
INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE

M. Okkalıoğlu, et al., Vol.5, No.3

51

A Privacy Review of Vertically Partitioned Data-
based Privacy-Preserving Collaborative Filtering

Schemes
Murat Okkalioglu*, Mehmet Koc**, Huseyin Polat***‡

* Computer Engineering Department, Faculty of Engineering, Yalova University, 77200 Yalova

**Electrical and Electronics Engineering, Faculty of Engineering, Bilecik Seyh Edebali University, 11210 Bilecik

*** Computer Engineering Department, Faculty of Engineering, Anadolu University, 26470 Eskisehir

‡ Corresponding Author; Address: Anadolu University, Computer Engineering Department, 26470, Eskisehir, Turkey Tel: +90
222 321 3550, Fax: +90 222 323 9501, e-mail: polath@anadolu.edu.tr

Abstract- E-commerce companies utilize collaborative filtering approaches to provide recommendations in order to attract
customers. Consumer participation through supplying feedbacks is an important component for a recommendation system to
produce accurate predictions. New companies in the marketplace might lack enough data for collaborative filtering purposes.
Thus, they can come together to share their vertically partitioned data for better services. Although partitioned data-based
recommendation schemes provide accurate predictions, privacy issues might pose different risks to the companies participating
into such collaboration. Partitioned data-based privacy-preserving collaborative filtering schemes aim to provide accurate
predictions without neglecting the privacy of such data holders. However, the collaborating parties’ privacy, provided by these
schemes, might not be protected as much as believed. In this study, the privacy, offered by vertically partitioned binary ratings-
based privacy-preserving collaborative filtering schemes, is examined by three different attacks and experimentally tested.
Empirical outcomes show that the collaborating parties are still able to derive each other’s confidential data.

Keywords- Privacy; Collaborative filtering; Binary ratings; Vertically partitioned data; Attack scenarios.

1. Introduction

The Internet age has been offering great
opportunities for companies to reach out their
potential customers around the world. Anyone
sitting in front of a computer can visit any site to
browse, review, or buy an item. Thus, customers
will be equipped with a large amount of data
before making a decision about an item.
Information overload refers to the fact that the
amount of data human beings can process has
some limits and this limit makes the decision
making process difficult [1]. Information overload
is an important problem for e-commerce
companies hindering their customers from spotting
right products.

E-commerce companies might collect implicit
(browsing, purchase history, time spent, etc.) and
explicit information (ratings, reviews, etc.) about
their customers [2, 3]. They might provide
referrals to their customers to overcome the
information overload problem by utilizing the data
collected from them. Collaborative filtering (CF) is
a technique to offer such recommendations based
on user data. CF was first coined with Tapestry
project [4]. A typical CF system is composed of an
n × m matrix with n users have a rating vector of
m items. This matrix is usually sparse. The users
can express their ratings in different scales such as
numeric (5-star, 1 to 10, etc.) or binary (like or
dislike). CF systems utilize the ratings to offer
right products to their customers.

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE

M. Okkalıoğlu, et al., Vol.5, No.3

52

Data sparsity is a crucial problem in CF [5, 6].
The more ratings an e-commerce company has, the
better recommendations will be produced. Dense
matrix for a CF system will allow an e-company to
mine more reliable relationships among users or
items. User participation is therefore important to
obtain accurate recommendations. However, users
may be unwilling to participate in providing their
true preferences due to privacy risks like
unsolicited marketing, price discrimination,
unauthorized access, government surveillance, and
selling personal information in case of bankruptcy
[7, 8].

Phelps et al. [9] report that the majority of
users are concerned about how companies use their
data and want control over their data. Users
believe that the companies are not concerned about
privacy and know too much about their users. True
user participation is important in CF. Therefore,
privacy-preserving collaborative filtering (PPCF)
schemes are proposed to protect privacy. They aim
to provide accurate referrals to users without
neglecting privacy. PPCF schemes must achieve
privacy, accuracy, and performance [6]. In a
typical scenario, users mask their data before
sending them to a central server for CF purposes.
The server has an access to the perturbed data,
which is different from the original one so that it is
unable to retrieve individuals’ private information.

Although PPCF schemes promise privacy,
there are some studies arguing that privacy is not
protected as much as believed [10, 11, 12, 13, 14].
A data disguising method, random perturbation, is
studied in [10, 11]. It is argued that data perturbed
by random perturbation techniques, which
basically add random noise to the original data,
have predictable nature. Thus, the data perturbed
by this method can be extracted using spectral
filtering (SF) [10, 11]. On the other hand, CF-
based systems are examined by different scholars
[12, 13, 14]. Zhang et al. [12] propose two
different techniques to disclose the ratings of the
users perturbed by the PPCF method proposed in
[15]. In [13], live CF systems are attacked by
utilizing auxiliary information and tracking the
temporal changes of the public output on the
targeted CF services. The authors in [14] analyze a
specific PPCF scheme [20], which disguises binary

data by randomized response technique (RRT) [17]
and discloses which items are rated.

The related studies up to now focus on central
server-based PPCF systems to obtain private
information. Inspiring from these studies, this
paper conducts a privacy review of vertically
partitioned data-based PPCF schemes on binary
ratings. Privacy has two aspects in PPCF. The first
is to disguise the actual rating values; the other is
to disguise the rated items. Our aim is to derive the
collaborating parties’ private data considering two
aspects of privacy. Three different attack scenarios
are devised, acting as an active user in multiple
scenarios, knn-based, and perfect match attacks, to
accomplish data reconstruction. The first attack
monitors similarity scores between repeated
queries differing by one cell only. Therefore,
altered rating cell in each query could be
reconstructed. knn-based attack exploits
neighborhood information of CF schemes [13].
This attack assumes that history (ratings) of a
target user is known or disclosed by an attacker. k
fake users with identical to the target user are
appended to the CF system and a prediction is
asked for one of the fake users. It is expected that
neighborhood will be formed from k-1 fake users
and the target user. As a result, the predictions are
expected to be produced from the target user
because unrevealed ratings of her will be revealed.
The third attack exploits the highest correlations,
perfect matches, between an incoming query and
users. Based on captured perfect matches, ratings
in the incoming query could be reconstructed by
carrying out intensive repeated queries.

In [18], the authors perform these attack
scenarios on PPCF schemes, where binary data is
horizontally partitioned between two-parties. In
this study, our aim is to show how much privacy
can be achieved in terms of the first and the
second aspect of privacy by the vertically
partitioned data-based PPCF binary schemes in
[19, 20]. Note that data is partitioned between two
parties by devising different attack techniques. We
discuss possible attacks targeting these schemes
and perform some experiments to display the
results.

The paper is organized as follows. The next
section covers the related work in the field. Section
3 introduces the target PPCF schemes. Section 4

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE

M. Okkalıoğlu, et al., Vol.5, No.3

53

clarifies attack techniques and Section 5 displays
experiments. Section 6 gives a discussion about
results and makes a comparison with a random
attack. The last section lays out conclusions and
general summary of the study.

2. Related Work

PPCF community offers different solutions to
enhance the privacy of CF systems. Polat and Du
[15] offer a method, which can be applied for
numerically rated data. They propose a
randomized perturbation technique, where each
user calculates their z-scores and sends them to the
server by adding up some random noise to the
original z-scores. Other schemes for the central
server-based PPCF utilize binary data [16, 21]. In
[16, 21], the researchers apply RRTs on binary
data to disguise ratings. RRT is a survey
technique, proposed by Warner [17], to determine
a sensitive attribute in a population. To calculate
predictions, the probabilities due to RRTs are used
in [16] while naïve Bayesian classifier (NBC) is
utilized in [21]. In [22], the authors propose an
item-based scheme claiming that item relationship
is not sensitive.

Sparse data sets are obstacle for CF systems
and companies planning to embark on new
markets or newly established ones might lack
enough data to provide accurate recommendations
[6]. Hence, they might collaborate for better
filtering services. Two companies could have
ratings for the same set of items by different
customers. This is called horizontally partitioned
data (HPD). Likewise, if two parties hold ratings
of the same users for different sets of items, then
this partitioning is called vertically partitioned data
(VPD). There are some studies providing different
schemes to offer recommendation in both HPD
and VPD cases [19, 20, 23, 24]. Two-party binary
PPCF schemes are presented in [19, 20, 23]. VPD-
based PPCF scheme for numerically rated data is
studied in [19]. Kaleli and Polat [20] offer NBC-
based scheme for both HPD and VPD. Polat and
Du [23] propose a PPCF scheme for HPD. The
scholars also propose multi-party schemes [25, 26,
27]. The authors in [25] utilize NBC for both HPD
and VPD. Self-organizing maps-based
recommendations are proposed for HPD [26] and

VPD [27]. A detailed survey about PPCF schemes
is presented in [6].

