
INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
E.N. Yolacan, et al., Vol.5, No.2

A Framework for Studying New Approaches to
Anomaly Detection

Esra N. Yolacan*, David R. Kaeli**

*Eskisehir Osmangazi University, Dept. of Computer Eng.,
**Northeastern University, Engineering College, Dept. of Electrical and Computer Eng.;

e-mail: yolacan@ogu.edu.tr, kaeli@ece.neu.edu

Abstract—In this work, we describe a new framework for an anomaly-based intrusion detection system using system call traces.
System calls provide an interface between an application and the operating system’s kernel. Since a program frequently requests
services via system calls, a trace of these system calls provides a rich profile of program behavior. But we need to use efficient
and effective methods while extracting the underlying behavior. In this paper we present an illustrative example to describe how to
apply our proposed approach on system call traces for cyber security. We discuss the details of system call anomaly detection by
considering various normal behaviors in program traces. Test and detection results show the proposed approach provides fast and
accurate anomaly detection by applying context-aware behavior learning.

Keywords—Intrusion detection; anomaly; system call traces.

1. Introduction

The goal of anomaly detection is to identify
anomalous behavior, events or items based on devi-
ations from expected normal cases. Anomaly de-
tection is a research area that has been studied
extensively for a range of application domains, such
as computer and network monitoring for intrusion
detection, video and image processing for crowd
analytics, activity monitoring for fraud detection,
DNA analysis for mutation and disease detection,
bio-surveillance for disease outbreak detection, and
sensor data analysis for fault diagnosis. Particular
anomaly detection processes include outlier de-
tection, novelty detection, deviation detection and
exception mining. The processes differ based on
the application domain and the employed detection
approaches [1]. In our work, we have used the

term anomaly detection to describe the process
of differentiating abnormal behavior from normal
behavior in a problem-relevant data set.

Sequential data is a valuable source of information
which is available in many aspect of our
lives, including weather prediction [2], unusual
human action detection in a video [3], pattern
discovery [4], [5], and detection of mutations in
a gene sequence [6]. Sequences can be discrete
or continuous in terms of the value they take for
each uniform time interval. A continuous sequence,
also known as time series, is a sequence of data
points which are obtained by measuring a variable
at discrete time points [7]. A data point in a
continuous sequence may take on any value within
a certain range for the measured variable, such
as the daily air temperature of a city. A discrete

39

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
E.N. Yolacan, et al., Vol.5, No.2

sequence is an ordered series of symbols which
can be characters, numbers or words [8]. A data
point in a discrete sequence may only take certain
values which are limited with an alphabet, such as a
gene is a sequence of DNA nucleotides, a program
execution trace is the sequence of system calls. In
discrete (symbolic) sequences, typically the value
of a data point is not meaningful individually, but
it provides valuable information when considered
with the other symbols in the sequence. In this
work, we propose a framework to detect anomalies
and demonstrate our approach using a sequence
of system call instances as discrete sequences to
perform the intrusion detection for cyber security.

We present a general scheme of anomaly detection
process in Figure 1. The nature of the anomaly
detection process requires a well-defined profile to
learn normal behavior. The extracted profile can be
anything that can distinguish normal and abnormal
behaviors, such as pattern sets, rule sets, probability
distributions, statistical models, etc..

A general definition for describing the anomaly
detection task on a discrete sequence of symbols
can be stated as:

Definition: Given a single sequence (S) as
S = {s1, s2, s3..., sn}, (si is a symbol from a finite
alphabet

∑
), where n is the number of symbols in

S and i = 1, 2, ...n; then, anomaly detection is the
task of deciding whether S is normal or abnormal
with respect to learned normal behavior.

