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Abstract—In the last years, tablets and smartphones have been widely used with the very same purpose as desktop computers:

web browsing, social networking, banking and others, just to name a few. However, we are often facing the problem of keeping

our information protected and trustworthy. As a result of their popularity and functionality, mobile devices are a growing target

for malicious activities. In such context, mobile malwares have gained significant ground since the emergence and growth of

smartphones and handheld devices, thus becoming a real threat. The main contribution of this paper is to evaluate Restricted

Boltzmann Machines (RBMs) for unsupervised feature learning in the context of malware identification. In order to evaluate the

results, we employed two supervised pattern recognition techniques, say that Optimum-Path Forest and Support Vector Machines,

as well as a classification approach based on RBMs.
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1. Introduction

In the past few years, there was a huge increase

in the use of tablets and smartphones with the vey

same purpose as desktop computers: web browsing,

social networking, banking and others [20, 22, 40].

As a result of their popularity and functionality,

smartphones are a massive growing target for ma-

licious activities. In this context, mobile malware

has gained significant ground since the emergent

and growth of smartphones and handheld devices,

thus becoming a real threat [18]. As such, many re-

searchers have studied the safety of mobile devices

using statistical methods, data mining and intelligent

techniques that can somehow cope with the amount

of malware attacks on mobile devices [7, 13, 14,

37, 42, 43].

The work by Penning et al. [31] defines con-

cepts in mobile malware threats and attacks, cy-

bercriminal motivations as well as existing pre-

vention methods and their limitations. The same

paper further proposes a cloud-based framework for

mobile malware detection that requires a collabora-

tion among mobile subscribers, app stores, and IT

security professionals. The article describes a step-

based framework to download applications, where

each downloaded software is analyzed through a

malware database scanning (such system is called

“Malware Detector”).

Another interesting work was proposed by Guo

and Sui [12], which concerns the analysis of the

69



INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE

K. A. P. da Costa, et al., Vol.5, No.3

network behaviour in order to foster defense sys-

tems for mobile malwares. The system considers

the URL features, traffic statistics and files to detect

malicious attacks in mobile malwares. The system

can track the user identity information, evaluate

the mobile malware threat, as well as alert and

prevent about mobile malware events according to

the security policy. The experiments indicate the

real-time execution is very effective and can stop the

discharge process of mobile malwares right before

the user receives the entire modified file.

Later on, the work described by Arora et al. [2]

analyzed network traffic features in order to build

a rule-based classifier for the detection of An-

droid malwares. However, such approach is used

to those set of malwares that connect to some re-

mote server in the background only, thus generating

some network traffic. The experimental results sug-

gest the proposed approach is remarkably accurate,

detecting more than 90% of the traffic samples.

Kruczkowski and Szynkiewicz [19] employed the

well-known Support Vector Machines (SVMs) to

detect malwares, and Gavrilut et al. [6] presented

a two-step approach for the same purpose, but

using SVMs together with Perceptrons. In a recent

work, Huda et al. [17] employed SVMs and a

Maximum-Relevance-Minimum-Redundancy Filter

to detect such threats using features extracted from

Application Program Interface (API) calls. Shabtai

et al. [33] presented an approach to automatic

identify malwares based on network traffic patterns

either. Roughly speaking, the idea was to use semi-

supervised learning algorithms to recognize anoma-

lous patterns that might correspond to the very same

expected behaviour of malwares in the network.

Some years ago, Papa et al. [24, 25] introduced a

new pattern recognition technique called Optimum-

Path Forest (OPF), which models the problem of

pattern classification as a graph partition task, in

which each dataset sample is encoded as a graph

node and connected to others through an adjacency

relation. The main idea is to rule a competition

process among some key samples (prototypes) that

try to conquer the remaining nodes in order to

partition the graph into optimum-path trees, each

one rooted at one prototype. OPF has obtained

promising results in different research areas, being

quite similar to Support Vector Machines (SVMs)

with respect to recognition rates, but faster for

training, since OPF is parameterless and it has a

quadratic complexity. The OPF classifier has been

used in several applications related to computer

security, such as network intrusion detection [4, 32],

spam identification [8, 34], and recently malware

recognition [5].

Another problem usually faced when working

with spam and malware identification concerns the

features, which are often based on bag-of-words.

