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Abstract 
Aim of study: The present study aimed to model soil physical and chemical properties through multiple 

linear and regression tree techniques. 

Area of study: The study area is located between 41,07 – 41,33 N latitude and 41,74 – 42,27 E longitude in 

Artvin, which is in the Colchis part of the Black Sea Region of Turkey. 

Material and methods: The multiple linear regression and regression tree models were used to predict soil 

properties using topographic and climatic features as independent variables. Besides, the relationships between 

soil properties and independent variables were determined by Pearson correlation. 

Main results: The study results revealed that model accuracy by regression tree generally was higher than 

those of multiple linear regression. Up to 56% and 59% of the variance in soil properties was accounted for by 

multiple linear regression and regression tree, respectively. The easting, northing, elevation, and minimum 

temperature parameters were key drivers of both models. Increasing soil depth significantly increased the pH 

and reduced the organic carbon, total nitrogen, and carbon/nitrogen ratio. 

Highlights: Topographic and climatic variables accounted for Up to 59% and 56% of the variance in soil 

properties such as texture, pH, organic carbon, total nitrogen, and carbon/nitrogen ratio by regression tree and 

multiple linear regression techniques. The most influential factors on soil properties were the minimum 

temperature, latitude, actual 

evapotranspiration, mean temperature, distance to the ridge, and radiation index. 

Keywords: Forest, Modeling, Multiple Linear Regression, Regression Tree. 

Topoğrafik ve Klimatik Değişkenlerden Yararlanarak Toprak 

Özelliklerinin Tahmin Edilmesi 

Öz 
Çalışmanın amacı: Bu çalışma ile toprağa ilişkin bazı fiziksel ve kimyasal özelliklerin çoklu doğrusal 

regresyon ve regresyon ağacı tekniklerinden yararlanılarak modellenmesi amaçlanmıştır. 

Çalışma alanı: Çalışma alanı Karadeniz bölgesinin kolşik kesiminde yer alan Artvin ili sınırları içerisinde 

ve 41,07 – 41,33 K enlemleri ile 41,74 – 42,27 D boylamları arasında bulunmaktadır. 

Materyal ve yöntem: Toprak özelliklerinin tahmin edilmesinde çoklu doğrusal  regresyon ve regresyon 

ağacı modelleri kullanılırken, toprak özellikleri ile bağımsız değişkenler arasındaki ilişki ise Pearson 

korelasyonu ile belirlenmiştir. 

Temel sonuçlar: Regresyon ağacı modellerinin doğruluğu çoklu doğrusal regresyon modellerininkine göre 

daha yüksek bulunmuştur. Toprak özelliklerindeki değişimin en fazla %56 ile %59’luk bir kısmı sırasıyla 

doğrusal regresyon ve regresyon ağacı modelleri ile açıklanabilmiştir. Her iki model için de en önemli 

değişkenler boylam, enlem, yükselti ve en düşük sıcaklık olarak belirlenmiştir. Toprak derinliğinin artmasına 

bağlı olarak pH anlamlı bir şekilde artarken, organik karbon, toplam azot ve karbon/azot oranı azalmıştır. 

Araştırma vurguları: Regresyon ağacı modelleri toprak özelliklerindeki değişimi %59’a varan bir oranda, 

doğrusal regresyon modelleri ise %56’ya varan bir oranda açıklamıştır. Toprak özelliklerini tahminde en 

belirleyici değişkenler en düşük sıcaklık, enlem, gerçek evapotranspirasyon, ortalama sıcaklık, sırta olan 

uzaklık ve radyasyon indeksi olarak belirlenmiştir. 
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Introduction 

Soil water and soil organic carbon data 

are essential for simulating climatic, 

vegetative, and biogeochemical cycles and 

their responses to change (Henderson et al., 

2005). Soil is directly or indirectly related to 

water quantity and quality, climate change, 

nutrient cycling, and biodiversity and has 

become increasingly important. Paralleling 

its increasing importance, the soil has been 

under pressure regarding food energy and 

raw materials (Vogel et al., 2018). The 

causes of spatial variability in soils are relief, 

the climate, organisms, the parent material, 

and time, and how these factors contribute to 

soil formation in a given period is a very 

complex process (Hengl et al., 2019). Soil is 

formed via these factors by Jenny's famous 

equation (S = f (Cl, O, R, P, T,...)), where Cl 

is the climate, O are the organisms, R is the 

relief or the topography, P is the parent 

material, and T is the time(Van Breemen & 

Buurman, 2007). Soil property modeling has 

been needed in recent decades due to 

difficulties in field studies since that they are 

expansive and time-consuming methods of 

measuring/determining soil properties by 

traditional laboratory techniques, especially 

on relatively steep slopes. To that end, 

statistical approaches have been developed to 

allow fast and accurate processing and 

evaluate a very complex and large amount of 

data using instruments and computers. Thus, 

a new soil science branch was developed, 

called "pedometrics", the purpose of which is 

to spatially and temporally model soil data 

using spatial statistics (Patriche et al., 2011). 

It is relatively easy to model and evaluate 

soil properties from topographic factors such 

as elevation, slope angle, aspect, and distance 

to the ridge, which affect runoff, drainage 

soil temperature, erosion, and rate and type 

of soil formation, in addition to climatic 

factors such as temperature and precipitation. 