Anomaly detection techniques generally use a
threshold value to raise an alarm to decide whether

Fig. 1. A general scheme of anomaly detection.

to flag an anomaly. Typically there are two different
approaches for the evaluation of anomalies in a
discrete sequence of data. The first approach is
based on assigning an anomaly score to the entire
sequence. If the anomaly score is higher than a
predefined threshold, then the sequence is labeled
as abnormal [9]. In this approach, normal sequences
are expected to have a lower anomaly score than the
ones that include an anomaly. An anomaly detection
technique in this category needs to apply normaliza-
tion, compensating for the sequence length to pro-
vide a fair evaluation. Although this normalization
approach eliminates the impact of False Positives
(FP) in a normal sequence, it may also eliminate the
True Positives (TP) in an abnormal sequence. For
example, if an abnormal sequence is too long, the
anomaly score may never reach the threshold value.
Therefore, the success of this kind of evaluation
depends on the density of abnormal events in the
entire sequence and it is difficult to determine where
the anomaly starts in a sequence of data.

The second approach is based on performing an
evaluation on regions of the sequence to compute
an anomaly score [10]. In this approach, abnormal
portions of a sequence can be detected when the
anomaly score of the evaluated region reaches some
predefined threshold. If desired, the anomaly score
for the entire sequence can be obtained by com-
bining all anomaly scores assigned to the regions.
Three of the advantages of this approach (and which
motivate our work) are listed as follow:

• First, since region-based analysis simplifies the
data, it allows a wider array of techniques to be
applied.

• Second, since this approach works on only a
small portion of the data, it enables us to detect
local anomalies which would be missed in the
first approach.

• Third, since this analysis approach computes

40

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
E.N. Yolacan, et al., Vol.5, No.2

anomaly scores in regions, it performs anomaly
detection task without needing to examine the
entire sequence.

Typically, an anomaly detection is a time-sensitive
task, especially when it is applied for security pur-
poses. When an anomaly is detected, we then need
to terminate the anomaly, to eliminate or minimize
its effects and investigate the reason that caused the
anomaly. Region-based evaluation that works with
a partition of sequence is well-suited for real-time
anomaly detection applications, but detection still
needs to be implemented using efficient algorithms.

In this work, we present an approach that per-
forms a region-based evaluation by using subse-
quences generated from discrete sequences via a
fixed-size windowing technique. We use the term
sequence to refer to an entire system call sequence
of a process in a sequence data set, and the term
subsequence to refer to a shorter sequence which
comprises consecutive system calls.

The paper is structured as follows. Section 2
presents a short review of background and related
work in the literature. Section 3 introduces the
architecture of proposed intrusion detection system,
describes the system call traces, and explains the
model training steps. Finally, Section 4 presents
conclusions and future work.

2. Background and Related Work

There have been a variety of approaches proposed
for anomaly-based intrusion detection using system
calls traces. Some of the previous work has fo-
cused on using only system call arguments [11],
[12], while others have combined the system call
sequences with the arguments [13], [14]. But the
majority of the previous work in this area has
focused on using only system call sequences to
train a behavior model. Working only with system

call sequences, the various implementations differ in
how data is represented. In general, these represen-
tations can be grouped into two categories based on
their feature extraction methods: 1) frequency-based
methods and 2) sequence-based methods.

2.1. Frequency-based methods

Frequency-based feature extraction methods rely
on the number of occurrences of each system call.
For example, a “bag of words” representation is one
such method which is commonly used in text clas-
sification. Each trace can be treated as a document
and each system call in a document is treated as
a word [15]. Since the “bag of words” technique
provides a vector-based representation, it is suitable
for many machine learning algorithms and widely
used in system call anomaly detection [16]–[18].
Instead of only counting the number of occurrences,
some approaches improve detection by applying
a ranking method based on the relative order of
frequency values [19]. Another rich representation
of a frequency-based vector is the term frequency-
inverse document frequency (tf-idf), where term
refers to a system call and document refers to
a system call sequence [20]. In prior work [21],
several forms of tf-idf have been considered, apply-
ing various classification algorithms on system call
sequences and HTPP log data sets.

2.2. Sequence-based methods

Sequence-based methods use the order of system
calls or place where a system call occurs in short
sequences. A sliding window approach is one of the
most common techniques used for sequence-based
analysis. Forrest et al. [22] extracted normal behav-
ior by sliding a window of size k+1 over system call
sequences. For each system call, they recorded the
following system calls for each position from 1 to k.

