work offers 

efficient, secure and practical solution and is more 

relevant for highly dynamic large-scale cloud 

storage. 

 

7.  Conclusion 
 

In this work, we have implemented a Dynamic 

Searchable Symmetric Encryption scheme that can 

perform secure searches on the encrypted data 

stored on the real cloud architecture. As the data 

generated in the cloud-based applications are 

usually very large and is often uploaded to 

distributed locations, we have designed the scheme 

that is suitable for handling multiple index files of 

larger sizes. The data distributed across multiple 

locations are handled in parallel without 

compromising on the security. The security of the 

scheme can be further improved by using a 

probabilistic algorithm. To speed up the pre-

processing phase, the document collection and 

index files have been executed in parallel. The 

scheme supports dynamic update of the encrypted 

collection with minimal updates and 

communication overhead. The search phase has 

been implemented at Amazon Web Services using 

Hadoop MapReduce concept. The scheme 

performs efficient search through very large index 

files with millions of keywords. The parallel 

execution of distributed files at the server, 

produces minimal search time even for larger file 

sizes. Remarkably, the search time remains 

consistent with increase in the number of files. 

Thus, the scheme is suitable for any real-time 

application that involves large-scale datasets stored 

across multiple clouds. 
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