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Abstract- E-commerce companies utilize collaborative filtering approaches to provide recommendations in order to attract 
customers. Consumer participation through supplying feedbacks is an important component for a recommendation system to 
produce accurate predictions. New companies in the marketplace might lack enough data for collaborative filtering purposes. 
Thus, they can come together to share their vertically partitioned data for better services. Although partitioned data-based 
recommendation schemes provide accurate predictions, privacy issues might pose different risks to the companies participating 
into such collaboration. Partitioned data-based privacy-preserving collaborative filtering schemes aim to provide accurate 
predictions without neglecting the privacy of such data holders. However, the collaborating parties’ privacy, provided by these 
schemes, might not be protected as much as believed. In this study, the privacy, offered by vertically partitioned binary ratings-
based privacy-preserving collaborative filtering schemes, is examined by three different attacks and experimentally tested. 
Empirical outcomes show that the collaborating parties are still able to derive each other’s confidential data.  
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1. Introduction 
 

The Internet age has been offering great 
opportunities for companies to reach out their 
potential customers around the world. Anyone 
sitting in front of a computer can visit any site to 
browse, review, or buy an item. Thus, customers 
will be equipped with a large amount of data 
before making a decision about an item. 
Information overload refers to the fact that the 
amount of data human beings can process has 
some limits and this limit makes the decision 
making process difficult [1]. Information overload 
is an important problem for e-commerce 
companies hindering their customers from spotting 
right products. 

E-commerce companies might collect implicit 
(browsing, purchase history, time spent, etc.) and 
explicit information (ratings, reviews, etc.) about 
their customers [2, 3]. They might provide 
referrals to their customers to overcome the 
information overload problem by utilizing the data 
collected from them. Collaborative filtering (CF) is 
a technique to offer such recommendations based 
on user data. CF was first coined with Tapestry 
project [4]. A typical CF system is composed of an 
n × m matrix with n users have a rating vector of 
m items. This matrix is usually sparse. The users 
can express their ratings in different scales such as 
numeric (5-star, 1 to 10, etc.) or binary (like or 
dislike). CF systems utilize the ratings to offer 
right products to their customers. 
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Data sparsity is a crucial problem in CF [5, 6]. 
The more ratings an e-commerce company has, the 
better recommendations will be produced. Dense 
matrix for a CF system will allow an e-company to 
mine more reliable relationships among users or 
items. User participation is therefore important to 
obtain accurate recommendations. However, users 
may be unwilling to participate in providing their 
true preferences due to privacy risks like 
unsolicited marketing, price discrimination, 
unauthorized access, government surveillance, and 
selling personal information in case of bankruptcy 
[7, 8].  

Phelps et al. [9] report that the majority of 
users are concerned about how companies use their 
data and want control over their data. Users 
believe that the companies are not concerned about 
privacy and know too much about their users. True 
user participation is important in CF. Therefore, 
privacy-preserving collaborative filtering (PPCF) 
schemes are proposed to protect privacy. They aim 
to provide accurate referrals to users without 
neglecting privacy. PPCF schemes must achieve 
privacy, accuracy, and performance [6]. In a 
typical scenario, users mask their data before 
sending them to a central server for CF purposes. 
The server has an access to the perturbed data, 
which is different from the original one so that it is 
unable to retrieve individuals’ private information. 

Although PPCF schemes promise privacy, 
there are some studies arguing that privacy is not 
protected as much as believed [10, 11, 12, 13, 14]. 
A data disguising method, random perturbation, is 
studied in [10, 11]. It is argued that data perturbed 
by random perturbation techniques, which 
basically add random noise to the original data, 
have predictable nature. Thus, the data perturbed 
by this method can be extracted using spectral 
filtering (SF) [10, 11]. On the other hand, CF-
based systems are examined by different scholars 
[12, 13, 14]. Zhang et al. [12] propose two 
different techniques to disclose the ratings of the 
users perturbed by the PPCF method proposed in 
[15]. In [13], live CF systems are attacked by 
utilizing auxiliary information and tracking the 
temporal changes of the public output on the 
targeted CF services. The authors in [14] analyze a 
specific PPCF scheme [20], which disguises binary 

data by randomized response technique (RRT) [17] 
and discloses which items are rated. 

The related studies up to now focus on central 
server-based PPCF systems to obtain private 
information. Inspiring from these studies, this 
paper conducts a privacy review of vertically 
partitioned data-based PPCF schemes on binary 
ratings. Privacy has two aspects in PPCF. The first 
is to disguise the actual rating values; the other is 
to disguise the rated items. Our aim is to derive the 
collaborating parties’ private data considering two 
aspects of privacy. Three different attack scenarios 
are devised, acting as an active user in multiple 
scenarios, knn-based, and perfect match attacks, to 
accomplish data reconstruction. The first attack 
monitors similarity scores between repeated 
queries differing by one cell only. Therefore, 
altered rating cell in each query could be 
reconstructed. knn-based attack exploits 
neighborhood information of CF schemes [13]. 
This attack assumes that history (ratings) of a 
target user is known or disclosed by an attacker. k 
fake users with identical to the target user are 
appended to the CF system and a prediction is 
asked for one of the fake users. It is expected that 
neighborhood will be formed from k-1 fake users 
and the target user. As a result, the predictions are 
expected to be produced from the target user 
because unrevealed ratings of her will be revealed. 
The third attack exploits the highest correlations, 
perfect matches, between an incoming query and 
users. Based on captured perfect matches, ratings 
in the incoming query could be reconstructed by 
carrying out intensive repeated queries. 

In [18], the authors perform these attack 
scenarios on PPCF schemes, where binary data is 
horizontally partitioned between two-parties. In 
this study, our aim is to show how much privacy 
can be achieved in terms of the first and the 
second aspect of privacy by the vertically 
partitioned data-based PPCF binary schemes in 
[19, 20]. Note that data is partitioned between two 
parties by devising different attack techniques. We 
discuss possible attacks targeting these schemes 
and perform some experiments to display the 
results. 

The paper is organized as follows. The next 
section covers the related work in the field. Section 
3 introduces the target PPCF schemes. Section 4 
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clarifies attack techniques and Section 5 displays 
experiments. Section 6 gives a discussion about 
results and makes a comparison with a random 
attack. The last section lays out conclusions and 
general summary of the study. 

2. Related Work 
 

PPCF community offers different solutions to 
enhance the privacy of CF systems. Polat and Du 
[15] offer a method, which can be applied for 
numerically rated data. They propose a 
randomized perturbation technique, where each 
user calculates their z-scores and sends them to the 
server by adding up some random noise to the 
original z-scores. Other schemes for the central 
server-based PPCF utilize binary data [16, 21]. In 
[16, 21], the researchers apply RRTs on binary 
data to disguise ratings. RRT is a survey 
technique, proposed by Warner [17], to determine 
a sensitive attribute in a population. To calculate 
predictions, the probabilities due to RRTs are used 
in [16] while naïve Bayesian classifier (NBC) is 
utilized in [21]. In [22], the authors propose an 
item-based scheme claiming that item relationship 
is not sensitive.  

Sparse data sets are obstacle for CF systems 
and companies planning to embark on new 
markets or newly established ones might lack 
enough data to provide accurate recommendations 
[6]. Hence, they might collaborate for better 
filtering services. Two companies could have 
ratings for the same set of items by different 
customers. This is called horizontally partitioned 
data (HPD). Likewise, if two parties hold ratings 
of the same users for different sets of items, then 
this partitioning is called vertically partitioned data 
(VPD). There are some studies providing different 
schemes to offer recommendation in both HPD 
and VPD cases [19, 20, 23, 24]. Two-party binary 
PPCF schemes are presented in [19, 20, 23]. VPD-
based PPCF scheme for numerically rated data is 
studied in [19]. Kaleli and Polat [20] offer NBC-
based scheme for both HPD and VPD. Polat and 
Du [23] propose a PPCF scheme for HPD. The 
scholars also propose multi-party schemes [25, 26, 
27]. The authors in [25] utilize NBC for both HPD 
and VPD. Self-organizing maps-based 
recommendations are proposed for HPD [26] and 

VPD [27]. A detailed survey about PPCF schemes 
is presented in [6].  