Privacy is meant to be preserved by
aforementioned techniques. However, a group of
researchers examine if privacy is really protected.
In privacy-preserving data mining community,
Kargupta et al. [10] propose an SF technique to
extract the original data perturbed by random
perturbation. Their method is based on obtaining
theoretical boundaries of maximum and minimum
values of eigenvalues of the noise matrix. They
extend their study for discrete graph structure [11].
Some researchers study the bounds of the
reconstruction error by SF methods [28, 29].
Principal component analysis is also utilized to
reconstruct the original data by exploiting data
correlations [30]. When the correlation is high,
reconstructions that are more accurate can be
performed for random perturbation.

Zhang et al. [12] target a PPCF scheme
proposed by Polat and Du [15]. They utilize
singular value decomposition and k-means
clustering to reconstruct original data. They apply
k-means clustering to get the data in groups for
discrete and continuous valued data. This method
can be applied to discrete data without any
modification; however, the continuous data need
some preprocessing. They discretized the
continuous data into k segment and an item is
assigned to the median value of the segment it
belongs to after clustering. Calandrino et al. [13]
target live CF systems by exploiting auxiliary
information. They propose passive inference
attacks that exploit the temporal changes in the
output that CF systems make publicly available.
Binary PPCF scheme proposed in [16] is
investigated in terms of disclosing the rated items
[14]. The authors utilize publicly collected
information about the target data set and manage to
retrieve this private information.

The aforementioned attacks generally focus on
the systems with central data. The study in [18]
handles how much privacy is offered when data is
partitioned horizontally between two parties. They
utilize possible attack techniques (acting as an
active user and knn-based) and propose an attack
technique called perfect match attack. Our
approach in this paper focusses on vertically
partitioned binary ratings between two parties. We

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE

M. Okkalıoğlu, et al., Vol.5, No.3

54

Fig. 1. NBC-based CF

extend the prior studies [18, 31] for a VPD-based
binary PPCF scheme. This study covers and
extends the attack technique given in [31] for two-
party PPCF schemes. Unlike [31], we have added
two-party binary PPCF NBC prediction [20] and
try to derive target site’s matrix as a whole. In
[31], the primary intention is not to build the target
site’s data matrix; it aims to show the applicability
of the attacks.

3. Preliminaries

The first targeted scheme is proposed by Polat
and Du [19]. This scheme provides top-N
recommendation (TN) for an active user, AU,
among the item list (Na) she wants a prediction.
The second targeted scheme is based on NBC to
provide predictions on partitioned data [20]. These
schemes employ privacy measures to prevent the
other party from disclosing similarity information.
From now on, A and B will denote each party.
First, we introduce the method introduced in [19]
to offer private TN for two-party PPCF.

3.1. TN recommendation

This scheme selects the users who have high
positive and negative correlations with AU
claiming that accuracy might be increased if the
best similar and dissimilar users are selected [19].
The similarity metric to determine neighbors is a
modification of Tanimoto coefficient as follows:

() ()

()
s d

au

t R t R
W

t R

-
= (1)

In Eq. (1), Wau is the similarity weight between the
user u and AU. t(Rs), t(Rd), and t(R) are the
numbers of similarly, dissimilarly, and commonly
rated items by both u and AU, respectively. If Wau

> 0, then u and AU are similar, otherwise they are
dissimilar. They are not correlated if the similarity
weight is 0.

After determining Wau, neighbors are picked
based on two different criteria, best-N or threshold.
In the best-N neighbors’ selection, N users with the
highest correlations (either positive or negative)
are picked as neighbors. Threshold neighbors’
selection method picks its neighbors among the
users whose correlations (either positive or
negative) surpassing a threshold (τn) value. Note
that users with negative correlations with AU are
dissimilar to AU. These users would vote opposite;
therefore, their ratings are reversed. Since the
scheme handles binary data, reversing can be
performed by converting likes (1s) to dislikes (0s)
and dislikes (0s) to likes (1s).

Upon selecting the neighbors, Polat and Du
[19] find the number of likes (l j) and dislikes (dj),
where j is the item number, among the selected
neighbors. Then, ldj = l j - dj is calculated. If ldj > 0,
the item will be liked by AU. Otherwise, it will be
disliked.

There are two different cases based on how Na
items are shared between parties. The first deals
with the case, where all Na items belong to the one
of the parties. The second case is designed when
Na items are shared between parties. These cases
will be hereafter called as the first case Case-All
and the second Case-Split.

3.1.1. Case-All

Na items, for which AU is looking for referrals,
might belong to one party. Case-All deals with this
special case assuming that B has all items of Na

and A has none [19].

� AU sends her corresponding ratings to both
parties and Na to only B. A computes the

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE

M. Okkalıoğlu, et al., Vol.5, No.3

55

required values (partial similarity) utilizing a
privacy protocol called private similarity
calculation protocol (PSCP).

� A sends the partial similarity values to B
through AU. B finds its own partial similarity
values between users it holds and AU. Then, B
calculates the final similarities (Wau) adding the
partial similarity values received from A to its
own calculated ones.

� After finding the similarities, B selects the best
neighbors using the threshold and the best-Nn
approaches. It uses random τn and Nn to prevent
A from learning them. B generates a random
number of rB_τn from a range [-αB, αB] and adds
it to τn. Likewise, B adds a random number,
rB_Nn, to the number of the best neighbors, Nn, to
be selected to mask how many best users are
picked. B picks rB_Nn among a range [-γB, γB].

� ldj values are calculated and sorted by B. TN
recommendation is returned to AU.

3.1.2. Case-Split

While the previous case designed when all Na
items belong to a single party, this one handles the
case when these items are split between parties
[19].

� AU sends a query and her ratings to both
parties. B finds the partial similarities between
its users and AU using PSCP. Partial similarities
are sent to AU and AU lets A know partial
similarities.

� A computes its own partial similarities and finds
the similarities (Wau) by adding values from B.

� A selects the best Nn neighbors by employing
random τn and fixed Nn values. Since B needs
the neighbor information, A lets B know which
neighbors are selected and the similarity signs.

� A forms a neighborhood by employing random
Nn and τn. A computes ldAj with this new
neighborhood and lets B know ldAj values.
Since data is partitioned vertically, B needs to
know ldAj values, which are the other party’s
aggregated values to come up with final ldj
values. After receiving ldAj values, B calculates
ldj values by adding ldAj values from A to the

corresponding ldBj values it has computed. B
finally sends TN list to AU.

3.2. NBC-based prediction

NBC can be utilized for CF purposes [32].
Kaleli and Polat [20] also employ NBC (Case-
NBC) for two-party VPD-based schemes
considering privacy in their study. In this scheme,
users correspond to features and items correspond
to feature values. An illustration of Case-NBC is
given in Fig. 1. AU is looking for a prediction for
i8, which is marked with a question mark. The
equation whether an item belongs to a class (cl) for
a non-partitioned centralized data, where cl is like
or dislike can be described as follows:

1 2 1(| , ,..., ,) () (|)
n

n n i
i

p cl f f f f p cl p f cl− = ∏ (2)

In Eq. (2), p(cl) is the prior probability of like
or dislike based on cl, which can be calculated
from the active query. fi is the rating of the queried
item, q, which is i8 in Fig. 1. Probabilities are only
calculated if q is rated. Therefore, unrated fi values
(i8) are not taken into account. The conditional
probability will only be calculated for f1 = dislike,
f3 = like, f5 = dislike, and f6 = like in Fig.1 and the
repeated multiplication from i to n thus covers 1, 3,
5, and 6 in Eq. (2).

Assume that Vi is a vector, where i is associated
with the user and rated(r ij) is a function that takes
an item value (r ij) as an argument and returns true
when an item is rated or false otherwise. Vector
definitions given below are utilized to calculate
conditional probabilities.

1. Vi={ r ij: rated(rij)=true, i={1,2,…, n},
j={1,2…,m}}

2. (Vi)cl = {r ij: cl∈ {Like, Dislike}, r ij={cl},
i={1,2,…, n}, j={1,2…,m}}

Based on these definitions, the following set of
equations display how conditional probability,
p(fi|cl), can be reached for each feature vector:

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE

M. Okkalıoğlu, et al., Vol.5, No.3

56

,

() ()

() () ()

#() (())

#() (())

#()
(|)

#()

i

i iq

i cl cl i

i cl i cl i f

i cl i cl

i cl i cl

i cl
i

i cl

f V q is the queried item

D AU V

N D V

D n D

N n N

N
p f cl

D

=

= ∩
= ∩

=
=

=

 (3)

Eq. (3) lays out the calculation of p(fi|cl) by
breaking down numerator, (#Ni)cl, and
denominator, #(Di)cl. (Di)cl is the intersect set of
items rated by AU as cl∈ {like, dislike} and rated
by i-th user regardless of being like or dislike. (Ni)cl
is the intersect set of (Di)cl and i-th user’s vector
items rated same as fi. This set is picked to
quantify similarity between AU and users by
intersecting fi’s in a user vector. After finding out
these sets, n() is a function determining number of
elements in a set. To illustrate, p(f1 = like | cl =

like) = 2/2 and p(f1 = dislike | cl = like) = 0/2. To
avoid multiplication following features by 0,
Laplace smoothing could be utilized [32].
Conditional probability calculation needs to be
repeated for the remaining fi’s to obtain the final
probability. The item is assigned to the class with
the highest probability.

