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Abstract—Most of the public key cryptography algorithms require efficient big integer multiplications. In this paper, we show how to
develop efficient integer multiplication algorithms for cryptographic applications by combining different methods. We determine the
complexities by taking into account the cost of single word multiplication, single word addition and double word addition on different
platforms. This paper is an extended version of [11]. We add the complexity of the last term method that is used for computing
complexity of multiplication of degree n − 1 polynomials from the product of degree n − 2 polynomials. The unbalanced refined
Karatsuba 2-way multiplication algorithm is also included. These new contributions improved the complexity results introduced in
[11]. Moreover, we present the best multiplication algorithm complexities for NIST primes on different implementation platforms.
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1. Introduction

The standard multiplication algorithm or the
schoolbook method has complexity O(n2) for multi-
plying polynomials. In 1962, Karatsuba [2] designed
a new method to multiply polynomials in which the
complexity is O(n1.58). Toom-Cook [5], [6] algo-
rithm was suggested with the complexity O(n1.46).
After these improvements, many analyses have been
done in the literature and to the best of our knowl-
edge Harvey’s method [7] gives the best complexity
result in the big −O notation. It should be noted
that these new algorithms are generally not suitable
for integer multiplication algorithms used in current
cryptographic applications because of the hidden
coefficients in the big−O notation. For this reason,

the main task is to design the efficient integer multi-
plication algorithms to speed up public key cryptog-
raphy. To this end, the schoolbook, the Karatsuba,
and the Karatsuba-like algorithms are analyzed in
this work. In the literature, similar techniques for
binary polynomial multiplications over binary fields
have been used in [1], [3] and the best complexities
were obtained for this type of polynomials.

In this paper, by using the mentioned techniques,
we obtained promising results for integer multipli-
cations which are used in cryptographic applications
by considering single word multiplication, single
word addition, and double word addition. First,
the methods in the literature are investigated with
their optimization. Following this, we find the best
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multiplication algorithms with efficient complexi-
ties. Moreover, the hybrid method which combines
other methods is also investigated. We also compute
the complexity of the unbalanced refined Karatsuba
2-way algorithm that enhances the complexities
further. It is shown that the complexity computation
of multiplication of degree n − 1 polynomials is
efficiently obtained using the product of degree n−2
polynomials that is called the last term method.

The work is structured as follows. Preliminaries
on complexity calculation are given in Section 2. We
indicate the complexity analysis of 2-way and 3-way
polynomial multiplication algorithms in Section 3
and Section 4. The combination of these methods
is introduced in Section 5. We conclude the paper
with Section 6.

2. Preliminaries

Throughout the paper, all polynomials are as-
sumed to be defined over Z. We can represent
integers as polynomials. Let A be an integer and
β be a base. Then, A can be represented by

A = an−1β
n−1 + · · · a1β + a0

where n is the length of A and we have 0 ≤
ai ≤ β − 1. The computation of complexities of
multiplication algorithms in the recursive approach
needs the following type recursion:

r1 = e, rn = arn/b + cn+ d,

where a, b, and i are positive integers, and n = bi,
a 6= b, and a 6= 1. The solution of this recursive
equation is

rn =

(
e+ bc

a−b
+ d

a−1

)
nlogb(a) −

(
bc
a−b

)
n− d

a−1
.

(1)

In the complexity computations AD and AS stand
for double precision/word addition and single pre-
cision/word addition, respectively. In addition, the
following notations will be used.
M(n) : The total number of operations required for
multiplying degree n− 1 polynomials.
M⊗(n) : The total number of single word mul-
tiplications required for multiplying degree n − 1

polynomials.
M⊕D(n) : The total number of double word addi-
tions required for multiplying degree n− 1 polyno-
mials.
M⊕S(n) : The total number of single word additions
required for multiplying degree n− 1 polynomials.

Moreover, single word multiplication is denoted
by M̃ . The result of the multiplication of two single
words is stored in a double word.