41

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
E.N. Yolacan, et al., Vol.5, No.2

Fig. 2. Example of four different symbolic dis-
crete sequences.

Then, test sequences are scanned and the percentage
of mismatches are computed by considering the
maximum number of possible pairwise mismatches
for a sequence with a lookahead of k. In [23],
they improved their prior work by using a “stide”
(sequence time delay embedding) system. They first
generate a normal database from a set of length
k unique short sequences and compute deviations
of the test sequence from the normal. Success of
both approaches depends on the completeness of
the normal data set and the length of the sliding
window. One outcome of this prior work was the
generation of a benchmark dataset for further system
call trace analysis [24].

The effectiveness of an anomaly detection process
relies on how well the model is designed. Therefore,
the main challenge in anomaly detection is extract-
ing beneficial information from the given sequences.
To highlight the importance of the methods selected,
we start with an illustrative example. In Figure 2,
we have four equal-length discrete sequences gen-
erated from a length two alphabet

∑
= {A,B}.

Even though it seems obvious that each sequence
has different characteristics, it is essential to select
an effective method to differentiate between these
sequences. In this example, we contrast utilizing
vector-based extraction, distance-based and relation-
based features to differentiate the sequences.

First, a frequency-based feature vector is com-
puted by counting the number of occurrences of

TABLE 1
An Example of Frequency Vector Based

Features

Sequences A B
Sequence 1 8 8

Sequence 2 8 8

Sequence 3 8 8

Sequence 4 8 8

each symbol in the sequence and presented in
Table 1. Although the order of symbols in the
given sequences is different from each other, the
extracted feature vectors are identical, and thus we
would be unsuccessful to differentiate between these
sequences.

Second, the Hamming Distance is used to com-
pute the distances between a sequence and the
other sequences. In Table 2, each column shows
the distances between the sequence and the other
sequences. Each sequence has the same distance
to other sequences in the example. While there
are more sophisticated and domain specific simi-
larity/distance measures which can be used to eval-
uate discrete sequences, they do not consider the
transitional probabilities between the symbols in a
sequence.

Third, relation-based features are extracted by
considering the ordering of symbols in a sequence.
A fundamental way to perform the behavior extrac-
tion process is to calculate transitional probabilities

TABLE 2
An Example of Distance Based Features

Sequences Sequence 1 Sequence 2 Sequence 3 Sequence 4
Sequence 1 0 8 8 8

Sequence 2 8 0 8 8

Sequence 3 8 8 0 8

Sequence 4 8 8 8 0

42

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
E.N. Yolacan, et al., Vol.5, No.2

Fig. 3. An example of transitional probability-
based features - two-state Markov Chains.

between the symbols in a sequence. We use a first-
order Markov process which is the simplest Markov
model to represent the transitional probabilities from
one state (symbol) to another [25]. In Figure 3, we
show the two-state Markov chain used to compute
the probability of next symbol, which only depends
the current symbol. Using the ordering information
present in a symbolic sequence, we will be able
to differentiate between sequences and learn the
system behavior.

In this work, we applied Hidden Markov Mod-
els (HMMs) to generate the normal behavior model
of subsequences for intrusion detection. A HMM is
a Markov model which can be used when states in
a process are not observable, but observed data is
dependent on these hidden states. A HMM is well-
suited to our problem under these circumstances,
because the system call sequences can be considered
as observation data which is used to learn and detect
the true underlying program behavior.

HMMs have been used many times in the area
of anomaly detection-based Host-based Intrusion

Detection Systems (HIDS). Hoang et al. [9] de-
creased the False Positive Rate (FPR) by developing
a multi-layer model based on HMMs. The first-layer
checks the given test subsequence, and if there is a
mismatch or if it is a rare sequence in the normal
data set, then the subsequence is sent to the HMM
layer. Yeung and Ding [26] compare a dynamic
modeling approach (HMM) with an information-
theoretic static modeling approach. They found that
the dynamic modeling approaches were more suit-
able for system call datasets. Du et al. [27] imple-
ment a two-state HMM and computes the relative
probability of system call sequences to determine if
the sequences are normal or abnormal. It has been
always an issue to determine the number of hidden
states in a HMM. To overcome this issue, Khreich et
al. [28] proposed multiple-HMMs (µ-HMMs). They
trained multiple models with a varying number of
hidden states and combined the results according to
the Maximum Realizable ROC (MRROC) method.
Although HMMs applied to system call sequences
show better results as compared to static approaches,
there are still concerns about the required training
time. In this regard, Hu et al. [29] proposed a simple
data preprocessing approach to speed up HMM
training. They improved their previous work [10]
with up to a 50% reduction in training time by
removing similar subsequences of system calls from
the normal dataset.

