
INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
J. Jones and N. Shashidhar Vol.6, No.4

Ransomware Analysis and Defense
WannaCry and the Win32 environment

Justin Jones, Narasimha Shashidhar

Department of Computer Science, Sam Houston State University, Huntsville, TX, USA.
e-mail: {jxj037, karpoor}@shsu.edu

Abstract—Ransomware is a specific type of malware that threatens the victim’s access to her data unless a ransom is paid. It is

also known as a cryptovirus due to its method of operation. Typically, ransomware encrypts the contents of the victim’s hard drive

thereby rendering it inaccessible to the victim. Upon payment of the ransom, the decryption key is released to the victim. This means

of attack is therefore also sometimes aptly called cryptoviral extortion. The ransomware itself is delivered to the victim using several

channels. The most common channel of delivery is by masquerading the malware as a Trojan horse via an email attachment. In this

work, we study a high-profile example of a ransomware called the WannaCry worm. This ransomware is particularly malicious since

it has the ability to traverse computing equipment on a network without any human intervention. Since this worm has had a large

scale impact, we find it imperative and instructive to better understand the inner workings of this high-profile ransomware. To this

end, we obtain a sample of WannaCry and dissect it completely using advanced static and dynamic malware analysis techniques.

This effort, we hope, will shed light on the inner workings of the malware and will enable cyber security experts to better thwart

similar attacks in the future by: a) generating appropriate signatures and b) developing stronger defense solutions. Our analysis is

conducted in a Win32 environment and we present our detailed analysis so as to enable reproduction of our work by other malware

analysts. This, we hope, will further advancement in generating appropriate signatures to detect the worm. Secondly, we present

a prototype software that will enable a user to prevent this malware from unleashing its payload and protect the user on a Win32

environment in an effort to advance the development of efficient software defense mechanisms to protect users from such a worm

attack in the future.

Keywords—Ransomware, cryptovirus, extortion, static and dynamic analysis, malware analysis, cyber security.

1. Introduction

A type of malware known as ransomware has
recently become very prevalent in the cyber security
world, taking over user systems and demanding
ransom for the safe return of system functionality
while holding the user’s data hostage. While initially
not incredibly sophisticated, this type of software
has evolved from simple scripts that change file

extensions and making empty threats to full-blown
attacks affecting hundreds of thousands of sys-
tems worldwide that implement sophisticated NSA-
developed exploits as their propagation vector. In
this paper, we explore a specific piece of malware
known as WannaCry that recently made headlines
around the world and we perform a full static and
dynamic analysis to explore its inner workings.
Seeking a full understanding of this malware is

57



a fruitful exercise since this will enable malware
analysts in developing appropriate signatures to
thwart the spread of this malware. Furthermore,
we believe that this deeper understanding of the
inner workings of the malware will also enable
one to develop fine-tuned software defense solutions
that will protect the user. To this end, we will
endeavor to write a functional piece of software to
stop this malware from executing within a Win32
environment. Our primary contribution therefore is
two-fold: to demonstrate the inner workings of Wan-
naCry so as to facilitate further analysis by malware
analysts and to uncover several hidden “features” of
this cryptovirus and to further the software defense
mechanisms against similar malware in the future by
developing a functional piece of defense software.

2. Prior and Related Work

The academic body of work is rich with re-
search articles studying cryptoviral extortion and
the associated malware’s effects on a computing
environment. For instance, Young [7] presented the
experimental results obtained by implementing the
payload of a cryptovirus on the Microsoft Win-
dows platform. Since most malware, including the
WannaCry worm, infect the MS-Windows platform,
this bias is reflected in the work done by re-
searchers in the literature (and our present work) as
well [9]. Kumar and Kumar [3] present an overview
of the modus operandi and the general structure and
working of a cryptovirus. A more detailed treatment
of an instance of such malware is presented by Filiol
and Raynal [2] including a discussion of Code Red,
Slammer and the Blaster worms. An example of a
large scale cryptoviral extortion is presented in the
work done by McCormack [4] which outlines both
the financial and data losses incurred due to this
attack. A historical perspective on the birth, neglect
and explosion of ransomware is presented by Young