As in the present study, hillslopes, which 

have variable topographic and climatic 

conditions, result in differences in soil 

properties and require different levels of 

fertilizers and management systems to 

optimize production. Many researchers have 

studied the effect of soil variability on 

various ecosystem services, such as food 

provision, timber production, soil retention, 

water supply, and climate regulation 

(Adhikari & Hartemink, 2016). The models 

were developed using the relationships 

between site factors and soil properties. 

Multiple linear regression (MLR), the 

regression tree (RT), the generalized linear 

model (GLM), and the generalized additive 

model (GAM) are widely used statistical 

techniques to predict soil attributes from site 

factors (Bishop & Minasny, 2006). In 

addition to MLR, the most-used method, the 

RT technique has been increasingly used 

recently because of its predictive power, 

nonlinear modeling, estimation of qualitative 

data, and handling of mixed data types 

(Grunwald, 2016). This study's objective was 

to develop and evaluate the RT and MLR 

models to predict soil properties using 

topographic and climatic variables and then 

compare the models' predictive performance 

with performance metrics. The study was 

performed on the mixed coniferous forests of 

Artvin, Turkey, in the 2011-2012 summer 

season. 

 
Materials and Methods 

Site Description 

The study area is located between 41,07 – 

41,33 N latitude and 41,74 – 42,27 E 

longitude in the Colchis part of the Black Sea 

Region of Turkey (Figure 1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



Kastamonu Uni., Orman Fakültesi Dergisi, 2021, 21(3): 252-267                                               Yener et al. 

Kastamonu Univ., Journal of Forestry Faculty  

 

254 
 

 
Figure 1. Geographic location of sample plots in Artvin Province (developed using ESRI, 2019; NASA, 

2009)  

 

The elevation in the region ranges from 0 

to 3930 m above sea level. Steep slopes 

(>30%) prevail in the province. The soil 

parent material in the section varies from 

sedimentary such as marl, conglomerate, and 

sandstone to upper cretaceous volcanic rocks 

(Figure 2) mainly found in the study area 

(Kapur et al., 2017; MTA, 2019). Those 

rocks include thick piles of andesitic and 

basaltic lavas, tufts, and agglomerates with a 

minor amount of trachyandesites and 

trachytes (Peccerillo & Taylor, 1975) . The 

soil type is loamy textured acrisols 

characterized by relatively low pH due to 

abundant rainfall developed under coniferous 

trees (Ozcan et al., 2018).   The province has 

placed an importance on its biodiversity, 

with four plant and nature protection areas 



Kastamonu Uni., Orman Fakültesi Dergisi, 2021, 21(3): 252-267                                               Yener et al. 

Kastamonu Univ., Journal of Forestry Faculty  

 

255 
 

(the Karcal, the Black Sea and Yalnizcam 

Mountains, and the Coruh Valley), one 

biosphere reserve area (Camili), three 

national parks (Karagol-Sahara and Hatila), 

three nature reserves (Camili-Efeler, Camili-

Gorget, and Camburnu) and two nature 

parks. The province, rich in biodiversity and 

one of the 34 biodiversity hotspots in the 

world because of the conservation and 

protection requirements by the IUCN, 

accommodating 2727 taxa, 500 (198 endemic 

and 302 nonendemic) of which are rare and 

at risk for extinction (Eminagaoglu et al., 

2015).  

The climate in Artvin varies from arid to 

semiarid inland, such as in Yusufeli, with 

305 mm of annual precipitation, to humid-

oceanic in the coastal zone, such as in Hopa 

with 2230 mm of annual precipitation. The 

mean annual precipitation and the mean 

temperature are approximately 1008 mm and 

8-12 °C, respectively. The growing season in 

the region is about six months (from May to 

October). Although there is a water 

deficiency in the summer, this deficiency is 

alleviated by soil moisture utilization (Figure 

3).  

 

 
Figure 2. Geological map of Artvin province and the positions of sample plots on it 
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Figure 3. Precipitation and potential evapotranspiration extrapolated to the study site's average elevation 

(1490 m)

 
Coniferous species such as Picea 

orientalis, Pinus sylvestris, and Abies 

nordmanniana ssp. nordmanniana, and 

deciduous species, such as Fagus orientalis 

and Carpinus betulus, are the main species in 

the province (Eminagaoglu et al., 2015). 

However, sample plots in the study area 

contained mixed stands (Pinus sylvestris-

Picea orientalis-Abies nordmanniana and 

Picea orientalis-Pinus sylvestris-Abies 

nordmanniana). Along with these mixed 

stands, Ilex aquifolium, Osmanthus decorus, 

Rhododendron ponticum, Viburnum sp., and 

Cornus sanquinea in Ormanli and Cerattepe 

and Pyracantha coccinea, Rhododendron 

luteum, Fragaria vesca, Vicia faba, Celtis 

australis, Rubus sp., and Pteridium 

aquilinum in Savsat and Ardanuc form the 

understory vegetation. 
 
Data Collection and Soil Analyses 

Sample plots were surveyed during the 

summer of 2011-2012. Twenty-two sample 

plots covering a total area of 2500 m
2
(50 m × 

50 m) were selected. Sample plots were 

approximately equally distributed on north-

facing slopes (NFSs) and south-facing slopes 

(SFSs). In each sample plot, aspect (ASP), 

distance to the ridge, where the ridge=0 to 

the bottom=100 (DTR), elevation (ELEV), 

and slope (SLP) were determined 

(Schoeneberger, 2012). For regression 

analysis, the aspect values (azimuth) were 

transformed into the radiation index 

(RADIND), ranging from 0.0 on NNE slopes 

to 1.0 on SSW slopes using Eq. 1 (Bolton et 

al., 2018). At each sample plot, coordinates 

(LAT and LONG) were recorded by 

handheld GPS with an approximately 5 m 

accuracy. 