Privacy is meant to be preserved by 
aforementioned techniques. However, a group of 
researchers examine if privacy is really protected. 
In privacy-preserving data mining community, 
Kargupta et al. [10] propose an SF technique to 
extract the original data perturbed by random 
perturbation. Their method is based on obtaining 
theoretical boundaries of maximum and minimum 
values of eigenvalues of the noise matrix. They 
extend their study for discrete graph structure [11]. 
Some researchers study the bounds of the 
reconstruction error by SF methods [28, 29]. 
Principal component analysis is also utilized to 
reconstruct the original data by exploiting data 
correlations [30]. When the correlation is high, 
reconstructions that are more accurate can be 
performed for random perturbation.  

Zhang et al. [12] target a PPCF scheme 
proposed by Polat and Du [15]. They utilize 
singular value decomposition and k-means 
clustering to reconstruct original data. They apply 
k-means clustering to get the data in groups for 
discrete and continuous valued data. This method 
can be applied to discrete data without any 
modification; however, the continuous data need 
some preprocessing. They discretized the 
continuous data into k segment and an item is 
assigned to the median value of the segment it 
belongs to after clustering. Calandrino et al. [13] 
target live CF systems by exploiting auxiliary 
information. They propose passive inference 
attacks that exploit the temporal changes in the 
output that CF systems make publicly available. 
Binary PPCF scheme proposed in [16] is 
investigated in terms of disclosing the rated items 
[14]. The authors utilize publicly collected 
information about the target data set and manage to 
retrieve this private information.  

The aforementioned attacks generally focus on 
the systems with central data. The study in [18] 
handles how much privacy is offered when data is 
partitioned horizontally between two parties. They 
utilize possible attack techniques (acting as an 
active user and knn-based) and propose an attack 
technique called perfect match attack. Our 
approach in this paper focusses on vertically 
partitioned binary ratings between two parties. We 
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Fig. 1. NBC-based CF 

extend the prior studies [18, 31] for a VPD-based 
binary PPCF scheme. This study covers and 
extends the attack technique given in [31] for two-
party PPCF schemes. Unlike [31], we have added 
two-party binary PPCF NBC prediction [20] and 
try to derive target site’s matrix as a whole. In 
[31], the primary intention is not to build the target 
site’s data matrix; it aims to show the applicability 
of the attacks. 

  

3. Preliminaries 
 

The first targeted scheme is proposed by Polat 
and Du [19]. This scheme provides top-N 
recommendation (TN) for an active user, AU, 
among the item list (Na) she wants a prediction. 
The second targeted scheme is based on NBC to 
provide predictions on partitioned data [20]. These 
schemes employ privacy measures to prevent the 
other party from disclosing similarity information. 
From now on, A and B will denote each party. 
First, we introduce the method introduced in [19] 
to offer private TN for two-party PPCF. 

3.1. TN recommendation 
 

This scheme selects the users who have high 
positive and negative correlations with AU 
claiming that accuracy might be increased if the 
best similar and dissimilar users are selected [19]. 
The similarity metric to determine neighbors is a 
modification of Tanimoto coefficient as follows:  

 
( ) ( )

( )
s d

au

t R t R
W

t R

-
=  (1) 

In Eq. (1), Wau is the similarity weight between the 
user u and AU. t(Rs), t(Rd), and t(R) are the 
numbers of similarly, dissimilarly, and commonly 
rated items by both u and AU, respectively. If Wau 

> 0, then u and AU are similar, otherwise they are 
dissimilar. They are not correlated if the similarity 
weight is 0. 

After determining Wau, neighbors are picked 
based on two different criteria, best-N or threshold. 
In the best-N neighbors’ selection, N users with the 
highest correlations (either positive or negative) 
are picked as neighbors. Threshold neighbors’ 
selection method picks its neighbors among the 
users whose correlations (either positive or 
negative) surpassing a threshold (τn) value. Note 
that users with negative correlations with AU are 
dissimilar to AU. These users would vote opposite; 
therefore, their ratings are reversed. Since the 
scheme handles binary data, reversing can be 
performed by converting likes (1s) to dislikes (0s) 
and dislikes (0s) to likes (1s). 

Upon selecting the neighbors, Polat and Du 
[19] find the number of likes (l j) and dislikes (dj), 
where j is the item number, among the selected 
neighbors. Then, ldj = l j - dj is calculated. If ldj > 0, 
the item will be liked by AU. Otherwise, it will be 
disliked. 

There are two different cases based on how Na 
items are shared between parties. The first deals 
with the case, where all Na items belong to the one 
of the parties. The second case is designed when 
Na items are shared between parties. These cases 
will be hereafter called as the first case Case-All 
and the second Case-Split. 

3.1.1. Case-All 
 

Na items, for which AU is looking for referrals, 
might belong to one party. Case-All deals with this 
special case assuming that B has all items of Na 

and A has none [19]. 

� AU sends her corresponding ratings to both 
parties and Na to only B. A computes the 
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required values (partial similarity) utilizing a 
privacy protocol called private similarity 
calculation protocol (PSCP).  

� A sends the partial similarity values to B 
through AU. B finds its own partial similarity 
values between users it holds and AU. Then, B 
calculates the final similarities (Wau) adding the 
partial similarity values received from A to its 
own calculated ones. 

� After finding the similarities, B selects the best 
neighbors using the threshold and the best-Nn 
approaches. It uses random τn and Nn to prevent 
A from learning them. B generates a random 
number of rB_τn from a range [-αB, αB] and adds 
it to τn. Likewise, B adds a random number, 
rB_Nn, to the number of the best neighbors, Nn, to 
be selected to mask how many best users are 
picked. B picks rB_Nn among a range [-γB, γB]. 

� ldj values are calculated and sorted by B. TN 
recommendation is returned to AU. 

3.1.2. Case-Split 
 

While the previous case designed when all Na 
items belong to a single party, this one handles the 
case when these items are split between parties 
[19]. 

� AU sends a query and her ratings to both 
parties. B finds the partial similarities between 
its users and AU using PSCP. Partial similarities 
are sent to AU and AU lets A know partial 
similarities. 

� A computes its own partial similarities and finds 
the similarities (Wau) by adding values from B.  

� A selects the best Nn neighbors by employing 
random τn and fixed Nn values. Since B needs 
the neighbor information, A lets B know which 
neighbors are selected and the similarity signs.   

� A forms a neighborhood by employing random 
Nn and τn. A computes ldAj with this new 
neighborhood and lets B know ldAj values. 
Since data is partitioned vertically, B needs to 
know ldAj values, which are the other party’s 
aggregated values to come up with final ldj 
values. After receiving ldAj values, B calculates 
ldj values by adding ldAj values from A to the 

corresponding ldBj values it has computed. B 
finally sends TN list to AU. 

3.2. NBC-based prediction 
 

NBC can be utilized for CF purposes [32]. 
Kaleli and Polat [20] also employ NBC (Case-
NBC) for two-party VPD-based schemes 
considering privacy in their study. In this scheme, 
users correspond to features and items correspond 
to feature values. An illustration of Case-NBC is 
given in Fig. 1. AU is looking for a prediction for 
i8, which is marked with a question mark. The 
equation whether an item belongs to a class (cl) for 
a non-partitioned centralized data, where cl is like 
or dislike can be described as follows:  

1 2 1( | , ,..., , ) ( ) ( | )
n

n n i
i

p cl f f f f p cl p f cl− = ∏  (2) 

In Eq. (2), p(cl) is the prior probability of like 
or dislike based on cl, which can be calculated 
from the active query. fi is the rating of the queried 
item, q, which is i8 in Fig. 1. Probabilities are only 
calculated if q is rated. Therefore, unrated fi values 
(i8) are not taken into account. The conditional 
probability will only be calculated for f1 = dislike, 
f3 = like, f5 = dislike, and f6 = like in Fig.1 and the 
repeated multiplication from i to n thus covers 1, 3, 
5, and 6 in Eq. (2).  