3. 2-way Multiplication Algorithms

2-way multiplication method is analyzed in this
section. In these methods, polynomials are divided
into two equal parts. Let A(x) and B(x) be two
degree n− 1 polynomials such that

A(x) = a0 + a1x+ a2x
2 + · · ·+ an−1x

n−1,

B(x) = b0 + b1x+ b2x
2 + · · ·+ bn−1x

n−1,

where n is an even positive integer.

We recursively deploy the following steps: A(x)
and B(x) are divided into two equal parts. A(x) =
A0 + A1y where

A0 = a0 + a1x+ · · ·+ an
2
−1x

n
2
−1,

A1 = an
2
+ an

2
+1x+ · · ·+ an−1x

n
2
−1.

(2)

and y = x
n
2 . Similarly, B(x) = B0 +B1y where

B0 = b0 + b1x+ · · ·+ bn
2
−1x

n
2
−1,

B1 = bn
2
+ bn

2
+1x+ · · ·+ bn−1x

n
2
−1.

(3)

Then, (A0+A1y)(B0+B1y) is computed with dif-
ferent approaches that are presented in the following
sections.
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3.1. The schoolbook algorithm

The schoolbook algorithm is also known as the
standart multiplication algorithm in the literature.
By using (2) and (3) the multiplication of the
polynomials A(x) and B(x) with the schoolbook
method can be performed as:

A(x)B(x) = A0B0 + y[A1B0 + A0B1] + y2A1B1.

Note that there are four multiplications of poly-
nomials of size n

2
, A0B0, A1B0, A0B1, and A1B1.

Then, A1B0 is added to A0B1 which requires n− 1

double word additions. In the computation of con-
struction, there exist two overlaps between A0B0

and (A1B0+A0B1) and between (A1B0+A0B1) and
A1B1. First, we need to compute the addition cost
of overlap between A0B0 and (A1B0+A0B1) which
requires n

2
−1 double word additions. In the manner

with first case, the addition cost of (A1B0 +A0B1)

and A1B1 is also n
2
− 1. In consequence, we have

totally 2(n
2
− 1) + n − 1 = 2n − 3 double word

additions. We can separate the total complexity into
multiplication, and double word addition.

M(n) = 4M(n
2
) + (2n− 3)AD,M(1) = 1

M⊗(n) = 4M(n
2
),M⊗(1) = 1,

M⊕D(n) = 4M(n
2
) + (2n− 3),M⊕D(1) = 0.

By using (1), we can compute complexities explic-
itly as:

M(n) = 2n2 − 2n+ 1,

M⊗(n) = n2,

M⊕D(n) = n2 − 2n+ 1.

3.2. The Karatsuba 2-way algorithm

The Karatsuba method [2], is applied as:

A(x)B(x) = A0B0 + y[(A0 + A1)(B0 +B1)

−A0B0 − A1B1] + y2A1B1.
(4)

We compute the complexities as in the case of the
schoolbook algorithm by considering single word

and double word addition and single word multipli-
cation, and the following complexities are obtained.

M(n) = 3M(n
2
) + (3n− 4)AD + (n)AS,

M(1) = 1,

M⊗(n) = 3M(n
2
),M⊗(1) = 1,

M⊕D(n) = 3M(n
2
) + (3n− 4),M⊕D(1) = 0,

M⊕S(n) = 3M(n
2
) + n,M⊕S(1) = 0.

Using (1), we compute complexities explicitly as:

M(n) = 7n1.58 − 8n+ 2,

M⊗(n) = n1.58,

M⊕D(n) = 4n1.58 − 6n+ 2,

M⊕S(n) = 2n1.58 − 2n.

3.3. The refined Karatsuba 2-way algorithm

In this method [3], we first define P1, P2, and P3

as in (5) in order to obtain compact formula.

P1 = A0B0,

P2 = (A0 + A1)(B0 +B1),

P3 = A1B1.