 

        
*     ((

 

   
)(      ))+

 
                         (1)         

 

In each sample plot, a soil pit was dug, 

and four disturbed soil samples were taken at 

depths of 0-15 cm (SD1), 15-30 cm (SD2), 

30-50 (SD3) cm, and >50 cm (SD4). Each 

soil sample was air-dried and sieved through 

2-mm mesh in the laboratory. Then, physical 

and chemical analyses were performed on 88 

disturbed soil samples, with two additional 

replicates. The soil texture was determined 

following the hydrometer method. The pH 

was determined in a 1:2.5 soil distilled water 

ratio using a glass electrode, and the organic 

carbon (OC) content was determined by the 

Walkley and Black wet digestion method. 

The soil organic matter (OM) was calculated 

by multiplying the OC content by a 

coefficient of 1.724. The Kjeldahl digestion, 

distillation and titration method was used to 

determine the total nitrogen (TN), and the 

carbon : nitrogen ratio (C:N) was defined as 

the ratio of OC to TN (Narwal, 2004). Some 

climate data, such as the mean annual 

temperature (Tavg), the mean annual 
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maximum temperature (Tmax), the mean 

annual minimum temperature (Tmin), and 

the annual total precipitation (Prec), were 

obtained from the meteorological stations 

closest to the sample plots and extrapolated 

using 5 °C/km temperature lapse rate 

(Demircan et al., 2011) and a 450 mm/km 

increase in precipitation. Using these data, 

the TavgG, TmaxG, TminG, and PrecG were 

also computed for the mean annual 

temperature, the mean annual minimum 

temperature, the mean annual maximum 

temperature, and the annual total 

precipitation in the growing season. The 

actual evapotranspiration (AET) and the 

moisture index (TMIND) were also 

computed based on the Thornthwaite (1948) 

method. 

 

Data Analyses 

The Pearson correlation coefficient was 

used to examine the relationship between the 

soil variables and the other factors. Then, to 

estimate the values regarding various soil 

properties using topographic and climatic 

variables, multiple linear regression with the 

stepwise procedure (MLR) parametric and 

the regression tree (RT) nonparametric were 

used. The Pearson correlation, multiple linear 

regression, and regression tree techniques 

were performed using R (Team, 2013), SPSS 

(IBM, 2011), and DTREG v.14 (Sherrod, 

2003), respectively. While a one-way 

ANOVA was used to determine the variation 

among soil depths, the Tukey HSD test was 

used for pairwise comparisons. Since the 

strength of the homogeneity of variances and 

equal variances were not assumed, the 

Games-Howell and Welch tests were used. 

Some globally used predictive performance 

indices, such as the root mean square error 

(RMSE), the mean absolute error (MAE), 

and the correlated Akaike information 

criteria (AICc), in addition to the adjusted 

coefficient of determination (R
2
adj), were 

selected to evaluate the models using Eqs. 2, 

3, 4 and 5. 
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where  ̂ is the predicted value of y, and  ̅ is 

the mean value of y. n is the number of 

observations, k is the number of estimated 

parameters, and (k−1) is the number of 

explanatory variables in the model. After 

computing the AICc scores of the model, the 

evidence ratio, also called the relative 

likelihood, was also calculated using Eq. 6, 

according to Motulsky & Christopoulos 

(2004). 

 

                                             (6) 

 

where       shows the difference between 

the AIC scores. 

The most-used predictive performance 

criterion is the R
2

adj, even though some 

authors claim that it is not a good criterion 

for comparing different models (Aertsen et 

al., 2012). Two of the most widely used 

standards for representing model 

performance have been the MAE and the 

RMSE (Chai & Draxler, 2014). On the other 

hand, Akaike's information criterion (AIC), 

which determines the most optimal and 

parsimonious model among competing 

models by considering model complexity, 

has recently been developed. The model with 

the minimum AIC is chosen as the best 

model. Lower RMSE, MAE, and AIC values 

and higher R
2

adjvalues indicate better model 

goodness-of-fit (Pham, 2019). 

 

Results and Discussion 

Relationships Between the Physical Soil 

Properties and Other Variables 

The soil texture in the sample plots was 

loamy sand (1.14%), loamy clay (19.3%), 

clayey loam (10.2%), sandy loam (30.7%), 

sandy clay (11.4%), and sandy clayey loam 

(27.3%). Summary statistics regarding 

physical soil properties are given in Table 1. 

The lowest (44%) and the highest (85.5%) 

sand content in the soils were within depth 

interval SD3. The sand content did not vary 
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with soil depth (p=0.065) (Table 1). The 

positive effect of Y on the sand content 

within depth intervals SD2 (r=0.51) and SD3 

(r=0.44) can be attributed to decreasing 

precipitation because there is a strong 

correlation between Y and Prec and PrecG 

(r=-0.63 and r=-0.68) (Table 1) (Figure 4b, 

4c). Increasing rainfall increases the clay 

content, quickens chemical weathering, and 

decreases the sand content (Jenny, 1994; 

Gunal & Ransom, 2006). While the lowest 

clay content was determined in depth 

intervals SD1 and SD2 as 5.1%, the highest 

was within depth interval SD2 with 34.10% 

(Table 1). According to the one-way 

ANOVA results (Table 1), the clay content in 

depth interval SD1 (15.9±1.1%) was 

significantly lower than in the other soil 

depth intervals. The relatively low clay 

content in the topsoil can be attributed to the 

removal of various materials such as base 

cations, organic matter, and clay by leaching. 