Learning dictionaries usually depends on a prede-

fined vocabulary, and its size strongly affects the

performance of the learner. In the last years, a con-

siderable attention has been given to the so-called

deep learning techniques, which can learn features

in a generative manner, i.e. without prior knowledge

about the labels. Among the techniques, we can cite

Restricted Boltzmann Machines (RBMs), which are

essentially stochastic neural networks that aim at

recovering the input data based on a hidden layer

composed of latent variables. Although a number of

RBM-related works can be found in the literature,

they mainly focus on image-oriented applications.

As a matter of fact, only a few employ RBMs in the

context of malicious content identification [9, 35].

In this paper, we propose to use RBMs to learn

features from malware-driven data in order to auto-

matic identify such threats in Android-based envi-

ronments1, which turns out to be the main contribu-

1. This paper is an extension of the work of Costa et al. [5].
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tion of this work. As far as we are concerned, we

have observed only two works that aimed at using

deep learning techniques for malware detection in

mobile data [41, 42]. Both works employed Deep

Belief Networks fine-tuned with backpropagation

to identify malwares, being the DBN parameters

chosen by hand (i.e. empirically). In our work, we

propose a single solution based on RBMs and meta-

heuristic techniques, being the latter used to fine-

tune RBMs, instead of doing by hand.

Roughly speaking, the main contributions of this

paper are: (i) to employ RBMs fine-tuned by meta-

heuristic techniques in order to automatically iden-

tify malware data, and (ii) to foster the related

research by evaluating deep learning techniques in

computer security. In order to evaluate the proposed

approach, we employed OPF, SVM and an RBM-

based classifier for comparison purposes. The main

reason behind using OPF and SVM concerns the

fact such techniques are considered state-of-the-art

in supervised learning, thus being widely used by

the research community.

The remainder of this paper is organized as fol-

lows. Sections 2, and 3 present a theoretical back-

ground regarding RBM as a feature learner and as a

classifier, respectively. Sections 4 and 5 presents the

methodology and experiments, respectively. Finally,

Section 6 states conclusions and future works.

2. Restricted Boltzmann Machines

Restricted Boltzmann Machines are energy-based

stochastic neural networks composed of two layers

of neurons (visible and hidden), in which the learn-

ing phase is conducted by means of an unsuper-

vised fashion. The RBM is similar to the classical

Boltzmann Machine [1], except that no connections

between neurons of the same layer are allowed.

Figure 1 depicts the architecture of a Restricted

Boltzmann Machine, which comprises a visible

layer v with m units and a hidden layer h with n

units. The real-valued m× n matrix W models the

weights between visible and hidden neurons, where

wij stands for the weight between the visible unit

vi and the hidden unit hj .

. . . v

h

W

. . .

Fig. 1. The RBM architecture.

At first, RBMs were designed using only binary

visible and hidden units, the so-called Bernoulli

Restricted Boltzmann Machines (BRBMs). Later

on, Welling et al. [38] shed light over other types

of units that can be used in an RBM, such as

Gaussian and binomial units, among others. Since

in this paper we are interested in BRBMs, we will

introduce their main concepts, which are the basis

for other generalizations of RBMs. As a matter

of fact, we shall use the term “RBMs” instead of

BRBMs for the sake of clarity.

Let us assume v and h as the binary visible

and hidden units, respectively. In other words, v ∈

{0, 1}m and h ∈ {0, 1}n. The energy function of a

Restricted Boltzmann Machine is given by:

E(v, h) = −
m∑

i=1

aivi −
n∑

j=1

bjhj −
m∑

i=1

n∑

j=1

vihjwij , (1)

where a and b stand for the biases of visible

and hidden units, respectively. The probability of

a configuration (v, h) is computed as follows:

P (v, h) =
e−E(v,h)

∑

v,h

e−E(v,h)
, (2)
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where the denominator of above equation is a nor-

malization factor that stands for all possible config-

urations involving the visible and hidden units. In

short, the RBM learning algorithm aims at estimat-

ing W, a and b.

The parameters of an RBM can be optimized by

performing stochastic gradient ascent on the log-

likelihood of training patterns. Given a training

sample (visible unit), its probability is computed

over all possible hidden vectors, as follows:

P (v) =

∑

h

e−E(v,h)

∑

v,h

e−E(v,h)
. (3)

In order to update the weights and biases, it is

necessary to compute the following derivatives:

∂ logP (v)

∂wij

= E[hjvi]
data −E[hjvi]

model, (4)

∂ logP (v)

∂ai
= vi −E[vi]

model, (5)

∂ logP (v)

∂bj
= E[hj]

data −E[hj]
model, (6)

where E[·] stands for the expectation operation, and

E[·]data and E[·]model correspond to the data-driven

and the reconstructed-data-driven probabilities, re-

spectively.