(5)

To use this method, we divide polynomials into two
parts as in the case of (2) and (3). Moreover, we can
express the multiplication of these polynomials as:

A(x)B(x) = (y − 1)(yP3 − P1) + yP2 (6)

It can be shown that the refined Karatsuba 2-way
algorithm has the following complexities.

M(n) = 3M(n
2
) + (5n

2
− 3)AD + (n)AS,

M(1) = 1,

M⊗(n) = 3M(n
2
),M⊗(1) = 1,

M⊕D(n) = 3M(n
2
) + (5n

2
− 3),M⊕D(1) = 0,

M⊕S(n) = 3M(n
2
) + n,M⊕S(1) = 0.

By the means of (1), we compute the complexities
as follows:

M(n) = 6.5n1.58 − 7n+ 3
2
,

M⊗(n) = n1.58,

M⊕D(n) = 3.5n1.58 − 5n+ 3
2
,

M⊕S(n) = 2n1.58 − 2n.
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3.4. The optimized Karatsuba 2-way algorithm

In this method [4], we divide the products in (5)
into two parts. PiL is the lower part of Pi with n

2

terms where i = 1, 2, 3. PiH is the higher part of Pi,
for i = 1, 2, 3 with n

2
− 1 terms. Substituting these

into (4), we can apply the method as follows:

A(x)B(x) = P1L + x
n
2 [P1H + P2L − P1L

−P3L] + xn[P2H − P1H − P3H

+P3L] + x
3n
2 P3H

= P1L + x
n
2 [(P1H − P3L) + P2L

−P1L] + xn[−(P1H − P3L) + P2H

−P3H ] + x
3n
2 P3H

For the optimized Karatsuba 2-way algorithm, the
complexities are:

M(n) = 3M(n
2
) + (5n

2
− 3)AD + (n)AS,

M(1) = 1,

M⊗(n) = 3M(n
2
),M⊗(1) = 1,

M⊕D(n) = 3M(n
2
) + (5n

2
− 3),M⊕D(1) = 0,

M⊕S(n) = 3M(n
2
) + n,M⊕S(1) = 0.

With the use of (1), we can compute complexities
as follows:

M(n) = 6.5n1.58 − 7n+ 3
2
,

M⊗(n) = n1.58,

M⊕D(n) = 3.5n1.58 − 5n+ 3
2
,

M⊕S(n) = 2n1.58 − 2n.

3.5. The unbalanced refined Karatsuba 2-way
algorithm for odd n

In this method [3], unlike the other 2-way multi-
plication algorithm methods we divide our polyno-
mials into two unequal parts. Let A(x) and B(x) be
two polynomials of degree n− 1 such as:

A(x) = a0 + a1x+ a2x
2 + · · ·+ an−1x

n−1,

B(x) = b0 + b1x+ b2x
2 + · · ·+ bn−1x

n−1,

where n is an odd positive integer. We recursively
follow these steps: A(x) and B(x) are divided into
two parts. A(x) = A0 + A1y where

A0 = a0 + a1x+ · · ·+ an−1
2
x

n−1
2 ,

A1 = an+1
2

+ an+3
2
x+ · · ·+ an−1x

n−3
2 .

(7)

and y = x
n+1
2 . Similarly, B(x) = B0 +B1y where

B0 = b0 + b1x+ · · ·+ bn−1
2
x

n−1
2 ,

B1 = bn+1
2

+ bn+3
2
x+ · · ·+ bn−1x

n−3
2 .

(8)

In this approach, the polynomial A0 contains one
more element than the polynomial A1 has. We use
the same compact formula which is defined in (6),
and the following complexities are obtained.