When data is partitioned vertically between
two parties as depicted by a dashed line in Fig. 1,
each p(fi|cj) has to be calculated collaboratively
because only one of the parties knows if the rating
of q is like or dislike. Therefore, the party who
does not know the rating of q has to calculate
partial, (#Ni)cl and #(Di)cl values and let the other
party know them. Once partial (#Ni)cl and #(Di)cl
are received, the party with q adds these values to
the ones calculated by itself. In this scheme, the
party having q acts as a master site. The full
application of the scheme is given in the following
assuming that A is the master party [20]:

� AU sends her query to A and B. AU also
computes p(cl) and sends it to A.

� Since B does not know the value of q, it
computes partial probability values for fi is like
and dislike. For class membership assignment,
conditional probability has to be calculated
considering cl is like and dislike. Thus, four
calculation of p(fi=like|cl) is needed to obtain

the partial conditional probability. However,
notice that p(fi=like|cl)+p(fi=dislike|cl)=1; thus,
it is enough to calculate for only fi=like or
fi=dislike for cl, like and dislike. Because A can
disclose B’s data matrix by observing partial
probability values, B utilize a privacy protocol
very similar to PSCP to prevent data disclosure.

� Upon getting partial conditional probabilities
from B, the master party A picks true #(Ni)cl and
#(Di)cl values based on value of q and calculates
final conditional probabilities.

3.3. Privacy by perturbing active query

To prevent data disclosure, the authors in [19,

20] propose techniques by perturbing an active
query so that results from the active query do not
really reflect the exact relation with the original
user vector. Both studies present a similar solution
to perturb the active query. The scholars discuss
PSCP that ratings should be appended to or
removed from the active query based on its density
[19]. If the active query is dense, meaning that
more than half of the items are rated, then some
items are removed according to a random number
drawn from [1, M], where M is the number of rated
items in the active query. In the case of sparse
active query, some items are randomly appended.

In Case-NBC [20], a similar approach is
employed by appending default votes to the active
query by a random percentage drawn from [1,
100]. These two approaches have similar
foundations; however, the active queries are
mostly very sparse and removing ratings could
barely occur. On the other hand, appending a
random percentage of ratings from a larger range
such as [1, 100] would be misleading due to sparse
nature of active queries.

These approaches have evolved to a more
coherent form in [25] by associating the volume of
ratings to be appended to the density, d, of an
active query. This protocol is called hiding rated
items (HRI). First, the number of unrated items is
determined. Then, a random value is drawn from
the range [1, δ], where δ might be factors of d such
as 1/8d, 1/4d, 1/2d, or d. The unrated cells are
filled up to a percent drawn between [1, δ].
Therefore, AU’s query is filled with δ/2 on
average. This protocol makes a connection
between density and ratings to be appended due to

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE

M. Okkalıoğlu, et al., Vol.5, No.3

57

Fig. 2. Attack – acting as an active user in multiple scenarios

sparse nature of CF active queries. In this study,
HRI protocol is utilized to perturb active queries
instead of individual privacy methods by each
PPCF technique.

In addition to HRI protocol, the authors in [25]
propose to disguise AU’s query. They propose to
utilize RRT [17] by partitioning the query into
groups. The proposed RRT protocol works as
follows:

� The master site defines G or number of groups.

� AU’s query is divided into G groups.

� For each group, g, two uniformly random
values βg and Θg values are drawn.

� If Θg > βg, ratings are reversed for g-th group.

Since which groups are reversed or preserved
is known by the master party, it can later
manipulate the interim results calculated by the
other party to make corrections.

4. Attack Scenarios

We describe three attack scenarios that can be

applied to VPD-based PPCF schemes; and
evaluate their performance in terms of privacy.
Privacy has two aspects [16]: (1) preserving the
actual rating made by users and (2) disguising if an
item is rated or not. We will refer to them as the
first and the second aspect of the privacy,
respectively.

4.1. Acting as an active user in multiple
scenarios

If there exists a malicious party, it can try
sending multiple queries to learn the other party’s
matrix. Consider a case where the malicious party
sends multiple queries and alters only one cell each
time. In such a case, the malicious party can track
the changes in the output (similarity weights) and
decide items’ rating whose values have been
manipulated. Assume that the malicious party
invokes an initial query and stores the similarity
weights. Then, the malicious party manipulates a
single rating and sends the altered query to the
other party to learn the new similarity weights.
After receiving the similarity weights for the
manipulated query, it compares them with the ones
from the earlier query. If there is an increase in the
similarity weight between AU and u, then the
manipulated value is kept by the user. The
malicious party can reach such a decision because
the increase in the similarity weights means a
higher correlation between AU and u. If there is a
decrease, then the malicious party concludes that u
has the value in the first query. If there is no
change in the similarity value, this means that the
manipulated item is not rated by u. This notion can
be applied for each user so that the whole matrix
can be disclosed as depicted in Fig. 2. This attack
is a threat for the first and the second aspects of
privacy because it reveals both the actual ratings
and if an item is rated.

Case-All, Case-Split, and Case-NBC VPD-
based PPCF schemes [19, 20] are subjected to this
attack. Remember that data is vertically partitioned
between two parties. Therefore, the collaborating
parties have to exchange the partial calculations of
individual users to obtain the results for both
schemes. This interaction makes it possible to

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE

M. Okkalıoğlu, et al., Vol.5, No.3

58

Fig. 3. Perfect match attack

perform this attack because the malicious party
will have an access to the partial information for
each user. As a measure of privacy, HRI will be
applied as discussed in the previous section. By
HRI, active query is appended based on δ, which is
related to d. Hence, it is expected that the success
of this attack will be affected by increasing δ
values. We examine how effective HRI is against
this attack by trails.

4.2. knn-based scenarios

knn-based attack is proposed by Calandrino et
al. [13]. This attack targets CF systems that select
k nearest neighbors. It assumes that the attacker
has a history of ratings of a target user and appends
k fake users into the CF system with an exact copy
of known history. When a prediction is requested
for one of the fake users, it is highly probable that
k nearest neighbors will be selected among k-1
fake users and the target user. Since k-1 users are
identical, the predictions are expected to come
from the target user. This attack discloses whether
an item is rated or not, so the second aspect of
privacy is under threat with this attack scenario.

Since Case-All and Case-Split schemes
targeted in this paper utilize the best neighbors
approach, knn-based attack can be performed. As
Case-NBC does not make use of neighborhood
approach, this attack is not valid for it. Although
knn-based attack needs a history of a user, the
attacker does have such a history inherently in
VPD-based schemes. Owing to the vertical
partitioning, where items are split between parties,
the parties have already had such a history of each

user. Thus, the malicious party can use its own part
of the ratings as the history of the target user and
manipulate neighbors by inserting k fake users into
system. We hypothesize that HRI is not an
effective privacy measure to prevent from this
attack because randomly removing or appending
ratings into AU’s vector does not change the
similarity weights between AU and k-1 users plus
the target user.

4.3. Perfect match attack

This attack is proposed in [18] for an HPD-
based binary PPCF scheme. We apply this attack
for VPD-based schemes in this study. Although
HRI is applied by each party as a privacy measure,
this scheme is subjected to perfect match attack.
Assume that B acts as the master party and no
privacy measure is taken. A calculates the
similarities between its user and AU, sends them to
B. If the similarity between any user of A and AU
is either 1 or -1, such similarities are called as
perfect matches [18]. This means that the
commonly rated items between these two users are
either identical or opposite, respectively. Hence, B
can conclude that the corresponding user who has
a perfect match with AU either identically voted or
not voted for any of its items if the similarity is 1.
If the similarity is -1, they either vote opposite or
not voted for any of the items. The attack is
depicted in Fig. 3.

In Fig. 3, three active queries are listed. Note
that the similarity weights between u1 and a1 and
u1 and a2 are 1. These are all perfect matches.
Once the first two active queries are sent, the
malicious party finds out that i5 is not rated

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE

M. Okkalıoğlu, et al., Vol.5, No.3

59

Table 1. Confusion matrices

a) First aspect of privacy

Original

Likes Dislikes Unrated

C
la

ss
ifi

e
d

 Likes V11 V12 V13

Dislikes V21 V22 V23

Unrated V31 V32 V33

b) Second aspect of privacy

Original

Rated Unrated

C
la

ss
ifi

e
d Rated Z11 Z12

Unrated Z21 Z22

because the similarity metric is calculated based on
commonly rated items and i5 is not identical in a1’s
and a2’s rating vectors. On the other hand, it is also
concluded that i1, i2, i3, and i4 are rated dislike (0),
like (1), like (1), and like (1), respectively or
unrated. The malicious party has no idea about i6
before dispatching the third query. After capturing
a perfect match with a3, i6 is disclosed as rated
dislike or unrated. This attack discloses two
privacy breaches: (1) even a single perfect match
reveals that the actual rated value of the target item
or it is unrated and (2) unrated entries might be
disclosed if multiple perfect matches occur as it
happens to i5.