The negative effect of Y (r=-0.44) on the 

clay content, found by correlation analysis, 

can also be related to decreasing precipitation 

(Buol et al., 2011). 
 

 

Figure 4. Pearson correlation between variables regarding soil and other ecological factors (A: Soil depth-

1 (0-15 cm), B: Soil depth-2 (15-30 cm), C. Soil depth-3 (30-50 cm), and D: Soil depth-4 (>50 cm)) 
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Table 1.Some descriptive statistics regarding soil properties by depth interval 

Soil 

Depth 
 

SAND 

(%) 

CLAY 

(%) 

SILT 

(%) 

pH 

 

OC 

(%) 

TN 

(%) 
C:N 

1 x ±SE 68.3±1.5a 15.9±1.1a 15.8±0.8a 5.0±0.1a 2.8±0.2a 0.3±0.0a 11.7±0.7a 

 
Min. 51.70 5.10 11.80 3.90 1.09 .15 5.65 

 
Max. 82.50 26.40 22.40 6.61 3.78 .42 16.40 

2 x ±SE 61.9±1.9a 21.2±1.4b 16.9±0.8a 5.1±0.1b 1.4±0.1b 0.2±0.0b 8.3±0.4b 

 
Min. 48.20 5.10 10.90 4.36 .77 .12 5.14 

 
Max. 80.60 34.10 26.40 6.18 2.59 .23 13.49 

3 x ±SE 61.7±2.4a 21.1±1.7b 17.2±1.0a 5.3±0.1b 1.0±0.1bc 0.1±0.0bc 6.9±0.6bc 

 
Min. 44.00 5.70 8.80 4.46 .46 .09 3.38 

 
Max. 85.50 33.40 24.70 6.74 2.24 .22 13.79 

4 x ±SE 62.4±2.2a 20.8±1.9b 16.7±0.7a 5.4±0.1b 0.7±0.1c 0.1±0.0c 5.3±0.5c 

 
Min. 45.30 7.10 10.10 4.55 .15 .08 1.94 

 
Max. 82.00 34.00 22.40 6.88 1.93 .24 9.58 

 Sig. 0.065 0.012 0.654 0.044 <0.001 <0.001 <0.001 

 F 2.505 4.046 0.543 2.822 48.25 15.738 17.91 

* x ±SE: Mean±standard error, Min: Minimum value, Max: Maximum value. 

*lower-case letters indicate significant difference by soil depth according to Tukey HSD following one-way ANOVA. 

 
Increasing soil moisture due to 

precipitation hastens chemical weathering 

and moves minerals, such as alkaline 

minerals, deeper into the soil profile. While 

the minimum silt content was 8.8%, which 

was in depth interval SD3, the maximum silt 

content was 26.4%, which was in depth 

interval SD2. No variation by depth was 

found for the silt content (Table 1). The silt 

contents of soils in depth intervals SD1, SD2, 

and SD3 were negatively correlated with Y 

and temperatures such as Tavg, TavgG, 

Tmin, and TminG and positively correlated 

with ELEV PrecG (Figure 4a, 4b, 4c). The 

negative effect of temperature on silt content 

due to increasing elevation can be attributed 

to increasing precipitation, which directly 

increases the chemical weathering of parent 

material and rocks. 

 

Relationships Between the Chemical Soil 

Properties and the Other Variables 

Summary statistics regarding chemical 

soil properties are given in Table 1. While 

the minimum pH value, found in depth 

interval SD1, was 3.90 (very strongly acidic), 

the maximum value, found in depth interval 

SD4, was 6.88 (slightly acidic). According to 

the one-way ANOVA, the pH value in depth 

interval SD1 was significantly lower than the 

pH values at the other depths (Table 1).  

 

According to correlation analysis, the pH 

value of the soils was positively correlated 

with the ELEV, whose coefficient ranged 

from r=0.44 to r=0.56 and was negatively 

correlated with the X (easting), DTR, Tavg, 

Tmin and TminG (Figure 4a, 4b, 4c, 4d). The 

positive effect of the ELEV and the negative 

impacts of temperature, including the Tavg, 

Tmin, and TminG, on pH can be attributed to 

accelerated nitrate leaching causing 

acidification of soils (Kosiba et al., 2018) 

due to a strong relationship between the 

elevation and the air temperature, with a 5 

°C/km temperature lapse rate. On the other 

hand, the X and the DTR's adverse effects 

can be related to soils' increasing water 

retention capacity. As the DTR (distance to 

the ridge) increases, the slope decreases. 

Thus, soil erosion decreases, and clay and 

organic matter content increase with 

increasing DTR. All these changes increase 

the water retention capacity of soils 

(Kirkham, 2014). Unlike the results in the 

present study, Zaimes et al. (2017) reported 

decreased clay content (from 5.42 to 2.99%) 

in the forested lands of Northern Greece as 

approaching the streamline. A decrease in the 

pH with an increase in the X can also be 

attributed to increased precipitation and 

moisture index, which remove base cations. 