Assume that Vi is a vector, where i is associated 
with the user and rated(r ij) is a function that takes 
an item value (r ij) as an argument and returns true 
when an item is rated or false otherwise. Vector 
definitions given below are utilized to calculate 
conditional probabilities. 

1. Vi={ r ij: rated(rij)=true, i={1,2,…, n}, 
j={1,2…,m}} 

2. (Vi)cl = {r ij: cl∈ {Like, Dislike}, r ij={cl}, 
i={1,2,…, n}, j={1,2…,m}} 

Based on these definitions, the following set of 
equations display how conditional probability, 
p(fi|cl), can be reached for each feature vector: 
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Eq. (3) lays out the calculation of p(fi|cl) by 
breaking down numerator, (#Ni)cl, and 
denominator, #(Di)cl. (Di)cl is the intersect set of 
items rated by AU as cl∈ {like, dislike} and rated 
by i-th user regardless of being like or dislike. (Ni)cl 
is the intersect set of (Di)cl and i-th user’s vector 
items rated same as fi. This set is picked to 
quantify similarity between AU and users by 
intersecting fi’s in a user vector. After finding out 
these sets, n() is a function determining number of 
elements in a set. To illustrate, p(f1 = like | cl = 

like) = 2/2 and p(f1 = dislike | cl = like) = 0/2. To 
avoid multiplication following features by 0, 
Laplace smoothing could be utilized [32]. 
Conditional probability calculation needs to be 
repeated for the remaining fi’s to obtain the final 
probability. The item is assigned to the class with 
the highest probability. 

When data is partitioned vertically between 
two parties as depicted by a dashed line in Fig. 1, 
each p(fi|cj) has to be calculated collaboratively 
because only one of the parties knows if the rating 
of q is like or dislike. Therefore, the party who 
does not know the rating of q has to calculate 
partial, (#Ni)cl and #(Di)cl values and let the other 
party know them. Once partial (#Ni)cl and #(Di)cl 
are received, the party with q adds these values to 
the ones calculated by itself. In this scheme, the 
party having q acts as a master site. The full 
application of the scheme is given in the following 
assuming that A is the master party [20]: 

� AU sends her query to A and B. AU also 
computes p(cl) and sends it to A. 

� Since B does not know the value of q, it 
computes partial probability values for fi is like 
and dislike. For class membership assignment, 
conditional probability has to be calculated 
considering cl is like and dislike. Thus, four 
calculation of p(fi=like|cl) is needed to obtain 

the partial conditional probability. However, 
notice that p(fi=like|cl)+p(fi=dislike|cl)=1; thus, 
it is enough to calculate for only fi=like or 
fi=dislike for cl, like and dislike. Because A can 
disclose B’s data matrix by observing partial 
probability values, B utilize a privacy protocol 
very similar to PSCP to prevent data disclosure. 

� Upon getting partial conditional probabilities 
from B, the master party A picks true #(Ni)cl and 
#(Di)cl values based on value of q and calculates 
final conditional probabilities. 

3.3. Privacy by perturbing active query 
 
To prevent data disclosure, the authors in [19, 

20] propose techniques by perturbing an active 
query so that results from the active query do not 
really reflect the exact relation with the original 
user vector. Both studies present a similar solution 
to perturb the active query. The scholars discuss 
PSCP that ratings should be appended to or 
removed from the active query based on its density 
[19]. If the active query is dense, meaning that 
more than half of the items are rated, then some 
items are removed according to a random number 
drawn from [1, M], where M is the number of rated 
items in the active query. In the case of sparse 
active query, some items are randomly appended.  

In Case-NBC [20], a similar approach is 
employed by appending default votes to the active 
query by a random percentage drawn from [1, 
100]. These two approaches have similar 
foundations; however, the active queries are 
mostly very sparse and removing ratings could 
barely occur. On the other hand, appending a 
random percentage of ratings from a larger range 
such as [1, 100] would be misleading due to sparse 
nature of active queries.  

These approaches have evolved to a more 
coherent form in [25] by associating the volume of 
ratings to be appended to the density, d, of an 
active query. This protocol is called hiding rated 
items (HRI). First, the number of unrated items is 
determined. Then, a random value is drawn from 
the range [1, δ], where δ might be factors of d such 
as 1/8d, 1/4d, 1/2d, or d. The unrated cells are 
filled up to a percent drawn between [1, δ]. 
Therefore, AU’s query is filled with δ/2 on 
average. This protocol makes a connection 
between density and ratings to be appended due to 
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Fig. 2. Attack – acting as an active user in multiple scenarios 

sparse nature of CF active queries. In this study, 
HRI protocol is utilized to perturb active queries 
instead of individual privacy methods by each 
PPCF technique.  

In addition to HRI protocol, the authors in [25] 
propose to disguise AU’s query. They propose to 
utilize RRT [17] by partitioning the query into 
groups. The proposed RRT protocol works as 
follows: 

� The master site defines G or number of groups. 

� AU’s query is divided into G groups. 

� For each group, g, two uniformly random 
values βg and Θg values are drawn. 

� If Θg > βg, ratings are reversed for g-th group. 

Since which groups are reversed or preserved 
is known by the master party, it can later 
manipulate the interim results calculated by the 
other party to make corrections. 

4. Attack Scenarios  

 
We describe three attack scenarios that can be 

applied to VPD-based PPCF schemes; and 
evaluate their performance in terms of privacy. 
Privacy has two aspects [16]: (1) preserving the 
actual rating made by users and (2) disguising if an 
item is rated or not. We will refer to them as the 
first and the second aspect of the privacy, 
respectively.  

4.1. Acting as an active user in multiple 
scenarios 
 

If there exists a malicious party, it can try 
sending multiple queries to learn the other party’s 
matrix. Consider a case where the malicious party 
sends multiple queries and alters only one cell each 
time. In such a case, the malicious party can track 
the changes in the output (similarity weights) and 
decide items’ rating whose values have been 
manipulated. Assume that the malicious party 
invokes an initial query and stores the similarity 
weights. Then, the malicious party manipulates a 
single rating and sends the altered query to the 
other party to learn the new similarity weights. 
After receiving the similarity weights for the 
manipulated query, it compares them with the ones 
from the earlier query. If there is an increase in the 
similarity weight between AU and u, then the 
manipulated value is kept by the user. The 
malicious party can reach such a decision because 
the increase in the similarity weights means a 
higher correlation between AU and u. If there is a 
decrease, then the malicious party concludes that u 
has the value in the first query. If there is no 
change in the similarity value, this means that the 
manipulated item is not rated by u. This notion can 
be applied for each user so that the whole matrix 
can be disclosed as depicted in Fig. 2. This attack 
is a threat for the first and the second aspects of 
privacy because it reveals both the actual ratings 
and if an item is rated. 

Case-All, Case-Split, and Case-NBC VPD-
based PPCF schemes [19, 20] are subjected to this 
attack. Remember that data is vertically partitioned 
between two parties. Therefore, the collaborating 
parties have to exchange the partial calculations of 
individual users to obtain the results for both 
schemes. This interaction makes it possible to 
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Fig. 3. Perfect match attack 

 

perform this attack because the malicious party 
will have an access to the partial information for 
each user. As a measure of privacy, HRI will be 
applied as discussed in the previous section. By 
HRI, active query is appended based on δ, which is 
related to d. Hence, it is expected that the success 
of this attack will be affected by increasing δ 
values. We examine how effective HRI is against 
this attack by trails.  