In practical terms, we can compute E[hjvi]
data

considering h and v as follows:

E[hv]data = P (h|v)vT , (7)

where P (h|v) stands for the probability of obtaining

h given the visible vector (training data) v:

P (hj = 1|v) = σ

(
m∑

i=1

wijvi + bj

)

, (8)

where σ(·) stands for the logistic sigmoid func-

tion2. Therefore, it is straightforward to compute

E[hv]data: given a training data x ∈ X , where

X stands for a training set, we just need to set

v ← x and then employ Equation 8 to obtain

P (h|v). Further, we use Equation 7 to finally obtain

E[hv]data.

The big question now is how to obtain E[hv]model,

which is the model learned by the system3. One

possible strategy is to perform alternating Gibbs

sampling starting at any random state of the visible

units until a certain convergence criterion, such as k

steps, for instance. The Gibbs sampling consists of

updating hidden units using Equation 8 followed

by updating the visible units using P (v|h), given

by:

P (vi = 1|h) = σ





n∑

j=1

wijhj + ai



, (9)

and then updating the hidden units once again using

Equation 8. In short, it is possible to obtain an

estimative of E[hv]model by initializing the visible

unit with random values and then performing Gibbs

sampling, which may be time-consuming. Fortu-

nately, Hinton [15] introduced a faster methodology

to compute E[hv]model based on contrastive diver-

gence. Basically, the idea is to initialize the visible

units with a training sample, to compute the states

of the hidden units using Equation 8, and then to

compute the states of the visible unit (reconstruction

step) using Equation 9. Roughly speaking, this is

equivalent to perform Gibbs sampling using k = 1.

Based on the above assumption, we can now

compute E[hv]model as follows:

E[hv]model = P (h̃|ṽ)ṽT . (10)

2. The logistic sigmoid function can be computed by the following

equation: σ(x) = 1/(1 + exp(−x)).

3. We are now writing E[hjvi]
model in terms of h and v.
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Therefore, the equation below leads to a simple

learning rule for updating the weight matrix W, as

follows:

W
t+1 = W

t + η(E[hv]data − E[hv]model)

= W
t + η(P (h|v)v

T − P (̃h|̃v)̃v
T ), (11)

where Wt stands for the weight matrix at time step t,

and η corresponds to the learning rate. Additionally,

we have the following formulae to update the biases

of the visible and hidden units:

at+1 = at + η(v− E[v]model)

= at + η(v− ṽ), (12)

and

bt+1 = bt + η(E[h]data − E[h]model)

= bt + η(P (h|v)− P (h̃|ṽ)), (13)

where at and bt stand for the visible and hidden

units biases at time step t, respectively. In short,

Equations 11, 12 and 13 are the vanilla formulation

for updating the RBM parameters.

Later on, Hinton [16] introduced a weight decay

parameter λ, which penalizes weights with large

magnitude4, as well as a momentum parameter α

to control possible oscillations during the learning

process. Therefore, we can rewrite Equations 11, 12

and 13 as follows:

Wt+1 = Wt + η(P (h|v)vT − P (h̃|ṽ)ṽT )− λWt + α∆Wt−1

︸ ︷︷ ︸

=∆Wt

, (14)

at+1 = at + η(v − ṽ) + α∆at−1

︸ ︷︷ ︸

=∆at

(15)

and

4. The weights may increase during the convergence process.

bt+1 = bt + η(P (h|v)− P (h̃|ṽ)) + α∆bt−1

︸ ︷︷ ︸

=∆bt

. (16)

3. Restricted Boltzmann Machines for

Classification Purposes

Although RBMs are generative models, there have

being some attempts in the literature to make them

discriminative models, i.e. to make them capable of

classifying patterns and “not only” for feature learn-

ing. One interesting model concerns the Discrimina-

tive Restricted Boltzmann Machines (DRBMs) [21],

which makes use of an additional input layer com-

posed of the labels of a given sample. Such approach

models the joint distribution of the inputs and their

associated target (label) classes.

In this work, we opted to use a much simpler

approach. Actually, if one adds one more input unit

with the corresponding label of the sample (‘1’ or

‘0’ in our case, since we have a binary classification

problem, i.e. malware or not malware), we still have

a generative RBM, since it “does not know” we

are using the label as an input, and the very same

formulation presented in Section 2 can be employed.

Figure 2 presents the RBM used for classification

purposes. The dashed unit in the visible layer stores

the label of that input sample.

h

W

label

v

Fig. 2. Restricted Boltzmann Machine used for

classification purposes.