Case-All, Case-Split, and Case-NBC schemes
calculate the interim value by two-party
collaboration. One party calculates its own partial
similarities and sends them to the master party for
a final calculation. As a result, final calculations
are performed by using the incoming partial values
with the ones calculated off-line by the master
party. The master party can use these interim
similarity values received from the other party to
identify perfect matches in all of three attacks.
Thus, perfect match attack is applicable for all
two-party VDP schemes discussed in this study.

5. Experiments

5.1. Data sets and evaluation criteria

Experiments were performed using MovieLens

Million (MLM) and Netflix data sets. MLM was
collected by GroupLens research group
(www.cs.umn.edu/research/GroupLens). Netflix is
a challenge data set to improve the accuracy of
prediction on a web-based movie service
(http://www.netflixprize.com/). Both data sets are
movie-rating data sets on a 5-star scale. Netflix
was selected to represent a rather sparse data set
with a density of 1.08% while MLM represents a
data set with a regular density (4.19%) for a CF
system. MLM data set contains about a million of
rating from 6,040 users for 3,952 users while
Netflix has 480,189 users and 17,770 items.

Three different evaluation metrics were
utilized in this study, accuracy, precision, and
recall for the first and the second aspects of
privacy. Accuracy measures how much the original

data is recovered. Each item in the derived data set
is compared to its original value to calculate
accuracy. Since CF data sets are usually sparse,
accuracy results are dominated by unrated entries.
Therefore, we used precision and recall to evaluate
the attacks in more detail. In this study, precision
and recall was calculated by only determining
likes and dislikes without considering unrated item
due to their domination. Precision is the ratio of
correctly recovered items to total items recovered
in terms of likes and dislikes. Precision is
important for an attacker to determine how much
of the derived data is indeed genuine. Recall is the
ratio of correctly recovered items to the total
original items. By recall, it can be evaluated how
good likes and dislikes are derived. Recall could be
considered important for a target site because it
shows the percentage of correctly derived items to
the original data set. An attacker might end up a
high precision; however, recall could be very low
which means that derived items for the attacker
constitutes a small margin of the original data.

Table 1 displays two confusion matrices for the
first and the second aspects of privacy. Eq. (4)
shows how three evaluation metrics are calculated
based on Table 1. Accuracy values are calculated
over all diagonal values to the all matrix
summation in both cases. For the first aspect of

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE

M. Okkalıoğlu, et al., Vol.5, No.3

60

Table 2. Data sets

Item
Size

Overall
Density

Like
Density

Dislike
Density

MLM 3,952 0.0434 0.0253 0.0181

Netflix 17,770 0.0108 0.0064 0.0044

privacy, precision and recall values are only
calculated for correctly identified likes and dislikes
to eliminate the unrated items’ domination in the
accuracy. Precision and recall metrics are
calculated by dividing correctly classified likes and
dislikes by summing row values and column
values of likes and dislike in Table 1, respectively
as given in Eq. (4).

3 2

1 1
1 23 3 2 2

1 1 1 1

2

1 11
1 22 3

11 12

1 1

2

1 11
1 23 2

11 21

1 1

,

,

,

ii ii
i i

ij ij
i j i j

ii
i

ij
i j

ii
i

ij
i j

V Z
Acc Acc

V Z

V
Z

prec prec
Z Z

V

V
Z

rec rec
Z Z

V

= =

= = = =

=

= =

=

= =

= =

= =
+

= =
+

∑ ∑

∑ ∑ ∑ ∑

∑

∑ ∑

∑

∑ ∑

(4)

MLM and Netflix data sets are on a numeric
scale between 1 and 5; however, the concentration
in this study is on binary data. Thus, ratings were
converted to a binary scale [32]. Netflix and MLM
ratings greater than or equal to 3 were converted to
1 (like) and the rest converted to 0 (dislike). 1,000
random users were picked for the experiments
from both data sets. Item size and densities of
selected data sets with 1,000 users are given in
Table 2.

Recall that perfect match attack might disclose
that (1) an item is unrated or its possible actual
value or (2) an item is rated or not if multiple
positive and negative perfect matches occur for it.
A coin toss is performed to determine the value for
an item for case (1) so that evaluation metrics can
be calculated for the first aspect of privacy. Items
falling into case (2) are marked as unrated and
items falling into case (1) are marked as rated to
calculate the second aspect of privacy.

5.2. Methodology

Experiments were repeated 100 times and Nn,
number of neighbors, was set to 200 for Case-All
and Case-Split. Experiments are given in three
different sub-titles. Throughout the experiments,

three different parameters were controlled. The
first is how varying δ could affect the evaluation
metrics. The second and the third are how number
of groups, G, and how varying densities of each
party affect the success of data recovery,
respectively. For the first case, HRI was utilized by
varying δ. HRI provides privacy by appending
items to the active query. The amount of items to
be inserted is determined by δ, which is related to
the density. Therefore, increasing δ values should
display an inclination toward privacy. This
hypothesis will be tested when data is equally
partitioned by varying δ between 0d, 0.125d,
0.25d, 0.5d, and 1d, where 0d means no privacy
measures have been applied for the scheme. The
second control parameter is G or number of
groups. G will be varied between 1, 3, 5, 7, and 10.
The last control parameter will be the effects of
varying the target party distribution (TPD). TPDs
will be manipulated between 0.125, 0.25, 0.5, 0.75,
and 0.875 while δ = 0.125d and three different
attacks will be monitored against varying values of
TPD. Results in terms of the first and thesecond
aspect of privacy will be reported throughout the
experiments if applicable.

5.3. Experiments

5.3.1. Varying δ values

This experiment displays how three PPCF

schemes are affected by varying values of δ when
attacks are activated. It is expected that both
accuracy, precision, and recall will decrease for
increasing δ due to altered active query by HRI.
AU query will contain more appended ratings for
larger δ values so that it will differ more from the
original AU query. In Table 3, results are
displayed.

After δ is met, metrics are reported to decline
for both MLM and Netflix data sets for all attack
types. Metrics have a general tendency toward
decline for large δ values. It can be noted that

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE

M. Okkalıoğlu, et al., Vol.5, No.3

61

appending random ratings via HRI have a negative
effect for reconstructions. Decrease in all metrics
are the most obvious after δ is met for acting as an
active user attack compared to the other two
attacks. Acting as an active user attack guarantees
a full recovery if no privacy measures are taken.
Therefore, decline for large δ is more noticeable
for this attack. For MLM data set, precision and
recall values remain almost stable until δ=1d for
both aspects of privacy; however, decline in these
metrics are more observable when δ=1d. On the
other hand, accuracy reports more observable
declines after δ=0.5d. Netflix, the sparse data set,
demonstrates decline after privacy measures are
introduced; however, all metrics follow more
stable trend for all δ values in this experiment. We
attribute this to sparsity of Netflix data set. Recall
that knn-based attack is built upon exploiting
neighborhood by trying to inject k-1 users into the
neighbors and this attack is applicable for Case-All
and Case-Split.

Although HRI protocol appends some ratings
to the active query, such an effort does not affect
the neighborhood of k-1 fake users with the target
user. Similarity scores between AU and k-1 fake
users before and after HRI stay same because
Case-All and Case-Split schemes do only consider
commonly rated items. However, appending
ratings each time will alter similarity score
between AU and other users. TN recommendations
therefore might differ and success of knn-based
attack depends on TN recommendations. After δ is
met, knn-based attack records declines in terms of
evaluation metrics for both data sets and all
evaluation metrics. knn-based attack performs
similar outcomes for increasing density rates
including δ=1d unlike acting as an active user
attack for precision, recall, and accuracy for both
privacy aspects and for both data sets.

Perfect match attack for three PPCF schemes
in this study demonstrates decline after δ is
introduced similar to previous attacks. Case-All,
Case-Split, and Case-NBC achieve very high
accuracy rates above 0.9 in all δ values compared
to the previous attacks. Additionally, accuracy
could be considered acting steadily for larger δ
values for both data sets. In terms of recall, Case-
NBC follows a constant and higher trend than the
other two schemes for both data sets. Beside

accuracy and recall, precision rates perform higher
ranges compared to acting as an active user and
knn-based attacks in terms of both aspects of
privacy.

