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Abstract

Aim of study: The present study aimed to model soil physical and chemical properties through multiple
linear and regression tree techniques.

Area of study: The study area is located between 41,07 — 41,33 N latitude and 41,74 — 42,27 E longitude in
Artvin, which is in the Colchis part of the Black Sea Region of Turkey.

Material and methods: The multiple linear regression and regression tree models were used to predict soil
properties using topographic and climatic features as independent variables. Besides, the relationships between
soil properties and independent variables were determined by Pearson correlation.

Main results: The study results revealed that model accuracy by regression tree generally was higher than
those of multiple linear regression. Up to 56% and 59% of the variance in soil properties was accounted for by
multiple linear regression and regression tree, respectively. The easting, northing, elevation, and minimum
temperature parameters were key drivers of both models. Increasing soil depth significantly increased the pH
and reduced the organic carbon, total nitrogen, and carbon/nitrogen ratio.

Highlights: Topographic and climatic variables accounted for Up to 59% and 56% of the variance in soil
properties such as texture, pH, organic carbon, total nitrogen, and carbon/nitrogen ratio by regression tree and
multiple linear regression techniques. The most influential factors on soil properties were the minimum
temperature, latitude, actual
evapotranspiration, mean temperature, distance to the ridge, and radiation index.

Keywords: Forest, Modeling, Multiple Linear Regression, Regression Tree.

Topografik ve Klimatik Degiskenlerden Yararlanarak Toprak

Ozelliklerinin Tahmin Edilmesi

Oz

Calismanin amaci: Bu ¢aligma ile topraga iligkin bazi fiziksel ve kimyasal 6zelliklerin ¢oklu dogrusal
regresyon ve regresyon agaci tekniklerinden yararlanilarak modellenmesi amaglanmustir.

Calisma alani: Calisma alan1 Karadeniz bolgesinin kolsik kesiminde yer alan Artvin ili sinirlar1 igerisinde
ve 41,07 — 41,33 K enlemleri ile 41,74 — 42,27 D boylamlari arasinda bulunmaktadr.

Materyal ve yontem: Toprak 6zelliklerinin tahmin edilmesinde ¢oklu dogrusal regresyon ve regresyon
agact modelleri kullanilirken, toprak ozellikleri ile bagimsiz degiskenler arasindaki iliski ise Pearson
korelasyonu ile belirlenmistir.

Temel sonug¢lar: Regresyon agact modellerinin dogrulugu ¢oklu dogrusal regresyon modellerininkine gére
daha yiiksek bulunmustur. Toprak ozelliklerindeki degisimin en fazla %56 ile %59’luk bir kismi sirasiyla
dogrusal regresyon ve regresyon agact modelleri ile agiklanabilmistir. Her iki model i¢in de en &nemli
degiskenler boylam, enlem, yiikselti ve en diisiik sicaklik olarak belirlenmistir. Toprak derinliginin artmasina
bagli olarak pH anlamli bir sekilde artarken, organik karbon, toplam azot ve karbon/azot oran1 azalmustir.

Arastirma vurgulari: Regresyon agact modelleri toprak 6zelliklerindeki degisimi %59’a varan bir oranda,
dogrusal regresyon modelleri ise %56’ya varan bir oranda agiklamustir. Toprak ozelliklerini tahminde en
belirleyici degiskenler en disiik sicaklik, enlem, ger¢ek evapotranspiraSyon, ortalama sicaklik, sirta olan
uzaklik ve radyasyon indeksi olarak belirlenmistir.

Anahtar Kelimeler: Orman, Modelleme, Coklu Dogrusal Regresyon, Regresyon Agact

Citation (Atif): Yener, 1., Kucuk, M., & Gokturk, A. (2021). Predicting Thi? W"Fk is licensed under a Creative Commons
Soil Properties Using Topographic and Climatic Variables. 25 Attribution-NonCommercial - 4.0 International

Kastamonu University Journal of Forestry Faculty, 21 (3),252-267. License. ® @
@. BY NG



mailto:mkck61@artvin.edu.tr
https://orcid.org/0000-0001-6998-9791
https://orcid.org/0000-0002-0954-2581
https://orcid.org/0000-0001-8093-7896
https://orcid.org/0000-0001-6998-9791
https://orcid.org/0000-0002-0954-2581
https://orcid.org/0000-0001-8093-7896
https://orcid.org/0000-0001-6998-9791
https://orcid.org/0000-0002-0954-2581
https://orcid.org/0000-0001-8093-7896

Kastamonu Uni., Orman Fakiiltesi Dergisi, 2021, 21(3): 252-267

Kastamonu Univ., Journal of Forestry Faculty

Yener et al.