In our work, we group (clustered) system call
sequences by considering the similarities between
them to obtain a well trained HMM for each group.
This grouping methodology also provides a reduced
training time. Moreover, to address the long training
time issue in HMMs, we reduced the dataset by se-
lecting only unique system call sequences from the
dataset. This reduction also help us avoid identical
sequences in training and testing phases of the work.

43

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
E.N. Yolacan, et al., Vol.5, No.2

3. Architecture of IDS

Next, we present our approach to the system call
anomaly detection problem. An overview of our
framework design is presented in Figure 4. The IDS
consists of two phases: 1) training and 2) testing.
The implementation of this framework is described
in three sections: First, structure of experimentation
dataset is detailed. Second, preprocessing and
model learning is discussed in the training phase.
Third, anomaly detection steps are presented in
testing phase.

3.1. System Call Trace Dataset

We evaluate our proposed approach on a well-
known system call database provided by the Uni-
versity of New Mexico (UNM) [24]. In UNM
benchmark database, each program dataset includes
several system call traces which are generated by
tracing a number of normal and compromised runs
of a program. In this work, we use the UNM and
CERT sendmail data from the UNM database in
our experiments. Each program trace includes sys-
tem calls associated with the corresponding process
IDs (PIDs), since a trace of a program execution

Fig. 4. Design of our system call anomaly detection framework.

44

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
E.N. Yolacan, et al., Vol.5, No.2

TABLE 3
System call sequence for PID:552.

19 105 104 104 106 105 104 104 106 105 104 104 106 5 4 4 5
5 40 40 4 50 5 38 1 105 104 104 106 112 19 19 105 104 104 6
6 106 78 112 105 104 104 106 78 93 101 101 100 102 105 104
104 106 93 88 112 19 128 95 1 5 95 6 6 95 5 5 5 5 5

typically includes multiple processes. In this work,
system calls are grouped together according to their
PIDs to create an ordered system call list for each
process. We applied this PID partitioning on each
trace provided in the UNM and CERT sendmail
datasets. A system call sequence for a process in
the UNM sendmail dataset is shown in Table 3. In
this table, each number represents an index to the
system calls matching in the provided mapping file.

While partitioning the program traces according
to PIDs of system calls, we store only one copy
of a repeated process trace in our dataset. Then,
we analyzed unique process traces to detect any
structural similarities between processes. This will
help us train a HMM for each set of process traces.
The concept behind using multiple-HMMs is based
on expecting better learning when we have similar
training sets. In the rest of this work, training and
testing is performed by considering this clustering
results. To generate the normal training and test
data, we use 10-fold cross-validation for each clus-
ter. Abnormal data is also added to the test sets by
considering its cluster.

3.2. Training

In this section we describe model training, whose
steps include: 1) Preprocessing to differentiate the
various contexts in the training dataset and to gener-
ate features, and 2) Model learning to build a model
of normal behavior for each context by training a
HMM for each cluster.

3.2..1 Preprocessing

Fixed-length subsequences are generated by us-
ing the sliding window technique, as shown in
Figure 5. A detailed analysis is needed in order
to decide the most appropriate window size to be
able to detect anomalies. Researchers have used
various window sizes and many of them found that
minimum required window size is 6 on sendmail
program traces [30]–[33]. In other words, a nar-
rower window produces information loss during the
subsequence production process. Therefore, features
(subsequences) are extracted by using a sliding
window length 6 using a step increment of 1. To
generate the normal and the test data, we extract
unique subsequences for each process trace in the
program traces. To perform anomaly detection on
a process trace, the subsequences that are extracted
from the corresponding process trace are used dur-
ing the evaluation.