Although any other formulation can be used with

respect to RBMs or DRBMs, we opted to use the
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above approach due to its simplicity, as well as

we can use the same formulation presented in the

previous section. As a matter of fact, the problem

of classification now becomes a task of input data

reconstruction. After learning the weights over a

training set, the unseen samples (test set) can be

classified by just using each test data as an input,

computing its reconstruction and taking the value of

the first visible unit (after reconstruction) as its final

(predicted) label.

4. Experimental Evaluation

In this section, we describe the methodology

applied to assess the robustness of Restricted Boltz-

mann Machines to learn features for malware iden-

tification.

4.1. RBM Parameter Setting-up

One of the main problems related to RBMs con-

cerns their fine-tuning, since such techniques are

very sensitive to their parameter selection. Papa et

al. [27, 28, 30] proposed to employ meta-heuristic

techniques for such purpose, where the idea is to

model the problem of fine-tuning parameters as an

optimization task, in which the Minimum Square

Error (MSE) of the reconstruction step over the

training data is then used as the fitness function.

In this paper, we employed three approaches

based on the well-known Harmony Search [10]

technique to fine-tune RBMs:

• Naı̈ve Harmony Search (HS): it comprises the

original version of the algorithm, that aims at

modeling the problem of function minimization

based on the way musicians create songs with

optimum harmonies. Such technique employs

two parameters to address this problem, be-

ing the Harmony Memory Considering Rate

(HMCR) in charge of creating new solutions

based on the previous experience of the music

player, and the Pitch Adjusting Rate (PAR) is

responsible for applying some small disturbance

in the solution created with HMCR in order to

avoid traps from local optima.

• Improved Harmony Search (IHS) [23]: such

approach uses dynamic values for both HMCR

and PAR variables, which are updated at

each iteration with new values that fall

within the range [HMCRmin,HMCRmax] and

[PARmin,PARmax], respectively. Since PAR is

computed using a bandwidth variable ̺, IHS

also requires such variable be bounded within

the range ̺min, ̺max.

• Parameter Setting-Free Harmony Search (PSF-

HS) [11]: such approach was proposed in order

to avoid the fine-tuning parameter step regard-

ing HMCR, PAR and ̺ variables. Roughly

speaking, the idea is to obtain new HMCR and

PAR values based on previous computations of

such variables whenever a new solution is cre-

ated using them. However, an initial estimative

of such variables is required by the algorithm.

An RBM has four main parameters to be fine-

tuned: number of hidden neurons n, learning rate η,

momentum α and weight decay λ [27, 28, 30, 36].

In this work, we defined two experiments: EXP1

and EXP2, which aim at evaluating different ranges

concerning the number of neurons, which corre-

sponds to the number of features. Both experiments

use the very same of ranges for α ∈ [0.1, 0.9] and

λ ∈ [10−5, 10−2], but EXP1 employs n ∈ [5, 15],

and EXP2 uses n ∈ [76, 114]. Therefore, the main

idea is to evaluate whether the number of features

is really crucial for malware identification or not.

Finally, we employed 10 agents over 50 iterations

considering all aforementioned techniques. Table 1

presents the parameter configuration for each op-
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timization technique5. Also, we employed T =

100 as the number of epochs for RBM learning

weights procedure. Considering PSF-HS, we start

with HMCR=PAR= 0.7 and ̺ = 0.1.

TABLE 1

Parameter configuration.

Technique Parameters

HS HMCR = 0.7, PAR = 0.7, ̺ = 0.1

IHS HMCR = 0.7, PARMIN = 0.1

PARMAX = 1.0, ̺MIN = 0.1

̺MAX = 0.5

In order to provide a more robust analysis of

the results, we conducted a cross-validation with 10

runnings for all datasets, being 75% of the dataset

used for training and the remaining 25% employed

for testing purposes.

4.2. Dataset

In this work, we designed the DroidWare6 dataset.

We manually collected 278 benign application sam-

ples and 121 malware samples from android OS.

Malware samples were obtained and analyzed by

VirusTotal7 web site, which is an on-line scanning

tool to detect malwares. Further, the non-malware

data were collected from a manifest application by

Google Play8. The dataset features are composed

of 152 permissions (’1’ or ’0’) from the android

platform, and are responsible to indicate which

resources and device actions can be accessed by the

applications. A more detailed explanation about the

dataset can be found in its home-page.