and Yung [8] and by Salvi and Kerkar [6]. Pascariu
et al. [5] presented a process of reducing the attack
surface in the case of ransomware attacks. A more
recent study conducted by Chen and Bridges [1]
introduced a method to identify and rank the most
discriminating ransomware features from a set of
system logs. In an effort to reveal the presence of
the WannaCry malware, they ranked features that
reveal a set of actions produced by malware on
the system logs thereby automating the process and
avoiding tedious manual analysis. Despite this rich
body of work, a thorough treatment of a specific
instance of this family of malware is non-existent
in the literature. A search of research articles on
most databases for WannaCry reveals that there is
hardly any work done in the academic realm in
understanding this malware. It is certain that indus-
try (Norton, Symantec, McAfee and others) must
invest substantial time and effort in understanding
this malware so as to develop efficient defense
mechanisms while the academic realm has not kept
pace with the industry. It is this reason that offered
us the motivation to delve deeper into understanding
WannaCry and conduct advanced static and dynamic
analysis of this ransomware. As a final note before
concluding the related work survey, the field of
malware analysis has made tremendous advances
and the techniques and tools used by some of the
authors of these above mentioned prior art have
been superseded by newer tools. In this sense, our
present work also serves to illustrate these newer
trends in malware analysis. This survey is not meant
to be comprehensive and does not explore all av-
enues of research in malware analysis (or WannaCry
analysis). The interested reader is directed to the
above mentioned research articles and the references
therein.

58



3. Analysis

In this section, we begin by describing the vul-
nerability that WannaCry exploits, followed by its
general file structure, cryptographic function calls
before diving into static and dynamic analysis.

3.1. WannaCry/WCry

3.1.1 Background

WannaCry (referring to the general family consist-
ing of all named variations of WannaCrypt, WCry,
WanaCrypt, WanaCrypt0r, etc) came into prevalence
during a massive attack starting on May 12, 2017.
This software utilizes an exploit called EternalBlue1,
a known vulnerability in the Server Message Block
(SMB) protocol used by Microsoft Windows which
was previously patched in a critical update outlined
in KB40133892. As this vulnerability has been
explored and detailed very thoroughly already, we
instead shift our focus to WanaCry’s implementa-
tion and software aspects while avoiding the inner
workings of the exploit.

The working sample of WannaCry has been ob-
tained from theZoo3, with SHA256 hash:

ed01ebfbc9eb5bbea545af4d01bf5f107
1661840480439c6e5babe8e080e41aa

and is positively identified by VirusTotal as a mem-
ber of the WanaCry family4. The software is being
tested in a Microsoft-supplied 32-bit Windows 7
appliance as a VMWare Player virtual host. The
appliance is given host-only network access and all
outgoing traffic is recorded with Wireshark during
our analysis. All relevant analysis files are supplied

1. http://bit.ly/2spdT15
2. https://support.microsoft.com/en-us/help/4013389/title
3. http://thezoo.morirt.com/
4. http://bit.ly/2s93pCl

in the GitHub repository5 accompanying the paper,
including the Wireshark pcap, IDA Pro idb, registry
snapshots and a compressed file containing the
extracted payload.

3.1.2 General File Data

Utilizing PEiD6, we notice that the program was
packed using Microsoft Visual Studio C++ 6.0
for Win32 and we should hence have no trouble
unpacking it. Utilizing Dependency Walker7, we
see that the program uses ADVAPI32.DLL which is
the source of many cryptographic security functions
implemented in Windows as shown in Fig. 1. In
fact, this is where the SMB exploit EternalBlue is
found. It is interesting to note however that had
we not known ahead of time that the program
uses ADVAPI32.DLL, we wouldn’t have thought to
gather this piece of information during our examina-
tion until we go further through the decompilation
and execution steps. As it stands, most if not all
ransomware will want to utilize this dynamic linked
library if it intends to perform any non-trivial cryp-
tographic operations, such as encryption/decryption
of files. The inclusion of this library is the first
indication that this software may be ransomware.