In general, our intuition about increasing δ
values will cause reconstruction to deteriorate is
not accomplished as much as expected for the
range between δ=0.125d and δ=0.5d for most of
the cases. However, we believe the decline trend
would be more apparent if larger δ were chosen.
The reason why δ values are varied up to δ=1d is
to set up an experiment environment close to a
PPCF realities. In terms of PPCF, both privacy and
prediciton accuracy are considered. Setting privacy
measures to great extents inevitably affects
recommendation accuracy. Therefore, it is aimed
to set up an experiment to mimic a reasonable
PPCF environment.

5.3.2. Varying number of groups

RRT protocol is proposed to disguise AU’s
query by dividing into different G. As G increases,
one can claim that AU’s query become more
private due to increased grouping. In this
experiment, it is tested how increasing G values
have an effect on reconstruction. Therefore, G
values are varied between 1, 3, 5, 7, and 10.

Remember that HRI protocol appends ratings
into AU’s query up to δ which is associated to
density d. An AU’s query is filled with an average
of δ/2 fake ratings, which contribute to privacy and
harm reconstruction. However, we hypothesize
that increasing G values under a constant δ will
help reconstruction results. Notice that interim
values will be calculated for each group g because
the master party knows which group is reversed or
preserved. When G is increased, the possibility of
each group to be appended by random ratings by
HRI decreases. Assume that G=m, where m is
number of items, interim calculations are made for
each group and none of rated groups/items are
manipulated by HRI if G is m. Only unrated
groups are appended by HRI. Since the master
party knows true AU’s query and which items are
indeed rated or not, it can easily capture true
interim results. Table 4 displays the experimental
results, where δ = 0.25 and TPD = 0.5. G is
increased up to 10 due to runtime costs.

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE

M. Okkalıoğlu, et al., Vol.5, No.3

62

Table 4 clearly demonstrates that acting as an
active user attack, which manipulates an item at a
time, performs as expected. For all three metrics
and PPCF algorithms, the best performing cases is
the one, where G is the maximum for both data
sets. Besides, all metrics for the first and the
second aspect of privacy demonstrate an increasing
pattern for ML and Netflix data sets for larger G.

knn-based attack performs quite similar with
slight margins for varying G values for MLM and
Netflix data sets. Note that evaluation metrics are
only calculated for the second aspect of privacy
because this attack can reveal if an item is rated or
not instead of disclosing its value. When compared
by data sets, knn-based attack yields better output
for MLM than Netflix, which is a sparse data set.

Perfect match attack has almost an increasing
trend for Case-All and Case-Split for all metrics in
MLM data set. The best performing G value only
alternate between 7 and 10. For the sparse data set
Netflix, the trend fluctuates. Our assumption for
Case-All and Case-Split is not obvious, this might
be due to large number of items that Netflix has.
Since perfect match attack captures perfect
matches for each group, G=10 could be
insufficient. On the other hand, Case-NBC
demonstrates a clear declining trend for larger G
values up to 10 contrary to our hypothesis in terms
of precision and accuracy. Recorded recall values
for Case-NBC could be considered in an increasing
trend by small margins.

5.3.3. Varying TPD

In the previous experiments, it is assumed that
data is equally partitioned between parties.
However, this case might occur rarely. In this
experiment, TPD values are varied to observe how
different densities affect the evaluation metrics.
TPD values are varied between 0.125, 0.25, 0.5,
0.75, and 0.875 for each PPCF algorithm. δ is set
0.25 and G=5. Table 5 displays the results.

Acting as an active user attack displays the
best results when TPD = 0.125 for all evaluation
metrics and data sets. For larger TPD values, a
decline in precision, recall, and accuracy values is
observed. Case-NBC seems to be more prone to
acting as an active user attack compared to Case-
All and Case-Split algorithms for both MLM and

Netflix data sets considering evaluation metrics of
the first and the second aspect of privacy.

knn-based attack, which seems so far more
resilient to privacy measures, performs a general
trend toward declining for larger TPD values for
Case-All algorithm for both data sets. For MLM
data set, Case-Split performs the best for precision
and accuracy at TPD=0.250. Recall results with
Case-Split in MLM data set is the best at
TPD=0.500. On the other hand, both Case-All and
Case-Split record decline for Netflix data set for
larger TPD values.

Perfect match attack with MLM data set
demonstrates the best reconstruction rates when
TPD = 0.125. However, Case-NBC is the only
exception with precision and accuracy rates in
terms of the first and the second aspect of privacy.
The sparse data set Netflix does not show any
reliable pattern common to all metrics. While rec1
and rec2 perform the best when TPD = 0.125.
Accuracy and precision metrics display better
results toward larger TPDs. Case-Split and Case-
All display similar trends with each other in terms
of accuracy, recall, and precision. While recall and
precision decrease for larger TPDs in terms of the
first and the second aspect of privacy, accuracy
follows a steadier trend for MLM. For Case-NBC,
accuracy has a slightly increasing trend in terms of
the first and the second aspect of privacy for
MLM. Contrary to MLM data set, perfect match
attack for all PPCF algorithms shows an increasing
behavior toward TPD=0.750 for precision and
accuracy while it performs a slight decrease in
terms of recall for both aspects of privacy.

Reconstruction metrics display relatively better
results for smaller TPD values in general. In most
of the cases, recall and accuracy metrics are
promising. By this experiment, it could be stated
that lower TPDs would be more prone to acting as
an active user and knn-based attack for both data
sets. However, perfect match attack performs
better for representative MLM data set for lower
TPD values while the trend reverses for larger
TPD for the representative sparse data set Netflix.

6. Discussion

Throughout the experiments, most of the trials
report higher recall and accuracy rates compared to

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE

M. Okkalıoğlu, et al., Vol.5, No.3

63

precision. Note that precision relies on the ratio of
relevant items retrieved to all retrieved items,
which is marked as like or dislike by attack
scenario. Precision is calculated for only likes and
dislike. MLM data set’s density is about 0.04 while
Netflix density is about 0.01. The reason behind
low precision rates is due to high density of
unrated items. The overwhelming majority of the
unrated items and marking them as like or dislike
dominates this metric because of the modified
calculation of precision as prec1 and prec2 for the
first and the second aspect of privacy given in Eq.
4. Recall results for most of the cases are
comparably higher than precision. Recall rates rely
on the ratio of relevant retrieved items to the all
relevant items, which are the items originally
marked as likes or dislike. The reason why recall
might outperform precision could be due to the
fact that retrieved relevant items are compared to
the originally rated items as like and dislike. Note
that for precision, relevant retrieved items are
compared to the all retrieved items, which are
under the dominance of incorrectly marked unrated
items. If recall result is higher than precision, then
it can be understood that incorrectly retrieved
unrated items as like or dislike, which is related to
precision calculation, outnumber the number of all
relevant items as like or dislike, which is
associated to recall. Accuracy deals with correctly
retrieved items to the total items. Therefore, it
includes unrated items. Contrary to precision,
better accuracy results rely on correctly retrieved
unrated items count in the calculation of accuracy
metrics.

It can be also discussed which attack type
would be preferred based on different control
parameters in this study. The first control
parameter is to vary δ values to see how appending
more random items into AU’s query effect the
evaluation criteria. Although acting as an active
user attack guarantees full data recovery when
there are no privacy measures, its effectiveness
especially in terms of precision and accuracy
degrades. On the other hand, knn-based attack
demonstrates a decline after δ is met; however, it
displays more stable outputs for growing δ values.
Notice that knn-based attack can only disclose if
an item is rated or not.

Perfect match attack produces much better
precision and accuracy results than the previous
two attacks although recall is lower. A malicious
party intending to disclose the other party’s data
could prefer this attack if precision is more
important than recall. Precision could be preferred
to recall if the attacker wants to be sure the higher
ratio of retrieved relevant items to the all retrieved
items (precision) instead of the ratio of retrieved
relevant items to the all relevant items (recall). The
authors in [12] discuss that precision is more
important for an attacker. The other control
parameters are G and TPD. Similar to varying δ
parameter, perfect match attack makes a difference
and beats the other attacks especially in terms of
precision. Therefore, for all attack types and
parameters, if the attacker puts precision into
priority, then perfect match attack should be
considered. Compared to knn-based attack to
acting as an active user attack in terms of the
second aspect of privacy, one can prefer knn-based
attack for a more stable attack in most of the cases.

Beside the attacks discussed in the
experiments, a malicious party could also devise a
random attack. Since there are three possibilities
(unrated, like, or dislike) that an item could have,
each item could be assigned randomly. A possible
and intuitional option could mark each item among
three possibilities with prior knowledge of
malicious party’s density. Based on this idea, a
random attack is implemented to compare how the
attacks in this paper perform against a random
predictor, which utilizes density rates of malicious
parties. The random predictor works as follows:
First, the attacking party finds out its overall
densities of likes, dislikes, and unrated items.
Second, the attacking party constructs a range for
each density. Then, for each item, this attack
generates a uniform random number in the interval
(0, 1). Finally, item is assigned as like, dislike, or
unrated based on random number. Random
discovery creates a matrix from scratch. Table 6
displays a random discovery option to estimate an
original target data matrix. Precision results in
terms of both aspects of privacy is lower than
recorded values for MLM and Netflix in attacks
given in this paper. Similar to precision, very low
recall values are recorded compared to previous
attacks.