In the present study, the correlation 
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coefficients were 0.66 and 0.67 between X 

and Prec, and between X and TMIND, 

respectively (Figure 4a). While the minimum 

OC content was found within depth interval 

SD4 with a value of 0.15% (extremely low), 

the maximum OC content was found within 

depth interval SD1 with a value of 3.78% 

(very high) (Table 1). The OC content 

decreased significantly from the topsoil to 

the subsoil. Similar results were found by 

Sariyildiz et al. (2017), who reported 26.9% 

and 41.7% of decreases in OC in the young 

and mature fir forest, from topsoil to subsoil. 

The OC content was positively correlated 

with the X, ELEV, RADIND, AET, TMIND, 

Prec, and PrecG values and negatively 

correlated with the Y, Tavg, TavgG, Tmin, 

and TminG values. (Figure 4a, 4b, 4c, 4d). 

Climatic factors such as temperature, 

precipitation, moisture, and solar radiation 

affect the decomposition rate of soil organic 

carbon and the type and growth of plants 

(Dick & Gregorich, 2004). According to 

Van't Hoff's temperature rule, an increase in 

temperature of approximately 10 °C 

increases the chemical reaction's velocity 

approximately two to three times. 

The decomposition rate of the SOM rises 

with temperature. Therefore, the SOM 

decreases with increasing temperature. The 

negative effect of temperature can be 

attributed to the increasing decomposition 

rate, which depends on the rate of chemical 

reactions. The positive impact of ELEV, 

TMIND, AET, Prec, and PrecG on soil 

organic carbon can be related to increasing 

soil moisture, depending on the factors 

mentioned above. Miles et al. (2016) 

reported a positive correlation between 

organic matter and precipitation (R
2
=0.81) 

and a negative correlation between organic 

matter and temperature (R
2
=0.14) in South 

African sugarcane soils. For example, Jenny 

(2012) reported decreasing organic carbon 

content due to increasing temperature and 

increasing organic carbon content due to 

increasing precipitation. He stated that the 

organic carbon content of soils on 

Graywackes in New Zealand rose from 4.04 

to 13.79 g/m
2
 when the mean annual 

precipitation increased from 345 mm to 1775 

mm. In a study done by Selhorst (2011) on 

home lawn turfgrass development and 

maintenance in diverse climatic regions of 

the United States, a positive correlation was 

found between the SOC and the Prec 

(R
2
=0.13-0.15). Still, after the precipitation 

reached the threshold (650 mm/year), the 

relationship changed to negative. While the 

minimum TN occurred in depth interval SD3 

with a value of 0.09%, the maximum TN 

occurred in depth interval SD1 with a value 

of 0.42%. The TN content of soils decreased 

with depth (p<0.001, Table 1). TN was 

positively correlated with ELEV, RADIND, 

TMIND, AET, Prec, and PrecG and 

negatively correlated with Y, Tavg, TavgG, 

Tmax, TmaxG, Tmin, and TminG. The 

factors related to the OC were also associated 

with the TN because of the close relationship 

between OC and TN, ranging from r=0.55 in 

depth interval SD3 to r=0.68 in depth interval 

SD4 (Figure 4b, 4c, 4d). The close 

relationship between the OC and the TN was 

also stated by Selhorst (2011). They 

expressed that a 0.1 increase in soil nitrogen 

caused a 0.99% increase in the SOC. 

Increasing nitrogen concentration led to a 

decrease in the SOC decomposition, which 

increased the mean residence time. The 

greater the TN, the greater the SOC in forest 

ecosystems. 

The positive effect of the factors 

mentioned above on the TN can be attributed 

to increasing soil moisture that improves 

chemical weathering and decomposition. The 

negative impact of the Y and temperature can 

be attributed to the hastening of plant 

residual decomposition (Buol et al., 2011). 

Jenny (2012) also reported that the soil 

organic nitrogen content in North America's 

Great Plains area decreased approximately 5-

fold when the temperature dropped from 20 

°C to 0 °C. While the minimum CN (1.94) 

was found within depth interval SD4, the 

maximum CN (16.80) was found in depth 

interval SD1. The CN significantly decreased 

with depth (p<0.001, Table 1). According to 

the Pearson correlation, the CN was 

positively correlated with DTR, RADIND, 

and ELEV and negatively correlated with Y 

(Figure 4b, 4d). Relief, or distance to the 

ridge, and slope and aspect, are the factors 

affecting the local climate, leaching, the 

transport of materials such as clays, organic 

matter, carbonates and bases, the 
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development of soil horizons, and plant 

nutrition (Kirkham, 2014). 

The positive effects of the DTR and 

elevation can be related to increased soil 

moisture, which depends on the changing 

RADIND. In the present study, the DTR was 

negatively correlated with the RADIND (r=-

0.59), which means that as the DTR 

increased, the aspect turned from SSW to 

NNE and improved the soil moisture. On the 

other hand, the positive effect of the ELEV 

can be attributed to increasing precipitation 

(r=0.48 and 0.75 for Prec and PrecG, 

respectively). The climate affected the soil 

properties in two main ways: directly (the 

rate and type of soil erosion, weathering, 

salinization, and desertification) and 

indirectly (the net primary productivity, 

hydrological cycles, energy balance, and 

carbon storage). Due to the effects of 

precipitation and temperature on soil water 

availability, the weathering of rocks, 

transportation, and distribution of weathered 

material on soil have also been influenced. 