Looking into the functionality imported from this
library, we see that CRYPT32.DLL, and the imports
immediately indicate this program is performing
a large number of cryptographic function calls as
shown in Table 1. Of particular interest are the
functions CryptGenKey, and CryptEnrcypt which
we believe (based on rudimentary static analysis)
are responsible for generating a random encryption
key, and the actual encryption operation. Here, we

5. https://github.com/NachoChef/Malware-Analysis-and-Defense
6. https://www.aldeid.com/wiki/PEiD
7. http://www.dependencywalker.com/

59



Fig. 1: Dependency Walker overview of WannaCry

would like to make a minor comment about the tools
we have used in our work such as PEiD and De-
pendency Walker: many of these tools have gained
prominence among malware analysts as robust and
sound tools to conduct forensic/malware analysis.
It is with this knowledge that we find confidence in
employing them for our research as well.

We can also see that Wannacry uses the kernel
library and the user library, specifically utilizing
GDI32.DLL which gives access to local registry
functions RegCloseKey, RegEnumValueW, and Re-
gOpenKeyExW and is used for displaying graphics
and creating GUIs (Graphical User Interfaces). We
also see MSVCRT.DLL being used, which again ir-
refutably indicates that it was packed with Microsoft
Visual Studio.

Utilizing PEview8 (Fig. 2) to examine the PE
header, we see a compile time of 11/20/2010.
As this is a very recent exploit, this is not
likely the true compile time for obvious reasons.
More likely, the time was either faked or the
system clock of the compiling machine was not
accurately set. The subsystem indicated is IM-
AGE SUBSYSTEM WINDOWS GUI which offers
further evidence that the program utilizes a graphi-
cal interface. The virtual size and raw data size are
about the same, indicating a sophisticated packer
was not used and the binary was generated by
a well-behaved compiler. Hence, there will likely
not be dynamic unpacking within memory during
execution. So, a full memory dump would not
greatly benefit the analysis in this instance.

8. http://wjradburn.com/software/

60



Examination with Resource Hacker9 indicates that
the software is trying to masquerade as diskpart.exe
as shown in Fig. 3, but offers no other useful
information otherwise because the WannaCry files
are encrypted in the “WNcry@2017” archive and
are password protected, as we will show in the IDA
Pro analysis portion of our work.

3.1.3 Decompilation

Before delving into the binary code listing for
WannaCry, a quick look at the “Strings” window
confirms this is some variant of WannaCry or a
program pretending to be one. Utilizing the IDA
call flow graph10, we see that in addition to the
basic startup functionality, the program also calls
WinMain@16. From our analysis, we can infer that

the rest of the function calls cascade from this call to
WinMain@16 since this is where the archive gets

unpacked. The software utilizes try/catch/finally
blocks and extensive memory manipulation such
as allocating heap memory we believe in an effort
to protect itself from being erased from RAM by
another process, to accomplish its task. However in
many cases, we found that the creator(s) seemingly
failed to turn on optimization in their compiler as
shown in Fig. 4.

Additionally, after examining the try/catch/finally
blocks, we believe that if any files were missing
from the archive or otherwise corrupted upon ex-
traction, the program would likely fail to fully take
over the system and not execute. We can also see
the filenames included in the archive, as the software

9. http://angusj.com/resourcehacker/
10. This image is very large, so it is provided in the repository

[wcry.gdl] rather than inline.

has the names hard-coded for opening and manip-
ulation (Fig. 5). In some cases, the functionality
of these files isn’t fully known until completion of
advanced dynamic analysis and related procedures.
Some work has been done by anti-virus vendors,
namely Symantec11 in an effort to identify the file
names and their descriptions. We do not delve any
deeper into this detail here since this analysis is
still in its infancy and much more work needs to
be done to comprehensively uncover the roles that
each of these files play in enabling the ransomware.
In Table 2, we outline some important files along
with their descriptions.