4.2. knn-based scenarios 
  

knn-based attack is proposed by Calandrino et 
al. [13]. This attack targets CF systems that select 
k nearest neighbors. It assumes that the attacker 
has a history of ratings of a target user and appends 
k fake users into the CF system with an exact copy 
of known history. When a prediction is requested 
for one of the fake users, it is highly probable that 
k nearest neighbors will be selected among k-1 
fake users and the target user. Since k-1 users are 
identical, the predictions are expected to come 
from the target user. This attack discloses whether 
an item is rated or not, so the second aspect of 
privacy is under threat with this attack scenario.  

Since Case-All and Case-Split schemes 
targeted in this paper utilize the best neighbors 
approach, knn-based attack can be performed. As 
Case-NBC does not make use of neighborhood 
approach, this attack is not valid for it. Although 
knn-based attack needs a history of a user, the 
attacker does have such a history inherently in 
VPD-based schemes. Owing to the vertical 
partitioning, where items are split between parties, 
the parties have already had such a history of each 

user. Thus, the malicious party can use its own part 
of the ratings as the history of the target user and 
manipulate neighbors by inserting k fake users into 
system. We hypothesize that HRI is not an 
effective privacy measure to prevent from this 
attack because randomly removing or appending 
ratings into AU’s vector does not change the 
similarity weights between AU and k-1 users plus 
the target user.  

4.3. Perfect match attack 
 

This attack is proposed in [18] for an HPD-
based binary PPCF scheme. We apply this attack 
for VPD-based schemes in this study. Although 
HRI is applied by each party as a privacy measure, 
this scheme is subjected to perfect match attack. 
Assume that B acts as the master party and no 
privacy measure is taken. A calculates the 
similarities between its user and AU, sends them to 
B. If the similarity between any user of A and AU 
is either 1 or -1, such similarities are called as 
perfect matches [18]. This means that the 
commonly rated items between these two users are 
either identical or opposite, respectively. Hence, B 
can conclude that the corresponding user who has 
a perfect match with AU either identically voted or 
not voted for any of its items if the similarity is 1. 
If the similarity is -1, they either vote opposite or 
not voted for any of the items. The attack is 
depicted in Fig. 3. 

In Fig. 3, three active queries are listed. Note 
that the similarity weights between u1 and a1 and 
u1 and a2 are 1. These are all perfect matches. 
Once the first two active queries are sent, the 
malicious party finds out that i5 is not rated 
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Table 1. Confusion matrices 

a) First aspect of privacy 

 
Original 

Likes Dislikes Unrated 

C
la

ss
ifi

e
d

 Likes V11 V12 V13 

Dislikes V21 V22 V23 

Unrated V31 V32 V33 

 
b) Second aspect of privacy 

 

Original 

Rated Unrated 

C
la

ss
ifi

e
d Rated Z11 Z12 

Unrated Z21 Z22 

 

because the similarity metric is calculated based on 
commonly rated items and i5 is not identical in a1’s 
and a2’s rating vectors. On the other hand, it is also 
concluded that i1, i2, i3, and i4 are rated dislike (0), 
like (1), like (1), and like (1), respectively or 
unrated. The malicious party has no idea about i6 
before dispatching the third query. After capturing 
a perfect match with a3, i6 is disclosed as rated 
dislike or unrated. This attack discloses two 
privacy breaches: (1) even a single perfect match 
reveals that the actual rated value of the target item 
or it is unrated and (2) unrated entries might be 
disclosed if multiple perfect matches occur as it 
happens to i5. 

Case-All, Case-Split, and Case-NBC schemes 
calculate the interim value by two-party 
collaboration. One party calculates its own partial 
similarities and sends them to the master party for 
a final calculation. As a result, final calculations 
are performed by using the incoming partial values 
with the ones calculated off-line by the master 
party. The master party can use these interim 
similarity values received from the other party to 
identify perfect matches in all of three attacks. 
Thus, perfect match attack is applicable for all 
two-party VDP schemes discussed in this study. 

 

5. Experiments 
 
5.1. Data sets and evaluation criteria 

 
Experiments were performed using MovieLens 

Million (MLM) and Netflix data sets. MLM was 
collected by GroupLens research group 
(www.cs.umn.edu/research/GroupLens). Netflix is 
a challenge data set to improve the accuracy of 
prediction on a web-based movie service 
(http://www.netflixprize.com/). Both data sets are 
movie-rating data sets on a 5-star scale. Netflix 
was selected to represent a rather sparse data set 
with a density of 1.08% while MLM represents a 
data set with a regular density (4.19%) for a CF 
system. MLM data set contains about a million of 
rating from 6,040 users for 3,952 users while 
Netflix has 480,189 users and 17,770 items. 

Three different evaluation metrics were 
utilized in this study, accuracy, precision, and 
recall for the first and the second aspects of 
privacy. Accuracy measures how much the original 

data is recovered. Each item in the derived data set 
is compared to its original value to calculate 
accuracy. Since CF data sets are usually sparse, 
accuracy results are dominated by unrated entries. 
Therefore, we used precision and recall to evaluate 
the attacks in more detail. In this study, precision 
and recall was calculated by only determining 
likes and dislikes without considering unrated item 
due to their domination. Precision is the ratio of 
correctly recovered items to total items recovered 
in terms of likes and dislikes. Precision is 
important for an attacker to determine how much 
of the derived data is indeed genuine. Recall is the 
ratio of correctly recovered items to the total 
original items. By recall, it can be evaluated how 
good likes and dislikes are derived. Recall could be 
considered important for a target site because it 
shows the percentage of correctly derived items to 
the original data set. An attacker might end up a 
high precision; however, recall could be very low 
which means that derived items for the attacker 
constitutes a small margin of the original data.  

Table 1 displays two confusion matrices for the 
first and the second aspects of privacy. Eq. (4) 
shows how three evaluation metrics are calculated 
based on Table 1. Accuracy values are calculated 
over all diagonal values to the all matrix 
summation in both cases. For the first aspect of 
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Table 2. Data sets 

 
Item 
Size 

Overall 
Density 

Like 
Density 

Dislike 
Density 

MLM 3,952 0.0434 0.0253 0.0181 

Netflix 17,770 0.0108 0.0064 0.0044 

 

privacy, precision and recall values are only 
calculated for correctly identified likes and dislikes 
to eliminate the unrated items’ domination in the 
accuracy. Precision and recall metrics are 
calculated by dividing correctly classified likes and 
dislikes by summing row values and column 
values of likes and dislike in Table 1, respectively 
as given in Eq. (4).  
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(4) 

MLM and Netflix data sets are on a numeric 
scale between 1 and 5; however, the concentration 
in this study is on binary data. Thus, ratings were 
converted to a binary scale [32]. Netflix and MLM 
ratings greater than or equal to 3 were converted to 
1 (like) and the rest converted to 0 (dislike). 1,000 
random users were picked for the experiments 
from both data sets. Item size and densities of 
selected data sets with 1,000 users are given in 
Table 2.  

Recall that perfect match attack might disclose 
that (1) an item is unrated or its possible actual 
value or (2) an item is rated or not if multiple 
positive and negative perfect matches occur for it. 
A coin toss is performed to determine the value for 
an item for case (1) so that evaluation metrics can 
be calculated for the first aspect of privacy. Items 
falling into case (2) are marked as unrated and 
items falling into case (1) are marked as rated to 
calculate the second aspect of privacy. 

5.2. Methodology 
 

Experiments were repeated 100 times and Nn, 
number of neighbors, was set to 200 for Case-All 
and Case-Split. Experiments are given in three 
different sub-titles. Throughout the experiments, 

three different parameters were controlled. The 
first is how varying δ could affect the evaluation 
metrics. The second and the third are how number 
of groups, G, and how varying densities of each 
party affect the success of data recovery, 
respectively. For the first case, HRI was utilized by 
varying δ. HRI provides privacy by appending 
items to the active query. The amount of items to 
be inserted is determined by δ, which is related to 
the density. Therefore, increasing δ values should 
display an inclination toward privacy. This 
hypothesis will be tested when data is equally 
partitioned by varying δ between 0d, 0.125d, 
0.25d, 0.5d, and 1d, where 0d means no privacy 
measures have been applied for the scheme. The 
second control parameter is G or number of 
groups. G will be varied between 1, 3, 5, 7, and 10. 
The last control parameter will be the effects of 
varying the target party distribution (TPD). TPDs 
will be manipulated between 0.125, 0.25, 0.5, 0.75, 
and 0.875 while δ = 0.125d and three different 
attacks will be monitored against varying values of 
TPD. Results in terms of the first and thesecond 
aspect of privacy will be reported throughout the 
experiments if applicable.  