These climate parameters also affect soil 

organic carbon accumulation and carbonate 

leaching. Because of the leaching of base 

cations in the wet climate, the pH is 

relatively low, and Al, Mn, and Fe contents 

are higher than those in the temperate arid 

climate. The climate also affects the soil 

biota, which changes the soil organic carbon 

dynamics (Lal & Stewart, 2018). Effects on 

soil temperature regimes and soil hydrology 

due to changes in rainfall and potential 

evapotranspiration would be expected 

depending on global climate change. In 

countries with temperate climate zones, 

including Turkey, it is anticipated that minor 

increases in rainfall would be compensated 

by vegetation and crops through 

evapotranspiration, which occurs at higher 

temperatures. Therefore, hydrologic and 

chemical effects on the soils might be small. 

The adverse effects on soil organic carbon 

due to higher temperatures would also be 

compensated by organic matter from 

vegetation in better growing circumstances, 

more elevated CO2 in the atmosphere, and 

higher evapotranspiration (Brinkman, 1990). 

 

 

Modeling of Soil Properties and Selection of 

the Best Model 

Many studies have modeled soil 

properties so far, using soil-forming factors 

such as topography and climate.  While some 

researchers (Ziadat, 2005; Hong, 2011; 

Patriche et al., 2011; Aartsma, 2016; Mason 

& Sulaeman, 2016; Mosleh et al., 2016; 

Pinheiro et al., 2018) used only statistical 

methods such as linear regression, regression 

tree, generalized additive models, and 

artificial neural networks, some others 

(Gutiérrez et al., 2011; Miller et al., 2015; 

Lin et al., 2016; Liu et al., 2017) used 

geostatistical techniques such as inverse 

distance weighting, ordinary kriging, 

geographically weighted regression, and 

spline models. 

The multiple linear regression (MLR) 

parametric and the regression tree (RT) 

nonparametric techniques were used in the 

present study to model and predict the soil 

properties in depth intervals SD1, SD2, SD3, 

and SD4. Model performance metrics such as 

the R
2

adj, RMSE, MAE, and AICc are given 

in Table 2. In the model predictions, three 

dependent variables in depth intervals SD1 

and SD4, and one dependent variable in 

depth intervals, SD2 and SD3, were not 

predicted by the MLR. Unlike the MLR, the 

RT models predicted all of the soil variables 

(Table 2). 
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Table 2. Performance indices of models for regression trees and multiple linear regression modeling 

techniques 
Regression Tree Multiple Linear Regression Evidencee 

 
Variables in 

Model 
R2

adj RMSE MA

E 
AICc Variables in 

Model 
R2

adj RMSE MAE AICc Ratio (%) 

SOIL DEPTH 1  
San

d 
TminG 0.30 4.27 2.62 76.93 No variables were entered into the equation  

Cla

y 
Y, Tmax 0.56 2.53 1.65 56.29 No variables were entered into the equation  

Silt Tmin 0.58 1.70 1.04 36.30 Tmin, ELEV 0.52 1.78 1.07 40.87 9.8 

pH ELEV 0.39 0.34 0.18 -33.83 Tmin 0.36 0.35 0.19 -32.86 1.6 

OC ELEV 0.42 0.40 0.23 -26.86 Y, RADIND 0.30 0.43 0.28 -21.54 50.4 

TN SLP 0.30 0.04 0.03 -123.45 PrecG 0.18 0.05 0.03 -120.03 5.5 

CN SLP, TmaxG 0.42 1.90 1.23 43.81 No variables were entered into the equation  

SOIL DEPTH 2  
San

d 
TminG 0.38 5.10 3.12 84.69 Tmin 0.25 5.62 3.48 88.99 1.7 

Cla

y 
TminG 0.19 4.47 2.53 78.92 No variables were entered into the equation  

Silt TminG 0.39 2.20 1.30 47.66 TminG 0.23 2.46 1.55 52.59 11.8 

pH AET 0.40 0.29 0.19 -40.89 X, ELEV 0.54 0.25 0.16 -45.63 10.7 

OC SLP 0.46 0.25 0.16 -48.18 Y 0.46 0.25 0.16 -48.01 1.1 

TN SLP 0.53 0.02 0.01 -169.46 PrecG 0.56 0.02 0.01 -171.03 2.2 

CN DTR 0.18 1.29 0.74 24.08 Y, DTR 0.42 1.05 0.65 17.81 22.9 

SOIL DEPTH 3  
San

d 
TminG 0.33 6.73 4.07 96.93 TminG 0.17 7.48 4.81 101.60 10.3 

Cla

y 
TminG 0.29 4.91 3.13 83.03 Y 0.15 5.37 3.43 87.01 7.3 

Silt TminG, Tmin 0.50 2.35 1.56 53.06 TminG 0.46 2.51 1.68 53.52 1.3 

pH TmaxG 0.33 0.35 0.24 -33.11 X, TavG 0.42 0.32 0.20 -34.96 2.5 

OC SLP 0.46 0.27 0.16 -44.73 Y 0.38 0.29 0.19 -41.79 4.3 

TN AET 0.53 0.02 0.01 -159.56 TavgG 0.52 0.02 0.01 -159.21 1.2 

CN SLP 0.10 1.91 1.17 41.43 No variables were entered into the equation  

SOIL DEPTH 4  
San

d 
TminG 0.27 6.49 4.43 95.33 No variables were entered into the equation  

Cla

y 
TminG 0.23 5.75 3.78 90.01 No variables were entered into the equation  

Silt ELEV 0.14 2.35 1.41 50.68 No variables were entered into the equation  

pH AET, Tmax 0.59 0.28 0.17 -40.06 X, PrecG 0.52 0.31 0.19 -36.74 5.3 

OC ELEV, DTR 0.50 0.23 0.14 -49.74 Y 0.39 0.26 0.17 -46.61 4.8 

TN AET 0.44 0.03 0.02 -147.30 PrecG 0.28 0.03 0.02 -141.73 16.2 

CN ELEV, Tavg 0.37 1.41 0.91 30.61 ELEV 0.17 1.66 1.17 35.21 10 

             