Moving into the software work flow, the pro-
gram enters the main method, WinMain@16, and
extracts a password protected archive named ”WN-
cry@20l7” and creates the necessary services and
procedures. The program retrieves host information,
as well as the correct language file. It then loops
through the extracted files in the current working
directory, and elevates privileges. It then collects
and terminates a number of processes that it has
pushed into the system stack.12 This is seemingly
so that the files won’t be in use which allows
the processes to encrypt them without trouble. The
software then continues to loop through directories
and encrypts files as it goes, appending them with
the .WNCRY extension, seemingly for ’shock value’
with tasksche.exe. Based on our analysis, we have
found that it currently attacks 151 different file
types, which can be found in the decompilation, but
this count seems to vary among the different variants

11. https://www.symantec.com/connect/blogs/what-you-need-
know-about-wannacry-ransomware

12. After searching online, we discovered that these processes were
specifically related to database and mail servers.

61



CryptDecrypt CryptDeriveKey CryptDestroyHash CryptDestroyKey CryptDuplicateHash
CryptDuplicateKey CryptEncrypt CryptEnumProviderTypesA CryptEnumProviderTypesW CryptEnumProvidersA
CryptEnumProvidersW CryptExportKey CryptGenKey CryptGenRandom CryptGetDefaultProviderA
CryptGetDefaultProviderW CryptGetHashParam CryptCreateHash CryptGetProvParam CryptGetUserKey
CryptHashData CryptHashSessionKey CryptImportKey CryptReleaseContext CryptSetHashParam
CryptSetKeyParam CryptSetProvParam CryptSetProviderA CryptSetProviderExA CryptSetProviderExW
CryptSetProviderW CryptSignHashA CryptSignHashW CryptVerifySignatureA CryptVerifySignatureW
CryptContextAddRef CryptAcquireContextW CryptGetKeyParam CryptAcquireContextA

TABLE 1: Cryptographic Function Calls.

Fig. 2: PE headers for WannaCry

of the ransomware. The program deletes Shadow
Volume Copies and disables backup restoration. It
finally displays the ’lock’ screen along with the rest
of the UI contained in u.wnry and implemented as
@WanaDecryptor@.exe. Once the payment is ver-
ified, the program then goes through and decrypts
all of the encrypted files, and exits.

The program utilizes a TOR client for communi-
cation with the attackers to verify payment, which

is retrieved before the encryption begins. One of
the notable early discoveries was that there was a
built in ‘kill-switch’ that would stop the software
from fully taking over systems and encrypting files,
however it should be noted that the version of soft-
ware we have analyzed does not include this kill-
switch. It seems to be the only difference between
the ‘original’ and the version that we are examining.

62



Fig. 3: Resource Hacker & WannaCry

Filenames and Descriptions
b.wnry Background image
c.wnry Configuration
s.wnry Tor communication

(endpoints from c.wnry)
t.wnry Default keys
u.wnry User interface
taskdl.exe Cleanup
taskse.exe Support
msg A folder of language

packs

TABLE 2: Filenames and Descriptions.

3.1.4 Dynamic Analysis

First, we launch the malware directly from the
location /∼/Downloads/Ransomware.WannaCry/.
Upon initial launch (Fig. 6), the wallpaper is
immediately changed, and we can see the dropper
extracts the files from the embedded archive into
the root ‘exe’ directory. These files have a creation
date of 5/9/2017 to 5/12/2017, falling more in-line
with the event outbreak and most likely therefore

accurate. Given that the last modified date is
equivalent, some of the metadata was likely lost,
obscured or otherwise modified at some point of
the process.