3.2..2 Model Learning

We select to use HMMs for model learning in
our anomaly detection framework. A generic HMM
structure is presented in Figure 6 which represents
the joint probability distribution over states and

Fig. 5. Subsequence extraction using a sliding
window.

45

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
E.N. Yolacan, et al., Vol.5, No.2

Fig. 6. Hidden Markov Model

observations. HMM is represented in a compact
form as λ = {A,B, π}, where A is state transition
probability distribution, B is observation symbol
probability distribution, and π is initial state distri-
bution. There are three kinds of problems one can
solve by using HMMs [34].

1) Evaluation: computing the probability of an ob-
servation sequence P [Y |λ] , when the observations
sequence Y and a model λ are given.

2) Decoding: estimating the optimal state se-
quence, when the observations sequence Y and a
model λ are given.

3) Training: estimating the model parameters λ =

{A,B, π} , when the observations sequence Y and
the dimensions N and M are given.

In the training phase, we apply the solution of
the third problem to find the best-fit model. We
define the dimensions and the observation sequences
of the HMM to estimate the model parameters
λ = {A,B, π}. The number of observation symbols
is 53, equal to the number of unique system calls
in sendmail dataset. Subsequences generated via a
sliding window are used as observation sequences in
the HMM model. We applied Bayesian Information
Criterion (BIC) [35] to select the number of hidden
states in our model. BIC introduces a penalty term
for the number of parameters, while computing a
criterion score based on the maximized likelihood.
Equation 1 provides the details on how we compute
BIC:

BIC = −2 ln(L) + p ln(n) (1)

where L is the maximum likelihood, p is the
number of free parameters and n is the number
of data points. We experimented with the various
number of hidden states N . Since it is preferred
to use the simplest model that best fits the data,
lower BIC scores identify the candidate numbers of
the hidden states to be chosen for the model. The
lowest BIC values for each fold are found to vary
between 40 and 60 hidden states. By considering
this range of BIC values, we selected N=53, which
is also equal to the number of unique system calls in
UNM sendmail traces. Then, we trained an HMM
for each process set (cluster) using the training
subsequences in those clusters.

3.3. Testing

Next, we describe our testing process, whose
steps include: 1) preprocessing to generate fea-
tures, 2) computing an anomaly score to identify
anomalous behavior as deviations from the model
of normal behavior, and 3) anomaly detection to
provide an alarm for the abnormal behavior that
deviates from the norm as a possible threat after
filtering.

3.3..1 Preprocessing

In preprocessing phase, first we classify the test
sequences into one of the previously learned clusters
(contexts). Then, we followed our subsequence ex-
traction method on test data as explained in training
phase.

3.3..2 Anomaly Score

The parameters of each HMM (one for each
context) are estimated in the training phase. We
use the relevant HMM for the evaluation, which

46

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
E.N. Yolacan, et al., Vol.5, No.2

Fig. 7. Anomaly scores (Negative-LL) of Set 1
test subsequences

involves computing the log-likelihood (probability)
of an observation sequence. Evaluation is the first
problem that one can solve by using HMMs as
given in HMM definition. We want to obtain an
anomaly score, which means the higher the value
of anomaly score, the more likely it is that the
abnormal behavior. Since minimizing negative log-
likelihood is equivalent to maximizing the log-
likelihood ,we compute the negative log-likelihood
(LL) values of the observation sequences to obtain
an anomaly score for an observation sequence. In
Figure 7, we provide an example of anomaly score
results for the subsequences of set 1 (1.cluster)
normal and abnormal test data.