The variables in the sand models were Y 

and X for the RT, and Tmin and TminG for 

the MLR. The explained variance for the RT 

was 27 to 48%, with an RMSE from 3.60 to 

6.49%; and the explained variance for the 

MLR was 17 to 25%, with an RMSE from 

5.62 to 7.48. The variables in the clay models 

were X, Y, Tmax, and TminG for RT and Y 

for MLR. The explained variance was 23 to 

56% for the RT, with an RMSE from 2.53 to 

5.75; the explained variance was 0.15% for 

the MLR, with an RMSE of 5.37. No clay 

models for the MLR were developed except 

for the SD3 depth interval. The variables in 

the silt models were X, Tmin, TminG, and 

ELEV for the RT and Tmin, TminG, and 

ELEV for the MLR. The explained variance 

was 14 to 58% for the RT, with an RMSE 

from 1.70 to 2.35; the explained variance 

was 23 to 52%, with an RMSE from 1.78 to 

2.51%. No MLR silt model was developed  

 

for the SD4 depth interval. For soil texture 

components such as sand, clay, and silt, all 

RT models with higher R
2

adj and lower 

RMSE, MAE, and AICc were superior to the 

MLR models (Table 2). Y 

(northing=4555799.5) was the primary split 

affecting the sand content. The greater the Y, 

the more sand up to this point. After that 

point, the X (easting=729685) was 

determinative (Figure 5a). The other splits 

predicting sand in depth intervals SD2, SD3, 

and SD4 were the X. While the primary split 

for clay is also the Y (4555799.5) before the 

Tmax (13.75 °C) (Figure 5b), the only split 

for silt is the Tmin (1.75 °C) (Figure 5c). The 

X and the TminG predicted the clay content 

in depth intervals SD2, SD3, and SD4. The 

X, the TminG, and the ELEV were the other 

splits predicting silt in depth intervals SD2, 

SD3, and SD4, respectively. In this study, the 

explained variance in the soil texture ranged 
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from 14 to 58% for the RT and from 15 to 

52% for the MLR (Table 2). The range for 

soil texture in other studies showed a wide 

variation, ranging between 5% and 51% for 

the MLR and 9% to 69% for the RT 

(Henderson et al., 2005; Mosleh et al., 2016, 

Sindayihebura et al., 2017; Pinheiro et al., 

2018; Padarian et al., 2019; Zeraatpisheh et 

al., 2019). 

 

 

 

Figure. 5. Regression tree models predicting soil properties in soil depth 1. a) sand, b) clay, c) silt, d) pH, 

e) organic carbon, f) total nitrogen, and g) carbon/nitrogen) 

For example, Pinheiro et al. (2018) 

developed texture models whose explained 

variance ranged from 38 to 51% for the MLR 

and from 48 to 60% for the RT in the Guapu-

Macacu watershed, Brazil. Their RT models 

performed better than their MLR models, as 

occurred in the present study. Another study 

(Padarian et al., 2019) used the RT and 

convolutional neural networks (CNN) to 

model soil texture. As a result, the RT 

outperformed the CNN with a higher 

coefficient of determination ranging from 38 

to 42%, with an RMSE from 10.67 to 22.09.  

The variables entered into the RT pH 

models were ELEV, X, Tmax, TmaxG and 

AET; X, ELEV, Tmin, Tavg, and PrecG 

were the variables entered into the MLR pH 

models. The explained variance for the RT 

was 33 to 59%, with an RMSE from 0.28 to 

0.35; the explained variance was 36 to 52%, 

with an RMSE from 0.25 to 0.42 (Table 2). 

The pH in the SD1 depth interval was 

predicted by ELEV (1178 m). The greater the 

ELEV, the higher the pH (Figure 5d). The 

other predictors for depth intervals SD2, 

SD3, and SD4 were X, TmaxG, and AET 
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and Tmax, respectively. The explained 

variance determined by the RT in other 

studies (Henderson et al., 2005; Lourenço et 

al., 2018; Pahlavan-Rad & 

Akbarimoghaddam, 2018; Padarian et al., 

2019) ranged between 44 and 77%. 

Pahlavan-Rad & Akbarimoghaddam (2018), 

for example, modeled pH with an RMSE of 

0.20 to 0.45 using the distance to the river, 

elevation, and slope. The study (Patriche et 

al., 2011) explained 52% of the variance in 

the pH with an RMSE of 0.62 by MLR and 

48% of it with an RMSE of 0.64 by the RT in 

the soils of Romania. The predictors for the 

MLR were Y, elevation, surface ratio, and 

wetness index, and the predictors for the RT 

were X, Y, and soil type. Variables in the OC 

models were Y, ELEV, SLP, and DTR for 

the RT, and were X, Y, RADIND, and PrecG 

for MLR. The explained variance was 42 to 

50% for the RT, with an RMSE from 0.23 to 

0.40, and the explained variance was 30 to 

46% for MLR, with an RMSE from 0.25 to 

0.43. The OC in depth interval SD1 was also 

determined using the ELEV (1668 m) 

(Figure 5e). The other predictors for the OC 

in depth intervals SD2, SD3, and SD4 were 

the SLP, SLP and Y, and DTR, respectively. 