After the payload is extracted and execution
begins, a UAC13 (User Account Control (UAC) is
a technology and security infrastructure introduced
with Microsoft’s Windows Vista and Windows
Server 2008 operating systems, with a more
relaxed version also present in Windows 7,
Windows Server 2008 R2, Windows 8, Windows
Server 2012 and Windows 10) prompt pops up
requesting elevated privileges (Fig. 7). If the victim
denies the privileges, the software is still able to
continue with encryption but cannot delete Shadow
Volumes or backups.

13. http://bit.ly/2z3IqkE

63



Fig. 4: Poor Optimization

The program creates additional files to accompany
the files extracted with the archive. f.wnry stores
a list of decrypted files, and r.wnry is a copy of
@Please Read Me@.txt. WanaDecryptor.exe is the
user GUI implementation, and the TOR client is re-
trieved into the TaskData folder. Additionally, RSA
key files are created for the encryption/decryption
processes. The actual encryption simply navigates
down through directories encrypting files, modify-
ing the file headers (Fig. 8) and leaving a copy of
@Please Read Me@.txt and a shortcut to @Wan-
naDecryptor@.exe (Fig. 9) in the directory.

The software completely destroys the registry, in
the case of this test machine deleting 324 keys. The
program then adds 1547 new keys and modifies
the remaining registry keys, entirely focused on
completely taking over the system. We were unable
to find any saved record of these changes for the
program. So, it doesn’t seem plausible that the host
is actually completely restorable upon payment, as
the malware claims.

The IP address for the victim in this test
is 192.168.22.254, and the VMware Virtual
Adapter IP address is 192.168.22.1. The initial
Wireshark capture was started on the victim network
adapter prior to infection. Prior to infection, the
network capture showed no traffic and no network
applications active, as expected. Once the infection
is initialized, we see regular SSDP transmissions
followed by DHCP Solicit XID requests attempting
to discover network devices and obtain new host
information. Continuing with the capture, we see
TCP requests and TLSv1 packets to retrieve the
key whenever we try to verify payment, indicative
of the TOR communication lines.

3.1.5 Putting it all Together

The WannaCry ransomware is reasonably so-
phisticated, and takes advantage of the Eternal-
Blue vulnerability as a reliable propagation vector
as evidenced by the infection count of an esti-

64



Fig. 5: *.wnry filenames

mated 230,000 machines. The best option to pre-
vent passive infection is to apply Microsoft update
KB4013389, and to otherwise follow best practices
regarding downloaded files, email attachments, etc.
We additionally tested a program called Wanakiwi14

that successfully retrieved a decryption key, however
it only works if the system hasn’t been restarted
since infection and must be used as soon as possible
to ensure the needed information is still in memory.
The registry keys were not restored upon decryption,
so once the needed information is retrieved it is best
to perform a fresh install of the operating system
in any case and check all devices on the network,
including network-attached storage.

14. https://github.com/gentilkiwi/wanakiwi

4. The Defense Software

In this section, we outline our ideas and detail our
process of implementing our defense solution.

4.1. An Overview

Our goal behind developing a defense program
was based around the desire to highlight the imple-
mentation details of the Windows NT environment
(and vulnerabilities) and general anti-virus software
development processes. The general operation of
the software can be seen below in Algorithm 1. A
system callback, SetCreateProcessNotifyRoutineEx,
is used to listen for process creation by using
PsSetCreateProcessNotifyRoutineEx. This is imple-
mented through a simple kernel-level driver that will
launch a system ProcessEvent that can be caught

65



Fig. 6: Initial Infection

by any processes that chooses to listen. Specifically
for this implementation, upon launch, the process
handle is passed into a queue of processes to be
‘processed’. Whenever a new item enters this queue,
the executable path is retrieved, and the file is
hashed. If there is no known definition based on
this hash, the hash is sent to VirusTotal utilizing the
public C++ API, version 2.0. The result is then used
to make a new entry into the database, and process
creation either continues or is denied as deemed
necessary by the results. We considered any process
with more than 5 references to be unsafe, although
realistically one could deny launch for even one
Virus Total reference.