5. Notice these values have been empirically set.

6. https://github.com/RECOVI/DroidWare.git

7. http://www.virustotal.com/

8. https://play.google.com/store/

4.3. Classifiers Setting-up

In this work, we compared SVM, OPF and

RBM for classification purposes. In regard to SVM

implementation, we employed the LibSVM [3]

with a radial basis kernel with parameters op-

timized through a 5-fold cross validation, and

with C ∈ {2−5, 2−3, . . . , 213, 215} and γ ∈

{2−5, 2−3, . . . , 213, 215}. With respect to OPF, we

used the LibOPF library [29], and concerning RBM

we used LibDEEP9.

5. Experiments

In this section, we describe the experiments con-

ducted to assess the robustness of the proposed ap-

proach. As aforesaid, we first used all 152 features

of the DroidWare dataset, hereinafter called ORIG-

INAL dataset. Then, we conducted experiments in

order to learn a more discriminative set of features

by means of RBMs optimized with HS (RBM-

HS), IHS (RBM-IHS) and PSF-HS (RBM-PSF-

HS). Based on ORIGINAL dataset, we created 10

randomly generated training and testing sets, for the

further application of the extracted/learned features

by RBMs. Later on, such features are used to feed

OPF, SVM and the RBM (i.e. the one mentioned in

Section 3) classifiers, thus performing a traditional

pattern recognition pipeline, i.e. training, testing and

accuracy computation.

Table 2 shows the results regarding OPF classifier

for the EXP1 and EXP2 experiments, being the

accuracy measure the one proposed by Papa et

al. [26], which considers unbalanced datasets, as

follows:

ei,1 =
FPi

|Z| − |Zi|
and ei,2 =

FNi

|Zi|
, i = 1, . . . , c,

(17)

9. https://github.com/jppbsi/LibDEEP
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where FP (i) and FN(i) are the false positives and

false negatives, respectively. That is, FPi is the

number of samples from other classes that were

classified as being from the class i in Z, and FNi

is the number of samples from class i that were

incorrectly classified as being from other classes in

Z.

The errors ei,1 and ei,2 are used to define:

Ei = ei,1 + ei,2, (18)

where E(i) is the partial sum error of class i.

Finally, the accuracy is written as:

Acc =
2c−

∑c
i=1Ei

2c
= 1−

∑c
i=1Ei

2c
. (19)

The best results according to Wilcoxon signed-

rank statistical test [39] are in bold (we used a sig-

nificance level of 0.05). Therefore, the best recog-

nition accuracies were obtained by ORIGINAL and

EXP2 datasets, which is quite interesting, since

the average number of features (neurons) used in

EXP2 is far less than using all 152 features from

ORIGINAL dataset. Tables 3 and 4 present the mean

values obtained by each optimization technique con-

sidering EXP1 and EXP2 experiments, respectively.

If one takes into account the number of features n in

EXP1 dataset, we can observe a smaller number of

neurons is not interesting, since the accuracy results

are quite low. On the other hand, EXP2 shows

us there is no need to use all 152 features, since

very good recognition rates were obtained with 98

features (RBM-PSF-HS in Table 4).

Technique n η α λ

RBM-HS 9 0.42 0.84 0.007

RBM-IHS 9 0.64 0.85 0.005

RBM-PSF-HS 9 0.54 0.78 0.005

TABLE 3

Average RBM Parameters (EXP1).

Technique n η α λ

RBM-HS 103 0.45 0.10 0.004

RBM-IHS 104 0.50 0.12 0.005

RBM-PSF-HS 98 0.58 0.11 0.004

TABLE 4

Average RBM Parameters (EXP2).

In order to provide more insightful results, we

employed SVM classifier for classification purposes.

Table 5 shows the mean accuracy results concerning

SVM-based classification over the test sets. In this

case, the ORIGINAL dataset obtained the best re-

sults so far, being followed by EXP2 and EXP1.

Usually, SVM works better than OPF in higher

dimensional feature spaces due to the kernel map-

ping process, which turns out to benefit SVM when

using all 152 features. However, the best RBM-

based result was obtained by RBM-IHS, which is

around 7.9% less accurate than SVM only.

Table 6 displays the results using RBM as the

classifier. In this case, both ORIGINAL and EXP1

datasets obtained similar results considering the

Wilcoxon statistical test. Since we are using an

additional visible unit for reconstruction purposes,

it seems the network adapted with fewer hidden

units. Actually, there is no need to use a lot of

features when the label information has been en-

coded together with the input data with respect to

the datasets used in work.