5.3. Experiments 
 

5.3.1. Varying δ values 
 
This experiment displays how three PPCF 

schemes are affected by varying values of δ when 
attacks are activated. It is expected that both 
accuracy, precision, and recall will decrease for 
increasing δ due to altered active query by HRI. 
AU query will contain more appended ratings for 
larger δ values so that it will differ more from the 
original AU query. In Table 3, results are 
displayed.  

After δ is met, metrics are reported to decline 
for both MLM and Netflix data sets for all attack 
types. Metrics have a general tendency toward 
decline for large δ values. It can be noted that 
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appending random ratings via HRI have a negative 
effect for reconstructions. Decrease in all metrics 
are the most obvious after δ is met for acting as an 
active user attack compared to the other two 
attacks. Acting as an active user attack guarantees 
a full recovery if no privacy measures are taken. 
Therefore, decline for large δ is more noticeable 
for this attack. For MLM data set, precision and 
recall values remain almost stable until δ=1d for 
both aspects of privacy; however, decline in these 
metrics are more observable when δ=1d. On the 
other hand, accuracy reports more observable 
declines after δ=0.5d. Netflix, the sparse data set, 
demonstrates decline after privacy measures are 
introduced; however, all metrics follow more 
stable trend for all δ values in this experiment. We 
attribute this to sparsity of Netflix data set.  Recall 
that knn-based attack is built upon exploiting 
neighborhood by trying to inject k-1 users into the 
neighbors and this attack is applicable for Case-All 
and Case-Split.  

Although HRI protocol appends some ratings 
to the active query, such an effort does not affect 
the neighborhood of k-1 fake users with the target 
user. Similarity scores between AU and k-1 fake 
users before and after HRI stay same because 
Case-All and Case-Split schemes do only consider 
commonly rated items. However, appending 
ratings each time will alter similarity score 
between AU and other users. TN recommendations 
therefore might differ and success of knn-based 
attack depends on TN recommendations. After δ is 
met, knn-based attack records declines in terms of 
evaluation metrics for both data sets and all 
evaluation metrics. knn-based attack performs 
similar outcomes for increasing density rates 
including δ=1d unlike acting as an active user 
attack for precision, recall, and accuracy for both 
privacy aspects and for both data sets.  

Perfect match attack for three PPCF schemes 
in this study demonstrates decline after δ is 
introduced similar to previous attacks. Case-All, 
Case-Split, and Case-NBC achieve very high 
accuracy rates above 0.9 in all δ values compared 
to the previous attacks. Additionally, accuracy 
could be considered acting steadily for larger δ 
values for both data sets. In terms of recall, Case-
NBC follows a constant and higher trend than the 
other two schemes for both data sets. Beside 

accuracy and recall, precision rates perform higher 
ranges compared to acting as an active user and 
knn-based attacks in terms of both aspects of 
privacy.  

In general, our intuition about increasing δ 
values will cause reconstruction to deteriorate is 
not accomplished as much as expected for the 
range between δ=0.125d and δ=0.5d for most of 
the cases. However, we believe the decline trend 
would be more apparent if larger δ were chosen. 
The reason why δ values are varied up to δ=1d is 
to set up an experiment environment close to a 
PPCF realities. In terms of PPCF, both privacy and 
prediciton accuracy are considered. Setting privacy 
measures to great extents inevitably affects 
recommendation accuracy. Therefore, it is aimed 
to set up an experiment to mimic a reasonable 
PPCF environment. 

5.3.2. Varying number of groups 
 

RRT protocol is proposed to disguise AU’s 
query by dividing into different G. As G increases, 
one can claim that AU’s query become more 
private due to increased grouping. In this 
experiment, it is tested how increasing G values 
have an effect on reconstruction. Therefore, G 
values are varied between 1, 3, 5, 7, and 10. 

Remember that HRI protocol appends ratings 
into AU’s query up to δ which is associated to 
density d. An AU’s query is filled with an average 
of δ/2 fake ratings, which contribute to privacy and 
harm reconstruction. However, we hypothesize 
that increasing G values under a constant δ will 
help reconstruction results. Notice that interim 
values will be calculated for each group g because 
the master party knows which group is reversed or 
preserved. When G is increased, the possibility of 
each group to be appended by random ratings by 
HRI decreases. Assume that G=m, where m is 
number of items, interim calculations are made for 
each group and none of rated groups/items are 
manipulated by HRI if G is m. Only unrated 
groups are appended by HRI. Since the master 
party knows true AU’s query and which items are 
indeed rated or not, it can easily capture true 
interim results. Table 4 displays the experimental 
results, where δ = 0.25 and TPD = 0.5. G is 
increased up to 10 due to runtime costs. 
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Table 4 clearly demonstrates that acting as an 
active user attack, which manipulates an item at a 
time, performs as expected. For all three metrics 
and PPCF algorithms, the best performing cases is 
the one, where G is the maximum for both data 
sets. Besides, all metrics for the first and the 
second aspect of privacy demonstrate an increasing 
pattern for ML and Netflix data sets for larger G.  

knn-based attack performs quite similar with 
slight margins for varying G values for MLM and 
Netflix data sets. Note that evaluation metrics are 
only calculated for the second aspect of privacy 
because this attack can reveal if an item is rated or 
not instead of disclosing its value. When compared 
by data sets, knn-based attack yields better output 
for MLM than Netflix, which is a sparse data set.  

Perfect match attack has almost an increasing 
trend for Case-All and Case-Split for all metrics in 
MLM data set. The best performing G value only 
alternate between 7 and 10. For the sparse data set 
Netflix, the trend fluctuates. Our assumption for 
Case-All and Case-Split is not obvious, this might 
be due to large number of items that Netflix has. 
Since perfect match attack captures perfect 
matches for each group, G=10 could be 
insufficient. On the other hand, Case-NBC 
demonstrates a clear declining trend for larger G 
values up to 10 contrary to our hypothesis in terms 
of precision and accuracy. Recorded recall values 
for Case-NBC could be considered in an increasing 
trend by small margins.   

5.3.3. Varying TPD 
 

In the previous experiments, it is assumed that 
data is equally partitioned between parties. 
However, this case might occur rarely. In this 
experiment, TPD values are varied to observe how 
different densities affect the evaluation metrics. 
TPD values are varied between 0.125, 0.25, 0.5, 
0.75, and 0.875 for each PPCF algorithm. δ is set 
0.25 and G=5. Table 5 displays the results. 

Acting as an active user attack displays the 
best results when TPD = 0.125 for all evaluation 
metrics and data sets. For larger TPD values, a 
decline in precision, recall, and accuracy values is 
observed. Case-NBC seems to be more prone to 
acting as an active user attack compared to Case-
All and Case-Split algorithms for both MLM and 

Netflix data sets considering evaluation metrics of 
the first and the second aspect of privacy.  

knn-based attack, which seems so far more 
resilient to privacy measures, performs a general 
trend toward declining for larger TPD values for 
Case-All algorithm for both data sets. For MLM 
data set, Case-Split performs the best for precision 
and accuracy at TPD=0.250. Recall results with 
Case-Split in MLM data set is the best at 
TPD=0.500.  On the other hand, both Case-All and 
Case-Split record decline for Netflix data set for 
larger TPD values.  