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE

M. Okkalıoğlu, et al., Vol.5, No.3

64

Table 3. Attacks with varying δ values

MLM Netflix

 δ= 0 0.125d 0.25d 0.5d 1d 0 0.125d 0.25d 0.5d 1d

Acting as
an active user

attack

prec1-Case-All 1.000 0.069 0.069 0.069 0.057 1.000 0.019 0.019 0.019 0.019

prec1-Case-Split 1.000 0.069 0.068 0.067 0.056 1.000 0.019 0.019 0.019 0.019

prec1-Case-NBC 1.000 0.155 0.157 0.151 0.124 1.000 0.045 0.045 0.045 0.045

rec1-Case-All 1.000 0.836 0.836 0.834 0.795 1.000 0.790 0.790 0.789 0.790

rec1-Case-Split 1.000 0.835 0.835 0.830 0.793 1.000 0.788 0.789 0.788 0.790

rec1-Case-NBC 1.000 0.886 0.887 0.880 0.861 1.000 0.851 0.852 0.852 0.851

Acc1-Case-All 1.000 0.507 0.506 0.504 0.424 1.000 0.488 0.489 0.487 0.486

Acc1-Case-Split 1.000 0.509 0.506 0.494 0.417 1.000 0.484 0.489 0.484 0.486

Acc1-Case-NBC 1.000 0.789 0.794 0.785 0.737 1.000 0.773 0.774 0.773 0.775

prec2-Case-All 1.000 0.076 0.076 0.076 0.066 1.000 0.022 0.022 0.022 0.022

prec2-Case-Split 1.000 0.076 0.075 0.074 0.065 1.000 0.022 0.022 0.022 0.022

prec2-Case-NBC 1.000 0.175 0.177 0.172 0.144 1.000 0.052 0.052 0.052 0.053

rec2-Case-All 1.000 0.919 0.919 0.919 0.917 1.000 0.916 0.916 0.916 0.916

rec2-Case-Split 1.000 0.920 0.919 0.919 0.917 1.000 0.916 0.916 0.916 0.916

rec2-Case-NBC 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Acc2-Case-All 1.000 0.511 0.509 0.508 0.429 1.000 0.489 0.491 0.489 0.488

Acc2-Case-Split 1.000 0.512 0.510 0.498 0.422 1.000 0.485 0.491 0.486 0.674

Acc2-Case-NBC 1.000 0.794 0.798 0.790 0.743 1.000 0.775 0.776 0.774 0.776

knn-based
attack

prec2-Case-All 0.205 0.150 0.153 0.153 0.152 0.173 0.079 0.079 0.079 0.079

prec2-Case-Split 0.248 0.180 0.181 0.182 0.185 0.127 0.087 0.089 0.091 0.090

rec2-Case-All 0.975 0.834 0.838 0.840 0.843 0.962 0.791 0.794 0.798 0.809

rec2-Case-Split 0.998 0.763 0.767 0.781 0.782 0.998 0.709 0.716 0.731 0.736

Acc2-Case-All 0.834 0.788 0.795 0.793 0.789 0.942 0.883 0.884 0.883 0.880

Acc2-Case-Split 0.868 0.839 0.841 0.838 0.840 0.914 0.904 0.905 0.906 0.904

Perfect match
attack

prec1-Case-All 0.518 0.427 0.426 0.422 0.389 0.211 0.157 0.158 0.156 0.156

prec1-Case-Split 0.519 0.427 0.427 0.424 0.388 0.208 0.157 0.157 0.156 0.158

prec1-Case-NBC 0.677 0.669 0.672 0.668 0.670 0.098 0.120 0.120 0.120 0.120

rec1-Case-All 0.379 0.344 0.343 0.343 0.327 0.458 0.367 0.367 0.366 0.365

rec1-Case-Split 0.379 0.344 0.344 0.343 0.327 0.457 0.368 0.367 0.367 0.367

rec1-Case-NBC 0.497 0.496 0.497 0.497 0.497 0.499 0.498 0.498 0.498 0.498

Acc1-Case-All 0.958 0.952 0.951 0.951 0.948 0.972 0.967 0.968 0.967 0.968

Acc1-Case-Split 0.958 0.951 0.951 0.951 0.948 0.971 0.968 0.968 0.968 0.968

Acc1-Case-NBC 0.968 0.967 0.968 0.967 0.968 0.937 0.948 0.948 0.948 0.948

prec2-Case-All 0.519 0.427 0.426 0.422 0.390 0.211 0.158 0.158 0.156 0.157

prec2-Case-Split 0.519 0.427 0.427 0.425 0.388 0.208 0.157 0.157 0.156 0.158

prec2-Case-NBC 0.677 0.669 0.671 0.667 0.670 0.098 0.119 0.120 0.119 0.121

rec2-Case-All 0.759 0.687 0.687 0.685 0.654 0.916 0.735 0.735 0.733 0.732

rec2-Case-Split 0.759 0.687 0.689 0.687 0.654 0.914 0.734 0.733 0.733 0.735

rec2-Case-NBC 0.993 0.993 0.993 0.993 0.993 0.998 0.996 0.996 0.996 0.995

Acc2-Case-All 0.959 0.947 0.946 0.945 0.940 0.956 0.948 0.948 0.947 0.948

Acc2-Case-Split 0.959 0.946 0.946 0.945 0.940 0.955 0.947 0.948 0.948 0.948

Acc2-Case-NBC 0.979 0.978 0.978 0.978 0.978 0.886 0.909 0.909 0.909 0.909

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE

M. Okkalıoğlu, et al., Vol.5, No.3

65

Table 4. Attacks with varying number of groups, G

MLM Netflix

G= 1 3 5 7 10 1 3 5 7 10

Acting as
an active user

attack

prec1-Case-All 0.069 0.098 0.124 0.149 0.175 0.019 0.026 0.033 0.040 0.047

prec1-Case-Split 0.068 0.094 0.122 0.146 0.171 0.019 0.026 0.033 0.039 0.047

prec1-Case-NBC 0.157 0.220 0.281 0.335 0.390 0.045 0.064 0.084 0.103 0.124

rec1-Case-All 0.836 0.894 0.926 0.946 0.960 0.790 0.848 0.885 0.910 0.928

rec1-Case-Split 0.835 0.890 0.925 0.944 0.959 0.789 0.848 0.883 0.908 0.929

rec1-Case-NBC 0.887 0.922 0.941 0.954 0.963 0.852 0.890 0.915 0.930 0.943

Acc1-Case-All 0.506 0.634 0.713 0.763 0.801 0.489 0.604 0.675 0.724 0.763

Acc1-Case-Split 0.506 0.628 0.709 0.761 0.797 0.489 0.603 0.675 0.722 0.765

Acc1-Case-NBC 0.794 0.858 0.896 0.917 0.934 0.774 0.838 0.876 0.899 0.917

prec2-Case-All 0.076 0.102 0.127 0.151 0.176 0.022 0.028 0.035 0.041 0.048

prec2-Case-Split 0.075 0.099 0.125 0.149 0.173 0.022 0.028 0.035 0.041 0.048

prec2-Case-NBC 0.177 0.239 0.299 0.351 0.405 0.052 0.072 0.092 0.111 0.132

rec2-Case-All 0.919 0.936 0.949 0.959 0.968 0.916 0.923 0.932 0.941 0.949

rec2-Case-Split 0.919 0.934 0.949 0.959 0.968 0.916 0.923 0.931 0.941 0.950

rec2-Case-NBC 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Acc2-Case-All 0.509 0.636 0.714 0.763 0.801 0.491 0.605 0.676 0.725 0.764