3.3..3 Anomaly Detection

In the previous step, we obtained an anomaly
score for each test subsequence. But, instead of
evaluating subsequences individually, an IDS needs
to analyze the process trace to decide whether it is
normal or abnormal. In order to evaluate a process
trace, we applied Exponentially-Weighted Moving
Average (EWMA) as a filter on the Negative-LL
values of the subsequences within each process.
EWMA applies weights on discrete decision values
in an exponentially decreasing order to smooth out
fluctuations; the most recent values are weighted

highest. In our case, decision values are the anomaly
scores of subsequences in process traces. To com-
pute EWMA values for each subsequence in a
process trace, we used Equation 2:

EWMAt = αYt + (1− α)EWMAt−1 (2)

where, Yt is the decision value (Negative-LL
value) at time t, α is the degree of weighting
decrease which determines the depth of memory.
EWMAt is the value of the EWMA at any time period
t.

Figure 8 presents EWMA values for an abnor-
mal process trace. Although the abnormal process
behaves normally at the beginning of the trace, it
exhibits abnormal behavior after some point. The
proposed system call anomaly detection architecture
produces alarms if the anomaly score is higher
than a threshold value in any point of a process
trace. The threshold value is selected through The
Receiver Operating Characteristics (ROC) curve,
which is found by varying the threshold value on
the maximum EWMA filter output of each distinct
process trace. ROC plots a curve to show a trade
off between false positive rate and true positive
rate. The perfect operating point on a ROC curve

Fig. 8. Time-series plot for an abnormal process
trace.

47

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
E.N. Yolacan, et al., Vol.5, No.2

Fig. 9. Process-based evaluation results.

is the (0,1) point where there is 0% false positive
and 100% true positive rate. In order to select a
threshold, we find the best operating point, which
is closest to perfect operating point on the plotted
curve.

We examined four different anomaly detection
approaches of HMMs on system call traces. SAD
(Sequence Anomaly detection) is based on training
only one HMM and evaluating the results without
EWMA filtering. F-SAD (Filtered-SAD) is based on
training only one HMM and evaluating the results
with EWMA filtering. Ca-SAD (Context aware-
SAD) is based on training multiple HMMs and
evaluating the results without EWMA filtering. FCa-
SAD (Filtered Context aware-SAD), the proposed
method in this work, is based on training multiple
HMMs and evaluating the results with EWMA
filtering. Figure 9 presents the ROC curves which
are found by varying the threshold value on the
anomaly score of each distinct process trace. We
compute the Area under the curve (AUC) values
of each method since AUC is a convenient way
of comparing classifiers. Our implementation, FCa-
SAD results the highest AUC value when compared
with the other three methods.

4. Conclusion and Future Work

In this work, we show how to perform anomaly
detection using system call traces with a HMM
method. We considered the behavior of system
call sequences and explored which preprocessing
technique is most suitable for the proposed anomaly
detection approach. When compared to conventional
techniques, HMM decreases the FPR, since the
likelihood value of a normal subsequence is higher
than the abnormal ones, even if it does not appear
in the normal dataset. Although there has been
significant prior work using HMMs for learning
program behavior during anomaly detection, in this
work we present a new framework for preprocessing
traces, leading to better results for anomaly detec-
tion. We also provide an on-line anomaly detection
scheme that uses a dynamic anomaly score which is
computed on each time step using an EWMA filter.
This help us to detect the starting point of anomalies
in a sequence since the EWMA filter generates an
anomaly score at each point of a process trace.

One of the main drawbacks of using HMMs is
their significant computation time while training. In
order to handle this issue, we reduced the data size
by removing repeated sequences, and selected the
the shortest possible window length that catches all
abnormal subsequences in UNM sendmail traces.
Our clustering approach also reduces the training
time, providing smaller data sizes for each HMM.
To differentiate between various behaviors (con-
texts), we applied similarity-based clustering on
system call sequences in the benchmark dataset.

In this work we extend our previous work [36],
by providing an architecture to represent our ap-
proach and examining a larger data set that includes
the CERT sendmail data. Directions for future
work include investigating other sequential behavior
learning approaches for analysis of anomaly, and

48

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
E.N. Yolacan, et al., Vol.5, No.2

examining our approach on a broader set of datasets.

References

[1] V. J. Hodge and J. Austin, “A survey of outlier detection
methodologies,” Artificial Intelligence Review, vol. 22, no. 2,
pp. 85–126, 2004.