Perfect match attack with MLM data set 
demonstrates the best reconstruction rates when 
TPD = 0.125. However, Case-NBC is the only 
exception with precision and accuracy rates in 
terms of the first and the second aspect of privacy. 
The sparse data set Netflix does not show any 
reliable pattern common to all metrics. While rec1 
and rec2 perform the best when TPD = 0.125.  
Accuracy and precision metrics display better 
results toward larger TPDs. Case-Split and Case-
All display similar trends with each other in terms 
of accuracy, recall, and precision. While recall and 
precision decrease for larger TPDs in terms of the 
first and the second aspect of privacy, accuracy 
follows a steadier trend for MLM. For Case-NBC, 
accuracy has a slightly increasing trend in terms of 
the first and the second aspect of privacy for 
MLM. Contrary to MLM data set, perfect match 
attack for all PPCF algorithms shows an increasing 
behavior toward TPD=0.750 for precision and 
accuracy while it performs a slight decrease in 
terms of recall for both aspects of privacy.   

Reconstruction metrics display relatively better 
results for smaller TPD values in general. In most 
of the cases, recall and accuracy metrics are 
promising. By this experiment, it could be stated 
that lower TPDs would be more prone to acting as 
an active user and knn-based attack for both data 
sets. However, perfect match attack performs 
better for representative MLM data set for lower 
TPD values while the trend reverses for larger 
TPD for the representative sparse data set Netflix.  

6. Discussion 
 

Throughout the experiments, most of the trials 
report higher recall and accuracy rates compared to 
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precision. Note that precision relies on the ratio of 
relevant items retrieved to all retrieved items, 
which is marked as like or dislike by attack 
scenario. Precision is calculated for only likes and 
dislike. MLM data set’s density is about 0.04 while 
Netflix density is about 0.01. The reason behind 
low precision rates is due to high density of 
unrated items. The overwhelming majority of the 
unrated items and marking them as like or dislike 
dominates this metric because of the modified 
calculation of precision as prec1 and prec2 for the 
first and the second aspect of privacy given in Eq. 
4.  Recall results for most of the cases are 
comparably higher than precision. Recall rates rely 
on the ratio of relevant retrieved items to the all 
relevant items, which are the items originally 
marked as likes or dislike. The reason why recall 
might outperform precision could be due to the 
fact that retrieved relevant items are compared to 
the originally rated items as like and dislike. Note 
that for precision, relevant retrieved items are 
compared to the all retrieved items, which are 
under the dominance of incorrectly marked unrated 
items. If recall result is higher than precision, then 
it can be understood that incorrectly retrieved 
unrated items as like or dislike, which is related to 
precision calculation, outnumber the number of all 
relevant items as like or dislike, which is 
associated to recall. Accuracy deals with correctly 
retrieved items to the total items. Therefore, it 
includes unrated items. Contrary to precision, 
better accuracy results rely on correctly retrieved 
unrated items count in the calculation of accuracy 
metrics. 

It can be also discussed which attack type 
would be preferred based on different control 
parameters in this study. The first control 
parameter is to vary δ values to see how appending 
more random items into AU’s query effect the 
evaluation criteria. Although acting as an active 
user attack guarantees full data recovery when 
there are no privacy measures, its effectiveness 
especially in terms of precision and accuracy 
degrades. On the other hand, knn-based attack 
demonstrates a decline after δ is met; however, it 
displays more stable outputs for growing δ values. 
Notice that knn-based attack can only disclose if 
an item is rated or not.  

Perfect match attack produces much better 
precision and accuracy results than the previous 
two attacks although recall is lower. A malicious 
party intending to disclose the other party’s data 
could prefer this attack if precision is more 
important than recall. Precision could be preferred 
to recall if the attacker wants to be sure the higher 
ratio of retrieved relevant items to the all retrieved 
items (precision) instead of the ratio of retrieved 
relevant items to the all relevant items (recall). The 
authors in [12] discuss that precision is more 
important for an attacker. The other control 
parameters are G and TPD. Similar to varying δ 
parameter, perfect match attack makes a difference 
and beats the other attacks especially in terms of 
precision. Therefore, for all attack types and 
parameters, if the attacker puts precision into 
priority, then perfect match attack should be 
considered. Compared to knn-based attack to 
acting as an active user attack in terms of the 
second aspect of privacy, one can prefer knn-based 
attack for a more stable attack in most of the cases.  

Beside the attacks discussed in the 
experiments, a malicious party could also devise a 
random attack. Since there are three possibilities 
(unrated, like, or dislike) that an item could have, 
each item could be assigned randomly. A possible 
and intuitional option could mark each item among 
three possibilities with prior knowledge of 
malicious party’s density. Based on this idea, a 
random attack is implemented to compare how the 
attacks in this paper perform against a random 
predictor, which utilizes density rates of malicious 
parties. The random predictor works as follows: 
First, the attacking party finds out its overall 
densities of likes, dislikes, and unrated items. 
Second, the attacking party constructs a range for 
each density. Then, for each item, this attack 
generates a uniform random number in the interval 
(0, 1). Finally, item is assigned as like, dislike, or 
unrated based on random number. Random 
discovery creates a matrix from scratch. Table 6 
displays a random discovery option to estimate an 
original target data matrix. Precision results in 
terms of both aspects of privacy is lower than 
recorded values for MLM and Netflix in attacks 
given in this paper. Similar to precision, very low 
recall values are recorded compared to previous 
attacks. 
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Table 3. Attacks with varying δ values 