6. Conclusions

Network attacks in mobile devices have been of

great concern in the last years. Since the number of

malwares oriented to mobile devices has increased

considerably, a special attention has been devoted to

machine learning-based techniques that can handle
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RBM (EXP1) RBM (EXP2)

Rounds Original HS IHS PSF-HS HS IHS PSF-HS

1 72.42 50.00 50.00 50.00 74.61 68.24 70.54

2 61.25 22.00 22.00 44.00 53.49 55.47 57.34

3 73.25 78.00 70.00 68.00 78.72 79.66 78.72

4 80.77 66.15 80.65 50.00 78.35 84.39 85.16

5 61.86 32.00 32.00 63.00 63.41 65.07 66.63

6 72.35 69.00 65.00 57.00 64.56 57.05 62.13

7 68.35 50.00 50.00 50.00 82.74 79.54 82.74

8 77.30 74.36 50.00 70.86 76.37 73.98 66.17

9 72.42 65.00 54.00 61.00 74.72 66.26 76.04

10 73.82 39.08 67.93 51.45 70.19 70.99 70.99

Avg. 72.42±5.81 57.50±18.01 52.00±16.84 54.22±8.42 71.72±8.41 70.07±9.10 71.65±8.52

TABLE 2

Mean accuracy considering OPF classifier (EXP1 and EXP2).

RBM (EXP1) RBM (EXP2)

Rounds Original HS IHS PSF-HS HS IHS PSF-HS

1 79.00 65.00 65.00 65.00 73.00 73.00 70.00

2 78.00 78.00 78.00 78.00 70.00 71.00 70.00

3 94.00 78.00 78.00 78.00 68.00 69.00 69.00

4 92.00 65.00 65.00 65.00 79.00 79.00 78.00

5 77.00 68.00 68.00 68.00 81.00 81.00 79.00

6 77.00 69.00 69.00 69.00 73.00 71.00 73.00

7 89.00 69.00 69.00 69.00 72.00 68.00 72.00

8 90.00 68.00 68.00 68.00 79.00 75.00 79.00

9 79.00 65.00 65.00 65.00 83.00 78.00 78.00

10 83.00 69.00 69.00 69.00 68.00 68.00 73.00

Avg. 81.00±6.40 68.50±4.58 68.50±3.58 68.50±3.52 74.60±5.20 73.30±4.49 73.90±3.59

TABLE 5

Mean accuracy considering SVM classifier (EXP1 and EXP2)

such threats in a more effective manner. Such sys-

tems are able to learn and detect new attacks, but

not always with reasonable efficiency.

In this paper, we addressed the problem of unsu-

pervised feature learning for malware identification

by means of Restricted Boltzmann Machines, in

which two different experiments were conducted:

EXP1 and EXP2. While the former used much

less hidden units, the latter one employed around

ten times more hidden units (features). In order to

access the effectiveness of RBMs, we employed

three classifiers at the end of the pipeline: SVMs,

OPF and a simple RBM version for classification

purposes.

The experiments showed that using more hidden

units, the discriminative ability of SVMs and OPF is

increased either. On the other hand, RBMs as a clas-

sification approach worked better with fewer hidden

77



INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE

K. A. P. da Costa, et al., Vol.5, No.3

RBM (EXP1) RBM (EXP2)

Rounds Original HS IHS PSF-HS HS IHS PSF-HS

1 63.00 65.00 65.00 65.00 62.00 62.00 62.00

2 73.00 78.00 78.00 78.00 72.00 72.00 70.00

3 81.00 78.00 78.00 78.00 70.00 79.00 71.00

4 74.00 65.00 65.00 65.00 62.00 62.00 61.00

5 74.00 68.00 68.00 68.00 64.00 65.00 65.00

6 73.00 69.00 69.00 69.00 67.00 66.00 65.00

7 78.00 69.00 69.00 69.00 66.00 67.00 67.00

8 79.00 69.00 65.00 68.00 65.00 65.00 66.00

9 66.00 65.00 69.00 65.00 62.00 61.00 64.00

10 71.00 69.00 71.00 69.00 65.00 66.00 66.00

Avg. 73.20±5.28 69.50±4.58 69.50±4.56 69.40±4.58 65.50±3.23 66.50±5.12 65.70±2.96

TABLE 6

Mean accuracy considering RBM classifier (EXP1 and EXP2)

units, since they learn how to reconstruct both the

input data and its label. In regard to future works, we

aim at evaluating Deep Belief Networks for feature

learning in the context of malware identification.
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