Acc2-Case-Split 0.510 0.630 0.710 0.761 0.797 0.491 0.604 0.675 0.723 0.765

Acc2-Case-NBC 0.798 0.861 0.898 0.919 0.935 0.776 0.839 0.877 0.900 0.918

knn-based
attack

prec2-Case-All 0.153 0.152 0.153 0.153 0.153 0.079 0.075 0.075 0.075 0.075

prec2-Case-Split 0.181 0.185 0.181 0.183 0.182 0.089 0.088 0.087 0.087 0.087

rec2-Case-All 0.838 0.833 0.838 0.839 0.842 0.794 0.797 0.796 0.801 0.804

rec2-Case-Split 0.767 0.773 0.765 0.772 0.776 0.716 0.721 0.715 0.719 0.715

Acc2-Case-All 0.795 0.791 0.792 0.794 0.790 0.884 0.875 0.874 0.875 0.874

Acc2-Case-Split 0.841 0.841 0.840 0.839 0.839 0.905 0.904 0.903 0.903 0.902

Perfect match
attack

prec1-Case-All 0.426 0.721 0.897 0.963 0.974 0.158 0.185 0.164 0.136 0.111

prec1-Case-Split 0.427 0.721 0.897 0.961 0.974 0.157 0.184 0.161 0.134 0.110

prec1-Case-NBC 0.672 0.486 0.337 0.261 0.210 0.120 0.083 0.066 0.056 0.049

rec1-Case-All 0.343 0.443 0.485 0.498 0.500 0.367 0.456 0.492 0.499 0.500

rec1-Case-Split 0.344 0.444 0.485 0.497 0.500 0.367 0.455 0.492 0.500 0.500

rec1-Case-NBC 0.497 0.499 0.501 0.501 0.501 0.498 0.500 0.501 0.500 0.500

Acc1-Case-All 0.951 0.968 0.975 0.977 0.978 0.968 0.968 0.962 0.954 0.944

Acc1-Case-Split 0.951 0.968 0.975 0.977 0.978 0.968 0.968 0.962 0.954 0.944

Acc1-Case-NBC 0.968 0.955 0.935 0.916 0.896 0.948 0.925 0.905 0.888 0.873

prec2-Case-All 0.426 0.721 0.898 0.963 0.974 0.158 0.185 0.164 0.136 0.111

prec2-Case-Split 0.427 0.721 0.896 0.961 0.974 0.157 0.184 0.161 0.134 0.110

prec2-Case-NBC 0.671 0.486 0.336 0.261 0.210 0.120 0.083 0.066 0.056 0.049

rec2-Case-All 0.687 0.886 0.970 0.995 1.000 0.735 0.912 0.984 0.999 1.000

rec2-Case-Split 0.689 0.887 0.969 0.995 1.000 0.733 0.910 0.984 0.999 1.000

rec2-Case-NBC 0.993 0.999 1.000 1.000 1.000 0.996 1.000 1.000 1.000 1.000

Acc2-Case-All 0.946 0.980 0.994 0.998 0.999 0.948 0.949 0.938 0.921 0.901

Acc2-Case-Split 0.946 0.980 0.994 0.998 0.999 0.948 0.949 0.936 0.920 0.900

Acc2-Case-NBC 0.978 0.954 0.914 0.876 0.836 0.909 0.863 0.823 0.788 0.758

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE

M. Okkalıoğlu, et al., Vol.5, No.3

66

Table 5. Attacks with varying TPDs

 MLM Netflix

TPD= 0.125 0.250 0.500 0.750 0.875 0.125 0.250 0.500 0.750 0.875

Acting as an
active user

attack

prec1-Case-All 0.187 0.140 0.124 0.116 0.116 0.043 0.036 0.033 0.031 0.032

prec1-Case-Split 0.150 0.130 0.122 0.115 0.117 0.041 0.035 0.033 0.031 0.032

prec1-Case-NBC 0.347 0.291 0.281 0.268 0.266 0.108 0.089 0.084 0.079 0.079

rec1-Case-All 0.963 0.938 0.925 0.917 0.918 0.918 0.894 0.883 0.877 0.878

rec1-Case-Split 0.946 0.929 0.923 0.918 0.919 0.914 0.892 0.884 0.877 0.878

rec1-Case-NBC 0.956 0.945 0.941 0.938 0.937 0.934 0.921 0.915 0.910 0.910

Acc1-Case-All 0.803 0.743 0.712 0.692 0.693 0.742 0.697 0.673 0.661 0.665

Acc1-Case-Split 0.763 0.727 0.709 0.692 0.695 0.733 0.694 0.675 0.663 0.664

Acc1-Case-NBC 0.921 0.902 0.896 0.888 0.887 0.903 0.883 0.876 0.869 0.869

prec2-Case-All 0.188 0.142 0.127 0.119 0.119 0.044 0.038 0.035 0.033 0.034

prec2-Case-Split 0.152 0.133 0.125 0.119 0.120 0.042 0.037 0.035 0.033 0.033

prec2-Case-NBC 0.362 0.308 0.299 0.286 0.284 0.115 0.097 0.092 0.087 0.087

rec2-Case-All 0.970 0.956 0.949 0.944 0.946 0.944 0.937 0.931 0.929 0.930

rec2-Case-Split 0.960 0.952 0.948 0.945 0.946 0.942 0.936 0.931 0.929 0.930

rec2-Case-NBC 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Acc2-Case-All 0.804 0.744 0.713 0.693 0.694 0.742 0.698 0.673 0.661 0.665

Acc2-Case-Split 0.764 0.728 0.710 0.693 0.696 0.734 0.695 0.675 0.663 0.664

Acc2-Case-NBC 0.923 0.904 0.898 0.891 0.890 0.904 0.884 0.877 0.870 0.870

knn-based
attack

prec2-Case-All 0.178 0.170 0.153 0.113 0.083 0.098 0.091 0.075 0.056 0.040

prec2-Case-Split 0.165 0.200 0.181 0.118 0.083 0.121 0.111 0.087 0.055 0.040

rec2-Case-All 0.884 0.863 0.838 0.828 0.830 0.853 0.829 0.796 0.800 0.800

rec2-Case-Split 0.535 0.707 0.765 0.742 0.754 0.764 0.740 0.715 0.719 0.731

Acc2-Case-All 0.815 0.811 0.792 0.708 0.596 0.901 0.896 0.874 0.828 0.756

Acc2-Case-Split 0.858 0.863 0.840 0.747 0.628 0.927 0.923 0.903 0.837 0.774

Perfect match
Attack

prec1-Case-All 0.975 0.887 0.897 0.892 0.886 0.129 0.144 0.164 0.178 0.173

prec1-Case-Split 0.973 0.886 0.897 0.893 0.884 0.120 0.142 0.161 0.177 0.168

prec1-Case-NBC 0.267 0.279 0.337 0.375 0.358 0.054 0.060 0.066 0.069 0.068

rec1-Case-All 0.499 0.484 0.485 0.484 0.483 0.500 0.491 0.492 0.492 0.491

rec1-Case-Split 0.499 0.484 0.485 0.484 0.483 0.499 0.491 0.492 0.492 0.490

rec1-Case-NBC 0.502 0.500 0.501 0.500 0.500 0.501 0.500 0.501 0.500 0.500

Acc1-Case-All 0.978 0.975 0.975 0.975 0.975 0.951 0.957 0.962 0.965 0.964

Acc1-Case-Split 0.978 0.975 0.975 0.975 0.975 0.949 0.956 0.962 0.965 0.963

Acc1-Case-NBC 0.917 0.923 0.935 0.942 0.939 0.884 0.897 0.905 0.909 0.909

prec2-Case-All 0.975 0.887 0.898 0.892 0.886 0.129 0.144 0.164 0.178 0.173

prec2-Case-Split 0.973 0.886 0.896 0.893 0.884 0.120 0.142 0.161 0.178 0.168

prec2-Case-NBC 0.266 0.279 0.336 0.375 0.358 0.054 0.061 0.066 0.068 0.068

rec2-Case-All 0.999 0.968 0.970 0.967 0.966 1.000 0.983 0.984 0.983 0.981

rec2-Case-Split 0.998 0.968 0.969 0.968 0.965 1.000 0.983 0.984 0.983 0.981

rec2-Case-NBC 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Acc2-Case-All 0.999 0.993 0.994 0.994 0.993 0.915 0.926 0.938 0.943 0.941

Acc2-Case-Split 0.999 0.993 0.994 0.994 0.993 0.911 0.925 0.936 0.943 0.939

Acc2-Case-NBC 0.877 0.889 0.914 0.927 0.922 0.780 0.807 0.823 0.830 0.830

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE

M. Okkalıoğlu, et al., Vol.5, No.3

67

On the other hand, accuracy results seem to be
higher than 0.90 for both aspects of privacy and
data sets. The reason for such a case is that
domination of unrated items and their domination
is taken into account in accuracy calculations.

7. Conclusions and Future Works

In this study, three different attack techniques
are experimentally tested on VPD-based binary
PPCF schemes. Acting as an active user in
multiple scenarios attack tracks temporal changes
in the similarity weights for subsequent queries
altered with only one cell. If a history of a user is
known, which is an inherent case for VPD-based
schemes, knn-based attack appends k fake users to
the system to derive items by observing related
predictions. Perfect match attack tracks similarity
weights with 1 or -1 to derive meaningful
information out of them.

Experiments show that acting as active user
attack guarantees full recovery if no privacy
measure is taken. However, it is highly affected by
increasing δ values. The other control parameter G
helps reconstruction for this attack type. Besides,
the last control parameter TPD shows that this
attack performs better for lower TPD values.
Therefore, acting as an active user attack could be
preferred for moderate δ values, larger G, and
lower TPD values. On the other hand, knn-based
attack demonstrates stabiltiy after δ is met. This
attack performs similar for varying G and the best
for lower TPD values. Similar to acting as active
user attack, knn-based attack could be preferred if
TPD is lower; nonetheless, knn-based attack can
be preferred to acting as an active user attack
when δ is large for the second aspect of privacy. In

general, regardless of control parameters, the most
prominent point for perfect match attack is that it
yields much better precision results compared to
the other two attacks for most of the cases. As
stated before, this attack could be chosen if
precision is considered. As a final remark, a
random discovery has been performed and the
attacks in this paper beat such a prior-knowledge
discovery of a data holder’s matrix especially in
terms of precision and recall.