  
MLM Netflix 

 δ= 0 0.125d 0.25d 0.5d 1d 0 0.125d 0.25d 0.5d 1d 

Acting as  
an active user  

attack 

prec1-Case-All 1.000 0.069 0.069 0.069 0.057 1.000 0.019 0.019 0.019 0.019 

prec1-Case-Split 1.000 0.069 0.068 0.067 0.056 1.000 0.019 0.019 0.019 0.019 

prec1-Case-NBC 1.000 0.155 0.157 0.151 0.124 1.000 0.045 0.045 0.045 0.045 

rec1-Case-All 1.000 0.836 0.836 0.834 0.795 1.000 0.790 0.790 0.789 0.790 

rec1-Case-Split 1.000 0.835 0.835 0.830 0.793 1.000 0.788 0.789 0.788 0.790 

rec1-Case-NBC 1.000 0.886 0.887 0.880 0.861 1.000 0.851 0.852 0.852 0.851 

Acc1-Case-All 1.000 0.507 0.506 0.504 0.424 1.000 0.488 0.489 0.487 0.486 

Acc1-Case-Split 1.000 0.509 0.506 0.494 0.417 1.000 0.484 0.489 0.484 0.486 

Acc1-Case-NBC 1.000 0.789 0.794 0.785 0.737 1.000 0.773 0.774 0.773 0.775 

prec2-Case-All 1.000 0.076 0.076 0.076 0.066 1.000 0.022 0.022 0.022 0.022 

prec2-Case-Split 1.000 0.076 0.075 0.074 0.065 1.000 0.022 0.022 0.022 0.022 

prec2-Case-NBC 1.000 0.175 0.177 0.172 0.144 1.000 0.052 0.052 0.052 0.053 

rec2-Case-All 1.000 0.919 0.919 0.919 0.917 1.000 0.916 0.916 0.916 0.916 

rec2-Case-Split 1.000 0.920 0.919 0.919 0.917 1.000 0.916 0.916 0.916 0.916 

rec2-Case-NBC 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

Acc2-Case-All 1.000 0.511 0.509 0.508 0.429 1.000 0.489 0.491 0.489 0.488 

Acc2-Case-Split 1.000 0.512 0.510 0.498 0.422 1.000 0.485 0.491 0.486 0.674 

Acc2-Case-NBC 1.000 0.794 0.798 0.790 0.743 1.000 0.775 0.776 0.774 0.776 

knn-based  
attack 

prec2-Case-All 0.205 0.150 0.153 0.153 0.152 0.173 0.079 0.079 0.079 0.079 

prec2-Case-Split 0.248 0.180 0.181 0.182 0.185 0.127 0.087 0.089 0.091 0.090 

rec2-Case-All 0.975 0.834 0.838 0.840 0.843 0.962 0.791 0.794 0.798 0.809 

rec2-Case-Split 0.998 0.763 0.767 0.781 0.782 0.998 0.709 0.716 0.731 0.736 

Acc2-Case-All 0.834 0.788 0.795 0.793 0.789 0.942 0.883 0.884 0.883 0.880 

Acc2-Case-Split 0.868 0.839 0.841 0.838 0.840 0.914 0.904 0.905 0.906 0.904 

Perfect match  
attack 

prec1-Case-All 0.518 0.427 0.426 0.422 0.389 0.211 0.157 0.158 0.156 0.156 

prec1-Case-Split 0.519 0.427 0.427 0.424 0.388 0.208 0.157 0.157 0.156 0.158 

prec1-Case-NBC 0.677 0.669 0.672 0.668 0.670 0.098 0.120 0.120 0.120 0.120 

rec1-Case-All 0.379 0.344 0.343 0.343 0.327 0.458 0.367 0.367 0.366 0.365 

rec1-Case-Split 0.379 0.344 0.344 0.343 0.327 0.457 0.368 0.367 0.367 0.367 

rec1-Case-NBC 0.497 0.496 0.497 0.497 0.497 0.499 0.498 0.498 0.498 0.498 

Acc1-Case-All 0.958 0.952 0.951 0.951 0.948 0.972 0.967 0.968 0.967 0.968 

Acc1-Case-Split 0.958 0.951 0.951 0.951 0.948 0.971 0.968 0.968 0.968 0.968 

Acc1-Case-NBC 0.968 0.967 0.968 0.967 0.968 0.937 0.948 0.948 0.948 0.948 

prec2-Case-All 0.519 0.427 0.426 0.422 0.390 0.211 0.158 0.158 0.156 0.157 

prec2-Case-Split 0.519 0.427 0.427 0.425 0.388 0.208 0.157 0.157 0.156 0.158 

prec2-Case-NBC 0.677 0.669 0.671 0.667 0.670 0.098 0.119 0.120 0.119 0.121 

rec2-Case-All 0.759 0.687 0.687 0.685 0.654 0.916 0.735 0.735 0.733 0.732 

rec2-Case-Split 0.759 0.687 0.689 0.687 0.654 0.914 0.734 0.733 0.733 0.735 

rec2-Case-NBC 0.993 0.993 0.993 0.993 0.993 0.998 0.996 0.996 0.996 0.995 

Acc2-Case-All 0.959 0.947 0.946 0.945 0.940 0.956 0.948 0.948 0.947 0.948 

Acc2-Case-Split 0.959 0.946 0.946 0.945 0.940 0.955 0.947 0.948 0.948 0.948 

Acc2-Case-NBC 0.979 0.978 0.978 0.978 0.978 0.886 0.909 0.909 0.909 0.909 
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Table 4. Attacks with varying number of groups, G 

  
MLM Netflix 

 
G= 1 3 5 7 10 1 3 5 7 10 

Acting as 
an active user 

attack 

prec1-Case-All 0.069 0.098 0.124 0.149 0.175 0.019 0.026 0.033 0.040 0.047 

prec1-Case-Split 0.068 0.094 0.122 0.146 0.171 0.019 0.026 0.033 0.039 0.047 

prec1-Case-NBC 0.157 0.220 0.281 0.335 0.390 0.045 0.064 0.084 0.103 0.124 

rec1-Case-All 0.836 0.894 0.926 0.946 0.960 0.790 0.848 0.885 0.910 0.928 

rec1-Case-Split 0.835 0.890 0.925 0.944 0.959 0.789 0.848 0.883 0.908 0.929 

rec1-Case-NBC 0.887 0.922 0.941 0.954 0.963 0.852 0.890 0.915 0.930 0.943 

Acc1-Case-All 0.506 0.634 0.713 0.763 0.801 0.489 0.604 0.675 0.724 0.763 

Acc1-Case-Split 0.506 0.628 0.709 0.761 0.797 0.489 0.603 0.675 0.722 0.765 

Acc1-Case-NBC 0.794 0.858 0.896 0.917 0.934 0.774 0.838 0.876 0.899 0.917 

prec2-Case-All 0.076 0.102 0.127 0.151 0.176 0.022 0.028 0.035 0.041 0.048 

prec2-Case-Split 0.075 0.099 0.125 0.149 0.173 0.022 0.028 0.035 0.041 0.048 

prec2-Case-NBC 0.177 0.239 0.299 0.351 0.405 0.052 0.072 0.092 0.111 0.132 

rec2-Case-All 0.919 0.936 0.949 0.959 0.968 0.916 0.923 0.932 0.941 0.949 

rec2-Case-Split 0.919 0.934 0.949 0.959 0.968 0.916 0.923 0.931 0.941 0.950 

rec2-Case-NBC 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

Acc2-Case-All 0.509 0.636 0.714 0.763 0.801 0.491 0.605 0.676 0.725 0.764 

Acc2-Case-Split 0.510 0.630 0.710 0.761 0.797 0.491 0.604 0.675 0.723 0.765 

Acc2-Case-NBC 0.798 0.861 0.898 0.919 0.935 0.776 0.839 0.877 0.900 0.918 

knn-based 
attack 

prec2-Case-All 0.153 0.152 0.153 0.153 0.153 0.079 0.075 0.075 0.075 0.075 

prec2-Case-Split 0.181 0.185 0.181 0.183 0.182 0.089 0.088 0.087 0.087 0.087 

rec2-Case-All 0.838 0.833 0.838 0.839 0.842 0.794 0.797 0.796 0.801 0.804 

rec2-Case-Split 0.767 0.773 0.765 0.772 0.776 0.716 0.721 0.715 0.719 0.715 

Acc2-Case-All 0.795 0.791 0.792 0.794 0.790 0.884 0.875 0.874 0.875 0.874 

Acc2-Case-Split 0.841 0.841 0.840 0.839 0.839 0.905 0.904 0.903 0.903 0.902 

Perfect match 
attack 

prec1-Case-All 0.426 0.721 0.897 0.963 0.974 0.158 0.185 0.164 0.136 0.111 

prec1-Case-Split 0.427 0.721 0.897 0.961 0.974 0.157 0.184 0.161 0.134 0.110 

prec1-Case-NBC 0.672 0.486 0.337 0.261 0.210 0.120 0.083 0.066 0.056 0.049 

rec1-Case-All 0.343 0.443 0.485 0.498 0.500 0.367 0.456 0.492 0.499 0.500 

rec1-Case-Split 0.344 0.444 0.485 0.497 0.500 0.367 0.455 0.492 0.500 0.500 

rec1-Case-NBC 0.497 0.499 0.501 0.501 0.501 0.498 0.500 0.501 0.500 0.500 

Acc1-Case-All 0.951 0.968 0.975 0.977 0.978 0.968 0.968 0.962 0.954 0.944 

Acc1-Case-Split 0.951 0.968 0.975 0.977 0.978 0.968 0.968 0.962 0.954 0.944 

Acc1-Case-NBC 0.968 0.955 0.935 0.916 0.896 0.948 0.925 0.905 0.888 0.873 

prec2-Case-All 0.426 0.721 0.898 0.963 0.974 0.158 0.185 0.164 0.136 0.111 

prec2-Case-Split 0.427 0.721 0.896 0.961 0.974 0.157 0.184 0.161 0.134 0.110 

prec2-Case-NBC 0.671 0.486 0.336 0.261 0.210 0.120 0.083 0.066 0.056 0.049 

rec2-Case-All 0.687 0.886 0.970 0.995 1.000 0.735 0.912 0.984 0.999 1.000 

rec2-Case-Split 0.689 0.887 0.969 0.995 1.000 0.733 0.910 0.984 0.999 1.000 

rec2-Case-NBC 0.993 0.999 1.000 1.000 1.000 0.996 1.000 1.000 1.000 1.000 

Acc2-Case-All 0.946 0.980 0.994 0.998 0.999 0.948 0.949 0.938 0.921 0.901 

Acc2-Case-Split 0.946 0.980 0.994 0.998 0.999 0.948 0.949 0.936 0.920 0.900 

Acc2-Case-NBC 0.978 0.954 0.914 0.876 0.836 0.909 0.863 0.823 0.788 0.758 
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Table 5. Attacks with varying TPDs 