M(n) = 2M(n+1
2
) +M(n−1

2
) + (5n−5

2
)AD

+(n− 1)AS,M(1) = 1,

M⊗(n) = 2M(n+1
2
) +M(n−1

2
),M⊗(1) = 1,

M⊕D(n) = 2M(n+1
2
) +M(n−1

2
) + (5n−5

2
),

M⊕D(1) = 0,

M⊕S(n) = 2M(n+1
2
) +M(n−1

2
) + (n− 1),

M⊕S(1) = 0.

Remark 1: The last term of both P1 and P2

is an−1
2
bn−1

2
. Therefore, we save one single word

multiplication.

4. 3-way Multiplication Algorithms

In this section, 3-way multiplication algorithms
are discussed. We can calculate A(x)B(x) by using
a 3-way algorithm. First, the polynomials A(x) and
B(x) are divided into three parts as A(x) = A0 +

A1y + A2y
2 where

A0 = a0 + a1x+ · · ·+ an
3
−1x

n
3
−1,

A1 = an
3
+ an

3
+1x+ · · ·+ a 2n

3
−1x

n
3
−1,

A2 = a 2n
3
+ a 2n

3
+1x+ · · ·+ an−1x

n
3
−1,

(9)

and y = x
n
3 . Similarly, B(x) = B0 + B1y + B2y

2

where
B0 = b0 + b1x+ · · ·+ bn

3
−1x

n
3
−1,

B1 = bn
3
+ bn

3
+1x+ · · ·+ b 2n

3
−1x

n
3
−1,

B2 = b 2n
3
+ b 2n

3
+1x+ · · ·+ bn−1x

n
3
−1.

(10)
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Then (A0 + A1y + A2y
2)(B0 + B1y + B2y

2) is
calculated.

4.1. The schoolbook algorithm

In the schoolbook algorithm, we use (9) and
(10), and calculate the multiplication of polynomials
A(x) and B(x) as follows:

A(x)B(x) = A0B0 + y[A1B0 + A0B1]

+y2(A0B2 + A1B1 + A2B0)

+y3(A1B2 + A2B1) + y4A2B2.

The complexity of schoolbook algorithm is:

M(n) = 9M(n
3
) + (4n− 8)AD,M(1) = 1,

M⊗(n) = 9M(n
3
),M⊗(1) = 1,

M⊕D(n) = 9M(n
3
) + 4n− 8,M⊕D(1) = 0.

By using (1), we can compute complexities explic-
itly:

M(n) = 2n2 − 2n+ 1

M⊗(n) = n2,

M⊕D(n) = n2 − 2n+ 1.

4.2. The Karatsuba-like 3-way algorithm

In the Karatsuba-like 3-way algorithm [8], we can
use (9) and (10) and compute the multiplication of
polynomials A(x) and B(x) as follows:

A(x)B(x) = A0B0 + y[(A0 + A1)(B0 +B1)

−A0B0 − A1B1] + y2[(A0 + A2)

(B0 +B2)− A0B0 − A2B2

+A1B1] + y3[(A1 + A2)(B1 +B2)

−A1B1 − A2B2] + y4A2B2

The complexity of the Karatsuba-like 3-way algo-
rithm is:

M(n) = 6M(n
3
) + (6n− 11)AD + (2n)AS,

M(1) = 1,

M⊗(n) = 6M(n
3
),M⊗(1) = 1,

M⊕D(n) = 6M(n
3
) + 6n− 11,M⊕D(1) = 0,

M⊕S(n) = 6M(n
3
) + 2n,M⊕S(1) = 0.

By applying (1), we can compute complexities
explicitly as:

M(n) = 6.8n1.63 − 8n+ 2.2

M⊗(n) = n1.63,

M⊕D(n) = 3.8n1.63 − 6n+ 2.2,

M⊕S(n) = 2n1.63 − 2n.

4.3. The optimized Karatsuba-like 3-way algo-
rithm

In the optimized Karatsuba-like 3-way method,
we use (9) and (10), and calculate the multiplication
of polynomials. The case over binary fields is in [9].
In order to get the compact formula we define:

P1 = A0B0, P2 = (A0 + A1)(B0 +B1),

P3 = A1B1, P4 = (A0 + A2)(B0 +B2),

P5 = A2B2, P6 = (A1 + A2)(B1 +B2).