The first hurdle with developing this software was
creating a kernel driver. Using the details provided
in the book Windows Internals, 6th ed.15 and also
following a tutorial on CodeProject.com16, and fi-

15. https://docs.microsoft.com/en-us/sysinternals/learn/windows-
internals

16. http://bit.ly/2lxXIv5

nally studying a Microsoft-supplied example driver
found on their Windows Example drivers GitHub
repository17, we were able to develop a kernel
driver. Because the kernel should not be made to
wait for a response that is any longer than a few
milliseconds (at most), the execution is denied by
default and the process will be relaunched if it has
no known results from VirusTotal. Naturally in the
process of working with a kernel driver, we learned
much of the Windows NT API to handle events and
perform actions around those events.

We originally intended to fully write the kernel
driver ourself; it soon became clear that without
an expert knowledge of Windows API and pro-
gramming experience, it would be incredibly chal-
lenging. The next best option would be to adapt
a currently existing open-source callback driver for
our purposes. To this end, we initially attempted to
use a provided Microsoft example implementation,

17. https://github.com/Microsoft/Windows-driver-samples

66



Fig. 7: UAC Prompt on first run

Fig. 8: Modified File Headers

Fig. 9: An example directory after infection

however the original intentions for the program
were very different from what we were intending
to use it for and adaptation was difficult. We used
this code base as our development foundation for a
few weeks, however we eventually switched to the
implementation provided by Ivo Ivanov on Code-
Project.com, referenced previously in this section.

Within this implementation we removed the test
instantiations, and added sqlite3 functionality for
the database and the VirusTotal API as our ‘en-
gine’. For actually sending off tests to VirusTotal,
we elected to compute the SHA-256 digest of the
executable to be launched using OpenSSL/libcrypto
after retrieving the process path from the process

67



Algorithm 1: A generalized algorithm

1 Initialization:
2 Register PsSetCreateProcessNotifyRoutineEx

callback;
3 Wait for process creation

4 Upon creation, run the following:
Data: Process Handle

5 Hash the Process Executable;
6 if hash in database then
7 if {db entry}.allow == True then
8 allow execution;
9 print allowance message;

10 else
11 deny execution;
12 print denial message;
13 end
14 else
15 transmit hash to VirusTotal;
16 {receive reply}
17 if no VT results then
18 allow execution;
19 print allowance message;
20 else
21 deny execution;
22 print denial message;
23 end
24 construct new database entry;
25 set tuple launch permission;
26 add to database;
27 end

handle. Section 7.3 in the Appendix contains a
list of the 3rd party APIs that we used for this
software. Unfortunately at the time of this writing,
our software needs to be stress tested against these
third party APIs and is therefore not as robust as
we would like it to be. This work is therefore,
currently a work in progress. The major portion of

the challenges are centered around a few of the third
party APIs that we have used in our implementation
and their dependencies and we have not been able
to test the program functionality completely.

5. Conclusion

Our work, to the best of our knowledge, is the
first to demonstrate the inner workings of the in-
famous ransomware/cryptoviral extortion malware
WannaCry. We have used advanced static and
dynamic analysis techniques using state-of-the-art
tools. Our hope in this research project was to il-
lustrate the devious nature of WannaCry in an effort
to prevent future attacks of this nature and to arm
the user with sufficient knowledge and information
to combat such an attack. Our tool, while still in its
infancy, is a first approach to defend oneself against
an attack by such malware.

6. Acknowledgments

The authors would like to thank the support
offered by The Center for Enhancing Undergrad-
uate Research Experiences and Creative Activities
at Sam Houston State University. The authors are
solely responsible for the views expressed in this
paper, which do not necessarily reflect the position
of the supporting organization.