The RT and the MLR were also used in the 

studies (Mason & Sulaeman, 2016, Mosleh et 

al., 2016; Zeraatpisheh et al., 2019), and 

other techniques were used to model soil 

properties, including terrain attributes, 

remote sensing, and geology. The R
2

adj 

ranged from 0.04 to 0.36 for the RT and from 

0.05 to 0.50 for MLR. While Mason & 

Sulaeman (2016) found that the RT 

(R
2
±RMSE=0.24±0.69) was better than the 

MLR (R
2
±RMSE=0.05±0.76), Zeraatpisheh 

et al. (2019) found that MLR 

(R
2
±RMSE=0.36±0.4) was better than the 

RT (R
2
±RMSE=0.50±0.35). The variables in 

the TN models were X, Y, and SLP for the 

RT, and TavG and PrecG for MLR. The 

explained variance for the RT ranged from 

30 to 53, with an RMSE from 0.02 to 0.04, 

and it ranged from 18 to 56 with an RMSE 

from 0.02 to 0.05 for MLR. The only split for 

the TN in depth interval SD1 was the SLP 

(22.85%), which negatively affected the TN 

(Figure 5f). The other splits for the TN in 

depth intervals SD2, SD3, and SD4 were the 

SLP, Y, and X.TheRT was also used to 

model the TN in soils in some studies (Seiler 

et al., 2007; Padarian et al., 2019). While 

Seiler et al. (2007) found that the RT 

(R
2
=0.83 with 0.30 RMSEP) was better than 

the MLR (R
2
=0.72 with 0.49 RMSEP), 

Padarian et al. (2019) found that the RT 

(R
2
=0.64 with 2.37 RMSE) was better than 

the other techniques, such as the CNN and 

partial least squares regression. The variables 

in the CN models were X, Y, and SLP for the 

RT, and Y, ELEV, and DTR for MLR. The 

explained variance for the RT ranged from 

19 to 26, with an RMSE from 1.28 to 2.29; 

the explained variance for MLR ranged from 

17 to 42 with an RMSE from 1.05 to 1.66.No 

variables were entered into the equations for 

depth intervals SD1 and SD3 for the CN. The 

CN in depth interval SD1 was also predicted 

by the SLP (28.42%) (Figure 5g). The other 

predictors for the TN in depth intervals SD2, 

SD3, and SD4 were Y, X, and Y. Almost all 

of the RT models were superior to the MLR 

models when considering model performance 

metrics (R
2
adj, RMSE, MAE, and AICc), 

except for the pH, TN, and CN in depth 

interval SD2 and the pH in depth interval 

SD3 (Table 2). Considering the evidence 

ratio, the difference between the AICc scores, 

the RT models were 1.02 to 11.78, 1.62 to 

10.66, 1.09 to 50.44, 1.19 to 16.16, 10.01 to 

41.25 times more likely correct than the 

MLR models for the texture, pH, OC, TN, 

and CN, respectively.  

Finally, at local scales, a comparison of 

the RT technique with MLR to predict soil 

properties shows that RT outperformed MLR 

in the ability to increase prediction accuracy. 

 
Conclusion 

In this study, soil properties such as the 

sand, clay, and silt contents, the pH, the 

organic carbon, the total nitrogen, and the 

carbon/nitrogen ratio were predicted using 

soil formation factors such as topography and 

climate. With this aim, first, the relationships 

between soil properties and soil formation 

factors were determined, and then, the most 

commonly used MLR and RT techniques 

were employed for developing models. Fifty-

six models in total, with twenty-eight from 

each category, were developed. The most 

important variables affecting the soil 

properties were the minimum temperature 
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and the growing season minimum 

temperature for the physical soil properties, 

the latitude (northing), the distance to the 

ridge, and the minimum temperature for 

chemical soil properties. Even with very low 

coefficient determination, the RT models 

predicted each soil's properties. In contrast, 

the MLR models predicted each soil's 

properties except for the sand, clay, and silt 

contents and the carbon/nitrogen ratio. 

Considering predictive performance metrics, 

the RT models with a higher coefficient of 

determination and a lower RMSE, MAE, and 

AICc were superior to MLR for almost all 

soil properties. 

The IPCC expects that the mean annual 

temperature will change by 1.6-6.4 °C and 

the mean annual precipitation will change by 

at least -20% by 2100, while the atmospheric 

CO2 level will increase to 550 ppm. Indeed, 

we found that the driving climatic factors on 

the soil properties were temperature, 

precipitation, actual evapotranspiration, and 

radiation index. Therefore, climate change 

may increasingly affect the soil organic 

carbon and soil water parameters in the 

future; thus, global climate change is one of 

the most significant determinants in 

estimating soil properties.  

The techniques that someone with basic 

statistical knowledge could use for modeling 

soil properties in the present study are easy to 

use, user-friendly, and low-cost. The 

variables to predict soil properties used in the 

models could also easily be obtained by 

topographic maps (e.g., DEM) and climate 

surfaces (e.g., worldclim.org) using GIS. 

Therefore, the models in the present study 

may be used mainly in tree species selection 

for afforestation efforts in the mountainous 

parts of the regions, requiring considerable 

cost and labor. However, further studies with 

large data sets and different tree species are 

needed to improve these models. 
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