PiL is the lower part of Pi with (n
3
) terms where

i = 1, · · · , 6. PiH is the higher part of Pi, for i =
1, · · · , 6 with (n

3
−1) terms. Then, the multiplication

of A(x)B(x) is expressed as follows:

A(x)B(x) = P1L + y[P1H + P2L − P1L − P3L]

+y2[P2H − P1H − P3H + P4L

−P1L − P5L + P3L] + y3[P4H

−P1H − P5H + P3H + P6L − P3L

−P5L] + y4[P6H − P3H − P5H

+P5L] + y5P5H

= P1L + y(P1H − P3L) + P2L − P1L]

+y2[−(P1H − P3L)− P3H + P2H

+P4L − P1L − P5L] + y3[(P3H

−P5L) + P4H − P1H − P5H + P6L

−P3L] + y4[−(P3H − P5L) + P6H

−P5H ] + y5P5H

The complexity of the optimized Karatsuba-like 3-
way algorithm is:

M(n) = 6M(n
3
) + (16

3
n− 9)AD + (2n)AS,

M(1) = 1,

M⊗(n) = 6M(n
3
),M⊗(1) = 1,

M⊕D(n) = 6M(n
3
) + (16

3
n− 9),M⊕D(1) = 0,

M⊕S(n) = 6M(n
3
) + 2n,M⊕S(1) = 0.
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By using (1), we can compute complexities as
follows:

M(n) = 98
15
n1.63 − 22

3
n+ 9

5
,

M⊗(n) = n1.63,

M⊕D(n) = 53
15
n1.63 − 16

3
n+ 9

5
,

M⊕S(n) = 2n1.63 − 2n.

4.4. Complexity comparison of 2-way and 3-
way multiplication algorithms

The complexity results that were calculated in
Section 3 and Section 4 are presented in Table 1. In
2-way multiplication algorithms, the refined Karat-
suba 2-way and the optimized Karatsuba 2-way
algorithms lead to the best complexity. In 3-way
multiplication algorithms, the optimized Karatsuba-
like 3-way algorithm is the best algorithm. Note
that these asymptotic complexities are useful when
the input size is very huge. For cryptographic sizes,
combination of different algorithms is more efficient
than the use of a single algorithm. In the next
section, we discuss this approach.

5. Combined Methods

It can be observed that the complexity of
Karatsuba-like algorithms has better complexities
than the schoolbook method. However; in some
cases, using combined methods, applying the refined
Karatsuba or the optimized Karatsuba algorithm
before the schoolbook method yields more desirable
results. Moreover, sometimes using the product of
degree n−2 polynomials for computing complexity
of product of degree n − 1 polynomials leads to
better results. We call this method the last term
method. In this method, to multiply degree n − 1

polynomials A(x) and B(x) where n is an odd
number, we use the best multiplication method for
degree n − 2 polynomials, and compute the result

in the following way:

A(x)B(x) = A1(x)B1(x) + bnx
nA1(x)

+anx
nB1(x) + anbnx

2n−2,

where A1(x) and B1(x) are obtained by deleting the
last terms of A(x) and B(x) respectively. In other
words, first we apply the best multiplication method
for degree n− 2, after we multiply last terms with
schoolbook multiplication. The complexity of this
algorithm is given as follows:

M(n) =M(n− 1) + (2n− 1)M̃ + (2n− 3)AD

where M̃ denotes single word multiplication.

In order to find the best multiplication algorithm,
first, the best complexity for n = 2 is searched for
a given platform. Then, we search for n = 3 by
using the previous results. We continue similarly
and when we come to n = l, we check all possible
cases by using the previous complexities. Since
we have limited number of algorithms, this search
ends quickly. In this section, we will analyze this
approach.