  MLM Netflix 

 
TPD= 0.125 0.250 0.500 0.750 0.875 0.125 0.250 0.500 0.750 0.875 

Acting as an 
active user 

attack 

prec1-Case-All 0.187 0.140 0.124 0.116 0.116 0.043 0.036 0.033 0.031 0.032 

prec1-Case-Split 0.150 0.130 0.122 0.115 0.117 0.041 0.035 0.033 0.031 0.032 

prec1-Case-NBC 0.347 0.291 0.281 0.268 0.266 0.108 0.089 0.084 0.079 0.079 

rec1-Case-All 0.963 0.938 0.925 0.917 0.918 0.918 0.894 0.883 0.877 0.878 

rec1-Case-Split 0.946 0.929 0.923 0.918 0.919 0.914 0.892 0.884 0.877 0.878 

rec1-Case-NBC 0.956 0.945 0.941 0.938 0.937 0.934 0.921 0.915 0.910 0.910 

Acc1-Case-All 0.803 0.743 0.712 0.692 0.693 0.742 0.697 0.673 0.661 0.665 

Acc1-Case-Split 0.763 0.727 0.709 0.692 0.695 0.733 0.694 0.675 0.663 0.664 

Acc1-Case-NBC 0.921 0.902 0.896 0.888 0.887 0.903 0.883 0.876 0.869 0.869 

prec2-Case-All 0.188 0.142 0.127 0.119 0.119 0.044 0.038 0.035 0.033 0.034 

prec2-Case-Split 0.152 0.133 0.125 0.119 0.120 0.042 0.037 0.035 0.033 0.033 

prec2-Case-NBC 0.362 0.308 0.299 0.286 0.284 0.115 0.097 0.092 0.087 0.087 

rec2-Case-All 0.970 0.956 0.949 0.944 0.946 0.944 0.937 0.931 0.929 0.930 

rec2-Case-Split 0.960 0.952 0.948 0.945 0.946 0.942 0.936 0.931 0.929 0.930 

rec2-Case-NBC 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

Acc2-Case-All 0.804 0.744 0.713 0.693 0.694 0.742 0.698 0.673 0.661 0.665 

Acc2-Case-Split 0.764 0.728 0.710 0.693 0.696 0.734 0.695 0.675 0.663 0.664 

Acc2-Case-NBC 0.923 0.904 0.898 0.891 0.890 0.904 0.884 0.877 0.870 0.870 

knn-based 
attack 

prec2-Case-All 0.178 0.170 0.153 0.113 0.083 0.098 0.091 0.075 0.056 0.040 

prec2-Case-Split 0.165 0.200 0.181 0.118 0.083 0.121 0.111 0.087 0.055 0.040 

rec2-Case-All 0.884 0.863 0.838 0.828 0.830 0.853 0.829 0.796 0.800 0.800 

rec2-Case-Split 0.535 0.707 0.765 0.742 0.754 0.764 0.740 0.715 0.719 0.731 

Acc2-Case-All 0.815 0.811 0.792 0.708 0.596 0.901 0.896 0.874 0.828 0.756 

Acc2-Case-Split 0.858 0.863 0.840 0.747 0.628 0.927 0.923 0.903 0.837 0.774 

Perfect match 
Attack 

prec1-Case-All 0.975 0.887 0.897 0.892 0.886 0.129 0.144 0.164 0.178 0.173 

prec1-Case-Split 0.973 0.886 0.897 0.893 0.884 0.120 0.142 0.161 0.177 0.168 

prec1-Case-NBC 0.267 0.279 0.337 0.375 0.358 0.054 0.060 0.066 0.069 0.068 

rec1-Case-All 0.499 0.484 0.485 0.484 0.483 0.500 0.491 0.492 0.492 0.491 

rec1-Case-Split 0.499 0.484 0.485 0.484 0.483 0.499 0.491 0.492 0.492 0.490 

rec1-Case-NBC 0.502 0.500 0.501 0.500 0.500 0.501 0.500 0.501 0.500 0.500 

Acc1-Case-All 0.978 0.975 0.975 0.975 0.975 0.951 0.957 0.962 0.965 0.964 

Acc1-Case-Split 0.978 0.975 0.975 0.975 0.975 0.949 0.956 0.962 0.965 0.963 

Acc1-Case-NBC 0.917 0.923 0.935 0.942 0.939 0.884 0.897 0.905 0.909 0.909 

prec2-Case-All 0.975 0.887 0.898 0.892 0.886 0.129 0.144 0.164 0.178 0.173 

prec2-Case-Split 0.973 0.886 0.896 0.893 0.884 0.120 0.142 0.161 0.178 0.168 

prec2-Case-NBC 0.266 0.279 0.336 0.375 0.358 0.054 0.061 0.066 0.068 0.068 

rec2-Case-All 0.999 0.968 0.970 0.967 0.966 1.000 0.983 0.984 0.983 0.981 

rec2-Case-Split 0.998 0.968 0.969 0.968 0.965 1.000 0.983 0.984 0.983 0.981 

rec2-Case-NBC 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

Acc2-Case-All 0.999 0.993 0.994 0.994 0.993 0.915 0.926 0.938 0.943 0.941 

Acc2-Case-Split 0.999 0.993 0.994 0.994 0.993 0.911 0.925 0.936 0.943 0.939 

Acc2-Case-NBC 0.877 0.889 0.914 0.927 0.922 0.780 0.807 0.823 0.830 0.830 
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On the other hand, accuracy results seem to be 
higher than 0.90 for both aspects of privacy and 
data sets. The reason for such a case is that 
domination of unrated items and their domination 
is taken into account in accuracy calculations.  
 
7. Conclusions and Future Works 

 

In this study, three different attack techniques 
are experimentally tested on VPD-based binary 
PPCF schemes. Acting as an active user in 
multiple scenarios attack tracks temporal changes 
in the similarity weights for subsequent queries 
altered with only one cell. If a history of a user is 
known, which is an inherent case for VPD-based 
schemes, knn-based attack appends k fake users to 
the system to derive items by observing related 
predictions. Perfect match attack tracks similarity 
weights with 1 or -1 to derive meaningful 
information out of them.  

Experiments show that acting as active user 
attack guarantees full recovery if no privacy 
measure is taken. However, it is highly affected by 
increasing δ values. The other control parameter G 
helps reconstruction for this attack type. Besides, 
the last control parameter TPD shows that this 
attack performs better for lower TPD values. 
Therefore, acting as an active user attack could be 
preferred for moderate δ values, larger G, and 
lower TPD values. On the other hand, knn-based 
attack demonstrates stabiltiy after δ is met. This 
attack performs similar for varying G and the best 
for lower TPD values. Similar to acting as active 
user attack, knn-based attack could be preferred if 
TPD is lower; nonetheless, knn-based attack can 
be preferred to acting as an active user attack 
when δ is large for the second aspect of privacy. In 

general, regardless of control parameters, the most 
prominent point for perfect match attack is that it 
yields much better precision results compared to 
the other two attacks for most of the cases. As 
stated before, this attack could be chosen if 
precision is considered. As a final remark, a 
random discovery has been performed and the 
attacks in this paper beat such a prior-knowledge 
discovery of a data holder’s matrix especially in 
terms of precision and recall.  

As a future goal, we plan to investigate multi-
party horizontally and vertically distributed data-
based privacy-preserving collaborative filtering 
schemes in terms of privacy by analyzing current 
attacks and devising possible attack techniques.   
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