As a future goal, we plan to investigate multi-
party horizontally and vertically distributed data-
based privacy-preserving collaborative filtering
schemes in terms of privacy by analyzing current
attacks and devising possible attack techniques.

Acknowledgements

This work is supported by the Grant 113E262 from
TUBITAK.

References

[1]. J. Jacoby, “Information Load and Decision Quality:

Some Contested Issues,” J. Mark. Res., Vol. 14, No. 4,
pp. 569-573, 1977.

[2]. J. S. Breese, D. Heckerman, and C. Kadie, “Empirical
Analysis of Predictive Algorithms for Collaborative
Filtering,” in Proceedings of the 14th Conference on
Uncertainty in Artificial Intelligence, San Fransisco, CA,
USA, 43-52, 1998.

[3]. J. L. Herlocker, J. A. Konstan, L. G. Terveen, and J. T.
Riedl, “Evaluating Collaborative Filtering Recommender
Systems,” ACM Trans. Inf. Syst., Vol. 22, No. 1, pp. 5-
53, 2004.

[4]. D. Goldberg, D. Nichols, B. M. Oki, and D. Terry,
“Using Collaborative Filtering to Weave an Information
Tapestry,” Commun. ACM, Vol. 35, No. 12, pp. 61-70,
1992.

[5]. X. Su and T. M. Khoshgoftaar, “A Survey of
Collaborative Filtering Techniques,” Adv. Artif. Intell.,
Vol. 2009, pp. 4:2-4:2, 2009.

[6]. A. Bilge, C. Kaleli, I. Yakut, I. Gunes, and H. Polat, “A
Survey of Privacy-Preserving Collaborative Filtering
Schemes,” Int. J. Softw. Eng. Knowl. Eng., Vol. 23, No.
08, pp. 1085-1108, 2013.

[7]. J. Canny, “Collaborative Filtering with Privacy”, in
Proceedings of the IEEE Symposium on Security and
Privacy, Oakland, CA, USA, 45-57, 2002.

[8]. L. F. Cranor, “‘I Didn’t Buy it for Myself’”, in
Proceedings of the ACM Workshop on Privacy in the

Table 6. Random discovery results

 ML Netflix

Random

Discovery

prec1 0.018 0.005

rec1 0.019 0.006

Acc1 0.916 0.975

prec2 0.042 0.012

rec2 0.045 0.013

Acc2 0.917 0.975

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE

M. Okkalıoğlu, et al., Vol.5, No.3

68

Electronic Society, Washington, DC, USA, 111-117,
2003.

[9]. J. Phelps, G. Nowak, and E. Ferrell, “Privacy Concerns
and Consumer Willingness to Provide Personal
Information,” J. Public Policy Mark., Vol. 19, No. 1, pp.
pp. 27-41, 2000.

[10]. H. Kargupta, S. Datta, Q. Wang, and K. Sivakumar,
“On the Privacy Preserving Properties of Random Data
Perturbation Techniques,” in Proceedings of the 3rd IEEE
International Conference on Data Mining, Melbourne,
FL, USA, 99-106, 2003.

[11]. H. Dutta, H. Kargupta, S. Datta, and K. Sivakumar,
“Analysis of Privacy Preserving Random Perturbation
Techniques: Further Explorations,” in Proceedings of the
ACM Workshop on Privacy in the Electronic Society,
Washington, DC, USA, 31-38, 2003.

[12]. S. Zhang, J. Ford, and F. Makedon, “Deriving Private
Information from Randomly Perturbed Ratings,” in
Proceedings of the 6th SIAM International Conference on
Data Mining, Bethesda, MD, USA, 59-69, 2006.

[13]. J. A. Calandrino, A. Kilzer, A. Narayanan, E. W.
Felten, and V. Shmatikov, “``You Might Also Like:"
Privacy Risks of Collaborative Filtering,” in Proceedings
of the IEEE Symposium on Security and Privacy,
Oakland, CA, USA, 231-246, 2011.

[14]. M. Okkalioglu, M. Koc, and H. Polat, “On the
Discovery of Fake Binary Ratings,” in Proceedings of the
30th Annual ACM Symposium on Applied Computing,
Salamanca, Spain, 901-907, 2015.

[15]. H. Polat and W. Du, “Privacy-Preserving Collaborative
Filtering Using Randomized Perturbation Techniques,” in
Proceedings of the 3rd IEEE International Conference on
Data Mining, Melbourne, FL, USA, 625-628, 2003.

[16]. H. Polat and W. Du, “Achieving Private
Recommendations Using Randomized Response
Techniques,” Lect. Notes Comput. Sci., Vol. 3918, pp.
637-646, 2006.

[17]. S. L. Warner, “Randomized Response: A Survey
Technique for Eliminating Evasive Answer Bias,” J. Am.
Stat. Assoc., Vol. 60, No. 309, pp. 63-69, 1965.

[18]. M. Okkalioglu, M. Koc, and H. Polat, “On the Privacy
of Horizontally Partitioned Binary Data-based Privacy-
Preserving Collaborative Filtering,” Lect. Notes Comput.
Sci., Vol. 9481, 2015.

[19]. H. Polat and W. Du, “Privacy-Preserving top-N
Recommendation on Distributed Data,” J. Am. Soc. Inf.
Sci. Technol., Vol. 59, No. 7, pp. 1093–1108, 2008.

[20]. C. Kaleli and H. Polat, “Providing Naïve Bayesian
Classifier-based Private Recommendations on Partitioned

Data,” Lect. Notes Comput. Sci., Vol. 4702, pp. 515-522,
2007.

[21]. C. Kaleli and H. Polat, “Providing Private
Recommendations Using Naïve Bayesian Classifier,”
Advances in Soft Computing, Vol. 43, pp. 168-173, 2007.

[22]. M. Tada, H. Kikuchi, and S. Puntheeranurak, “Privacy-
Preserving Collaborative Filtering Protocol Based on
Similarity between Items,” in Proceedings of 24th IEEE
International Conference on Advanced Information
Networking and Applications, Perth, Australia, 573-578,
2010.

[23]. H. Polat and W. Du, “Privacy-Preserving top-N
Recommendation on Horizontally Partitioned Data,” in
Proceedings of the 2005 IEEE/WIC/ACM International
Conference on Web Intelligence, Paris, France, 725-731,
2005.

[24]. H. Polat and W. Du, “Privacy-Preserving Collaborative
Filtering on Vertically Partitioned Data” Lect. Notes
Comput. Sci., Vol. 3721, pp. 651-658, 2005.

[25]. C. Kaleli and H. Polat, “Privacy-Preserving Naïve
Bayesian Classifier-Based Recommendations on
Distributed Data,” Comput. Intell., Vol. 31, No. 1, pp. 47-
68, 2015.

[26]. C. Kaleli and H. Polat, “Privacy-Preserving SOM-based
Recommendations on Horizontally Distributed Data,”
Knowledge-Based Syst., Vol. 33, pp. 124-135, 2012.

[27]. C. Kaleli and H. Polat, “SOM-based Recommendations
with Privacy on Multi-party Vertically Distributed Data,”
Journal of the Operational Research Society, Vol. 63,
No. 6, pp. 826-838, 2012.

[28]. S. Guo and X. Wu, “On the Use of Spectral Filtering
for Privacy Preserving Data Mining,” in Proceedings of
the ACM Symposium on Applied Computing, Dijon,
France, 622-626, 2006.

[29]. S. Guo, X. Wu, and Y. Li, “Determining Error Bounds
for Spectral Filtering based Reconstruction Methods in
Privacy Preserving Data Mining,” Knowl. Inf. Syst., Vol.
17, No. 2, pp. 217-240, 2008.

[30]. Z. Huang, W. Du, and B. Chen, “Deriving Private
Information from Randomized Data,” in Proceedings of
the 24th ACM SIGMOD International Conference on
Management of Data, Baltimore, MD, USA37-48, 2005.

[31]. M. Okkalioglu, M. Koc, and H. Polat, “Deriving Private
Data in Vertically Partitioned Data-based PPCF
Schemes,” in Proceedings of the 9th International
Conference on Information Security and Cryptology,
Ankara, Turkey, 1-7, 2015.

 [32]. K. Miyahara and M. Pazzani, “Collaborative Filtering
with the Simple Bayesian Classifier,” Lect. Notes
Comput. Sci., Vol. 1886, pp. 679-689, 2000.