Example 1: Assume that we have a platform where
a single and a double word addition and a single
word multiplication have the same complexity. In
this platform, we want to multiply two polynomials
of degree 5. If we use the schoolbook method, we
need 36 word multiplications and 25 double word
additions. Therefore, this computation results in 61
operations. However, using the refined Karatsuba 2-
way algorithm first, then the schoolbook algorithm,
we have

M(6) = 3M(3) + (5·6
2
− 3)AD + (6)AS

= 3(9M + 4AD) + 12AD + 6AS

= 27M + 24AD + 6AS,

and since we assume M , AD, and AS have equal
costs, the number of operations reduces to 57.

Example 2: Assume that we have the same plat-
form as in the Example 1, and we want to multiply
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TABLE 1
Complexity Comparison of 2-way and 3-way multiplication algorithms

Algorithm M⊕S(n) M⊕D(n) M⊗(n) M(n)

SB n2 − 2n+ 1 n2 2n2 − 2n+ 1

KA2 2n1.58 − 2n 4n1.58 − 6n+ 2 n1.58 7n1.58 − 8n+ 2

RK2 2n1.58 − 2n 3.5n1.58 − 5n+ 1.5 n1.58 6.5n1.58 − 7n+ 1.5

OPK2 2n1.58 − 2n 3.5n1.58 − 5n+ 1.5 n1.58 6.5n1.58 − 7n+ 1.5

SB n2 − 2n+ 1 n2 2n2 − 2n+ 1

KA3 2n1.63 − 2n 3.8n1.63 − 6n+ 2.2 n1.63 6.8n1.63 − 8n+ 2.2

OPK3 2n1.63 − 2n 53
15
n1.63 − 16

3
n+ 9

5
n1.63 98

15
n1.63 − 22

3
n+ 9

5

two polynomials of degree 10. If we use the school-
book method, we need 121 word multiplications
and 100 double word additions, so this calculation
comes out 221 operations. Also, if we use the last
term method we obtain,

M(11) =M(10) + 21M + 19AD

= 75M + 10AS + 70AD + 21M + 19AD

= 96M + 89AD + 10AS,

and 195 operations. On the other hand, if we use
the unbalanced refined Karatsuba 2-way algorithm
first by dividing these polynomials into degree 5
and degree 4 polynomials, and then use the best
multiplication algorithms, it can be obtained that

M(11) = 2M(6) +M(5) + (25)AD + 10AS

= 54M + 48AD + 12AS + 25M + 16AS

+ 25AD + 10AS

= 79M + 73AD + 38AS,

which results in 190 operations. Also, by using (3.5)
the number of calculations reduce to 189 operations.

As it can be seen from Example 1 and 2, compu-
tation of the minimum number of operations can be
done with a hybrid method where one single word
addition, one double word addition, and one single
word multiplication have the same cost. The list of
this operations for multiplying two polynomials up
to size 20 is given in Table 2 where SB is used

for the schoolbook algorithm, RK2 is used for the
refined Karatsuba 2-way algorithm, and URK2 is
used for the unbalanced refined Karatsuba 2-way
algorithm. The last column in Table 2 shows the
name of the algorithm used to obtain the indicated
complexities. If there are two algorithm names, it
means that first apply the leftmost algorithm, and
then apply the rightmost one.

Suppose that in a given platform, we have one
single word addition and one single word multipli-
cation having the same cost; however, one double
word addition is twice as costly as one single word
addition and one single word multiplication. The
Table 3 is constructed for the best multiplication
algorithms for size up to 19 polynomials in the given
platform.