[2] D. C. Montgomery, C. L. Jennings, and M. Kulahci, Introduc-
tion to time series analysis and forecasting. John Wiley &
Sons, 2011, vol. 526.

[3] A. Kläser, M. Marszałek, C. Schmid, and A. Zisserman, “Hu-
man focused action localization in video,” in Trends and Topics
in Computer Vision. Springer, 2012, pp. 219–233.

[4] G. Aloysius and D. Binu, “An approach to products placement
in supermarkets using prefixspan algorithm,” Journal of King
Saud University-Computer and Information Sciences, vol. 25,
no. 1, pp. 77–87, 2013.

[5] T.-c. Fu, “A review on time series data mining,” Engineering
Applications of Artificial Intelligence, vol. 24, no. 1, pp. 164–
181, 2011.

[6] I. Kinde, J. Wu, N. Papadopoulos, K. W. Kinzler, and B. Vo-
gelstein, “Detection and quantification of rare mutations with
massively parallel sequencing,” Proceedings of the National
Academy of Sciences, vol. 108, no. 23, pp. 9530–9535, 2011.

[7] K.-P. Chan and A.-C. Fu, “Efficient time series matching
by wavelets,” in Data Engineering, 1999. Proceedings., 15th
International Conference on. IEEE, 1999, pp. 126–133.

[8] Z. Xing, J. Pei, and E. Keogh, “A brief survey on sequence
classification,” ACM SIGKDD Explorations Newsletter, vol. 12,
no. 1, pp. 40–48, 2010.

[9] X. D. Hoang, J. Hu, and P. Bertok, “A multi-layer model for
anomaly intrusion detection using program sequences of system
calls,” in Networks, ICON2003. The 11th IEEE International
Conference on. IEEE, 2003, pp. 531–536.

[10] X. Hoang and J. Hu, “An efficient hidden markov model training
scheme for anomaly intrusion detection of server applications
based on system calls,” in Networks, 2004.(ICON 2004). Pro-
ceedings. 12th IEEE International Conference on, vol. 2. IEEE,
2004, pp. 470–474.

[11] C. Kruegel, D. Mutz, F. Valeur, and G. Vigna, “On the detection
of anomalous system call arguments,” in Computer Security–
ESORICS 2003. Springer, 2003, pp. 326–343.

[12] D. Mutz, F. Valeur, G. Vigna, and C. Kruegel, “Anomalous
system call detection,” ACM Transactions on Information and
System Security (TISSEC), vol. 9, no. 1, pp. 61–93, 2006.

[13] F. Maggi, M. Matteucci, and S. Zanero, “Detecting intrusions
through system call sequence and argument analysis,” Depend-
able and Secure Computing, IEEE Transactions on, vol. 7, no. 4,
pp. 381–395, 2010.

[14] G. Tandon and P. Chan, “Learning rules from system call
arguments and sequences for anomaly detection,” in ICDM

Workshop on Data Mining for Computer Security (DMSEC),
2003, pp. 20–29.

[15] D.-K. Kang, D. Fuller, and V. Honavar, “Learning classifiers
for misuse and anomaly detection using a bag of system
calls representation,” in Information Assurance Workshop, 2005.
IAW’05. Proceedings from the Sixth Annual IEEE SMC. IEEE,
2005, pp. 118–125.

[16] Y. Liao and V. R. Vemuri, “Use of k-nearest neighbor classifier
for intrusion detection,” Computers & Security, vol. 21, no. 5,
pp. 439–448, 2002.

[17] N. Ye and Q. Chen, “An anomaly detection technique based on
a chi-square statistic for detecting intrusions into information
systems,” Quality and Reliability Engineering International,
vol. 17, no. 2, pp. 105–112, 2001.

[18] Z. Zhang and H. Shen, “Application of online-training svms
for real-time intrusion detection with different considerations,”
Computer Communications, vol. 28, no. 12, pp. 1428–1442,
2005.

[19] S. M. Varghese and K. P. Jacob, “Process profiling using
frequencies of system calls,” in Availability, Reliability and Se-
curity, 2007. ARES 2007. The Second International Conference
on. IEEE, 2007, pp. 473–479.