References

[1] Chen, Q. and Bridges, R. A. (2017). Au-
tomated behavioral analysis of malware a case
study of wannacry ransomware. arXiv preprint
arXiv:1709.08753.

[2] Filiol, É. and Raynal, F. (2008). Malicious cryp-
tography... reloaded. In CanSecWest Conference,
Vancouver, Canada.[online] http://cansecwest.
com/csw08/csw08-raynal. pdf.

68



[3] Kumar, S. M. and Kumar, M. R. (2013). Cryp-
toviral extortion: A virus based approach. Inter-
national Journal of Computer Trends and Tech-
nology (IJCTT), 4(5):1149–1153.

[4] McCormack, M. (1996). Europe hit by cryp-
toviral extortion. Computer Fraud & Security,
6(1996):3.

[5] Pascariu, C., BARBU, I.-D., and Bacivarov,
I. C. (2017). Investigative analysis and techni-
cal overview of ransomware based attacks. case
study: Wannacry. Int’l J. Info. Sec. & Cybercrime,
6:57.

[6] Salvi, M. H. U. and Kerkar, M. R. V. (2016).
Ransomware: A cyber extortion. Asian Journal
of Convergence in Technology, 2(2).

[7] Young, A. L. (2006). Cryptoviral extortion using
microsoft’s crypto api. International Journal of
Information Security, 5(2):67–76.

[8] Young, A. L. and Yung, M. (2017). Cryp-
tovirology: The birth, neglect, and explosion
of ransomware. Communications of the ACM,
60(7):24–26.

[9] Young, A. L. and Yung, M. M. (2005). An
implementation of cryptoviral extortion using mi-
crosoft’s crypto api.

7. Appendix A

7.1. List of affected file extensions

.der .pfx .key .crt .csr .pem .odt .ott .sxw .stw .uot

.max .ods .ots .sxc .stc .dif .slk .odp .otp .sxd .std

.uop .odg .otg .sxm .mml .lay .lay6 .asc .sqlite3

.sqlitedb .sql .accdb .mdb .dbf .odb .frm .myd .myi

.ibd .mdf .ldf .sln .suo .cpp .pas .asm .cmd .bat .vbs

.dip .dch .sch .brd .jsp .php .asp .java .jar .class .wav

.swf .fla .wmv .mpg .vob .mpeg .asf .avi .mov .mkv

.flv .wma .mid .djvu .svg .psd .nef .tiff .tif .cgm

.raw .gif .png .bmp .jpg .jpeg .vcd .iso .backup .zip

.rar .tgz .tar .bak .tbk .paq .arc .aes .gpg .vmx .vmdk

Fig. 10: VDB Database Diagram

.vdi .sldm .sldx .sti .sxi .hwp .snt .onetoc2 .dwg .pdf

.wks .rtf .csv .txt .vsdx .vsd .edb .eml .msg .ost .pst

.potm .potx .ppam .ppsx .ppsm .pps .pot .pptm .pptx

.ppt .xltm .xltx .xlc .xlm .xlt .xlw .xlsb .xlsm .xlsx

.xls .dotx .dotm .dot .docm .docb .docx .doc

7.2. Database Diagram

Fig. 10 illustrate the database diagram we have
employed.

7.3. 3rd Party Dependencies

sqlite3 https://sqlite.org/index.html
jansson http://www.digip.org/jansson/
openssl https://www.openssl.org/
vtapi https://github.com/VirusTotal/c-vtapi
libcurl https://curl.haxx.se/libcurl/

69


	1 Introduction
	2 Prior and Related Work
	3 Analysis
	31 WannaCry/WCry
	311 Background
	312 General File Data
	313 Decompilation
	314 Dynamic Analysis
	315 Putting it all Together


	4 The Defense Software
	41 An Overview

	5 Conclusion
	6 Acknowledgments
	7 Appendix A
	71 List of affected file extensions
	72 Database Diagram
	73 3rd Party Dependencies