5.1. NIST Primes

In this section, we include the NIST Primes as an
application for efficient polynomial multiplication
with different prime fields. Recommendations for
the elliptic curves over the following prime fields
are given in the NIST standard 186-2 [10].

p192 = 2192 − 264 − 1, p224 = 2224 − 296 + 1,

p256 = 2256 − 2224 + 2192 + 296 − 1,

p384 = 2384 − 2128 − 296 + 232 − 1,

p521 = 2521 − 1.
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TABLE 2
Minimum number of operations for 1 Single
Word addition = 1 Double Word Addition = 1

Single Word Multiplication

n Mult. AS AD # Operation Algorithm
1 1 1 SB
2 4 1 5 SB
3 9 4 13 SB
4 16 9 25 SB
5 25 16 41 SB
6 27 6 24 57 RK2, M(3)
7 40 6 35 81 M(6), last term
8 48 8 44 100 RK2, M(4)
9 65 8 59 132 M(8), last term
10 75 10 70 155 RK2, M(5)
11 78 22 73 189 URK2, M(6),M(5)
12 81 30 99 210 RK2,M(6)
13 106 30 122 258 M(12), last term
14 120 32 137 289 RK2, M(7)
15 135 36 158 329 URK2, M(8),M(7)
16 144 40 169 353 RK2, M(8)
17 177 40 200 417 M(16), last term
18 195 42 219 456 RK2, M(9)
19 214 46 244 504 URK2, M(10), M(11)
20 225 50 257 532 RK2, M(10)

For instance, if we want to use the field p192 in 32-
bit implementation platform, then we use the best
multiplication algorithm for degree 6 polynomials.
In the Table 4, the sizes of the polynomial are given
for 8-bit, 16-bit, 32-bit, and 64-bit implementation
platforms. The best results for polynomials up to
degree 19 are given in the Table 2 and 3 on
two different implementation platforms. For larger
degrees, similar calculations can be done to obtain
the best multiplication algorithms.

5.2. Results for different cost metric

The choice of the best algorithm for multiplication
might change on different implementation platforms
since the cost of a single word multiplication, single
word addition, and double word addition are dif-
ferent. In order to obtain the best results, we have

TABLE 3
Minimum number of operations for 2 Single
Word addition = 1 Double Word Addition = 2

Single Word Multiplication

n Mult. AS AD Tot. Operation Algorithm
1 1 1 SB
2 4 1 6 SB
3 9 4 17 SB
4 16 9 34 SB
5 25 16 57 SB
6 27 6 24 81 RK2, M(3)
7 40 6 35 116 M(6), last term
8 48 8 44 144 RK2, M(4)
9 65 8 59 191 M(8), last term
10 75 10 70 225 RK2, M(5)
11 78 22 89 278 URK2, M(6),M(5)
12 81 30 99 309 RK2, M(6)
13 106 30 122 380 M(12), last term
14 120 32 137 426 RK2, M(7)
15 135 36 158 487 URK2, M(8),M(7)
16 144 40 169 522 RK2, M(8)
17 177 40 200 617 M(16), last term
18 195 42 219 655 RK2, M(9)
19 214 46 244 748 URK2, M(10), M(11)
20 225 50 257 789 RK2, M(10)

TABLE 4
NIST primes and polynomial sizes

p192 p224 p256 p384 p521

8-bit 25 28 32 48 66
16-bit 12 14 16 24 33
32-bit 6 7 8 12 17
64-bit 3 4 4 6 9

to measure these costs and choose the correspond-
ing multiplication algorithm by considering these
results. For instance, if the cost of a double word
addition is higher than a single word addition and
a single word multiplication, we need to choose a
multiplication algorithm which contains less double
word additions with respect to others. On the other
hand, as it can be seen from Table 2 and 3, even
though the operation costs are different, the used
algorithms for best results can be the same.
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6. Conclusion

In this paper, 2-way and 3-way polynomial multi-
plication algorithms that are used for current cryp-
tographic applications are analyzed over the ring of
integers by considering arithmetic complexities. Al-
though the refined Karatsuba 2-way multiplication
algorithm has the best complexity, using the hybrid
approach with the schoolbook method gives better
complexity results. The last term method and the
unbalanced split of polynomials also reduces the
complexities further.
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