[20] W.-H. Chen, S.-H. Hsu, and H.-P. Shen, “Application of svm and
ann for intrusion detection,” Computers & Operations Research,
vol. 32, no. 10, pp. 2617–2634, 2005.

[21] W. Wang, X. Zhang, and S. Gombault, “Constructing attribute
weights from computer audit data for effective intrusion detec-
tion,” Journal of Systems and Software, vol. 82, no. 12, pp.
1974–1981, 2009.

[22] S. Forrest, S. A. Hofmeyr, A. Somayaji, and T. A. Longstaff,
“A sense of self for unix processes,” in Security and Privacy,
1996. Proceedings., 1996 IEEE Symposium on. IEEE, 1996,
pp. 120–128.

[23] S. A. Hofmeyr, S. Forrest, and A. Somayaji, “Intrusion detection
using sequences of system calls,” Journal of computer security,
vol. 6, no. 3, pp. 151–180, 1998.

[24] UNM. (2013) Unm system call dataset. [Online; accessed
28-November-2013]. [Online]. Available: \url{http://www.cs.
unm.edu/$∼$immsec/systemcalls.htm}

[25] S. Brooks, A. Gelman, G. Jones, and X.-L. Meng, Handbook
of Markov Chain Monte Carlo. Taylor & Francis US, 2011.

[26] D.-Y. Yeung and Y. Ding, “Host-based intrusion detection using
dynamic and static behavioral models,” Pattern recognition,
vol. 36, no. 1, pp. 229–243, 2003.

[27] Y. Du, H. Wang, and Y. Pang, “A hidden markov models-based
anomaly intrusion detection method,” in Intelligent Control and
Automation, 2004. WCICA 2004. Fifth World Congress on,
vol. 5. IEEE, 2004, pp. 4348–4351.

[28] W. Khreich, E. Granger, R. Sabourin, and A. Miri, “Combining
hidden markov models for improved anomaly detection,” in
Communications, 2009. ICC’09. IEEE International Conference
on. IEEE, 2009, pp. 1–6.

[29] J. Hu, X. Yu, D. Qiu, and H.-H. Chen, “A simple and efficient

49

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
E.N. Yolacan, et al., Vol.5, No.2

hidden markov model scheme for host-based anomaly intrusion
detection,” Network, IEEE, vol. 23, no. 1, pp. 42–47, 2009.

[30] C. Warrender, S. Forrest, and B. Pearlmutter, “Detecting intru-
sions using system calls: Alternative data models,” in Security
and Privacy, 1999. Proceedings of the 1999 IEEE Symposium
on. IEEE, 1999, pp. 133–145.

[31] E. Eskin, W. Lee, and S. J. Stolfo, “Modeling system calls
for intrusion detection with dynamic window sizes,” in DARPA
Information Survivability Conference & Exposition II, 2001.
DISCEX’01. Proceedings, vol. 1. IEEE, 2001, pp. 165–175.

[32] W. Lee and D. Xiang, “Information-theoretic measures for
anomaly detection,” in Security and Privacy, 2001. S&P 2001.
Proceedings. 2001 IEEE Symposium on. IEEE, 2001, pp. 130–
143.

[33] K. M. Tan and R. A. Maxion, “Determining the operational
limits of an anomaly-based intrusion detector,” Selected Areas
in Communications, IEEE Journal on, vol. 21, no. 1, pp. 96–
110, 2003.

[34] L. R. Rabiner, “A tutorial on hidden markov models and selected
applications in speech recognition,” Proceedings of the IEEE,
vol. 77, no. 2, pp. 257–286, 1989.

[35] G. Schwarz, “Estimating the dimension of a model,” The annals
of statistics, vol. 6, no. 2, pp. 461–464, 1978.

[36] E. N. Yolacan, J. G. Dy, and D. R. Kaeli, “System call
anomaly detection using multi-hmms,” in Software Security and
Reliability-Companion (SERE-C), 2014 IEEE Eighth Interna-
tional Conference on. IEEE, 2014, pp. 25–30.

50