Introduction

Soil water and soil organic carbon data
are essential for simulating climatic,
vegetative, and biogeochemical cycles and
their responses to change (Henderson et al.,
2005). Soil is directly or indirectly related to
water quantity and quality, climate change,
nutrient cycling, and biodiversity and has
become increasingly important. Paralleling
its increasing importance, the soil has been
under pressure regarding food energy and
raw materials (Vogel et al., 2018). The
causes of spatial variability in soils are relief,
the climate, organisms, the parent material,
and time, and how these factors contribute to
soil formation in a given period is a very
complex process (Hengl et al., 2019). Soil is
formed via these factors by Jenny's famous
equation (s =f (Cl, O, R, P, T,...)), where CI
is the climate, O are the organisms, R is the
relief or the topography, P is the parent
material, and T is the time(Van Breemen &
Buurman, 2007). Soil property modeling has
been needed in recent decades due to
difficulties in field studies since that they are
expansive and time-consuming methods of
measuring/determining soil properties by
traditional laboratory techniques, especially
on relatively steep slopes. To that end,
statistical approaches have been developed to
allow fast and accurate processing and
evaluate a very complex and large amount of
data using instruments and computers. Thus,
a new soil science branch was developed,
called "pedometrics", the purpose of which is
to spatially and temporally model soil data
using spatial statistics (Patriche et al., 2011).
It is relatively easy to model and evaluate
soil properties from topographic factors such
as elevation, slope angle, aspect, and distance
to the ridge, which affect runoff, drainage
soil temperature, erosion, and rate and type
of soil formation, in addition to climatic
factors such as temperature and precipitation.
As in the present study, hillslopes, which
have variable topographic and climatic
conditions, result in differences in soil
properties and require different levels of
fertilizers and management systems to
optimize production. Many researchers have
studied the effect of soil variability on
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various ecosystem services, such as food
provision, timber production, soil retention,
water supply, and climate regulation
(Adhikari & Hartemink, 2016). The models
were developed using the relationships
between site factors and soil properties.
Multiple linear regression (MLR), the
regression tree (RT), the generalized linear
model (GLM), and the generalized additive
model (GAM) are widely used statistical
techniques to predict soil attributes from site
factors (Bishop & Minasny, 2006). In
addition to MLR, the most-used method, the
RT technique has been increasingly used
recently because of its predictive power,
nonlinear modeling, estimation of qualitative
data, and handling of mixed data types
(Grunwald, 2016). This study's objective was
to develop and evaluate the RT and MLR
models to predict soil properties using
topographic and climatic variables and then
compare the models' predictive performance
with performance metrics. The study was
performed on the mixed coniferous forests of
Artvin, Turkey, in the 2011-2012 summer
season.

Materials and Methods
Site Description

The study area is located between 41,07 —
41,33 N latitude and 41,74 — 42,27 E
longitude in the Colchis part of the Black Sea
Region of Turkey (Figure 1).
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Figure 1. Geographic location of sample plots in Artvin Province (developed using ESRI, 2019; NASA,
2009)

The elevation in the region ranges from 0
to 3930 m above sea level. Steep slopes
(>30%) prevail in the province. The soil
parent material in the section varies from
sedimentary such as marl, conglomerate, and
sandstone to upper cretaceous volcanic rocks
(Figure 2) mainly found in the study area
(Kapur et al., 2017; MTA, 2019). Those
rocks include thick piles of andesitic and
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basaltic lavas, tufts, and agglomerates with a
minor amount of trachyandesites and
trachytes (Peccerillo & Taylor, 1975) . The
soil type is loamy textured acrisols
characterized by relatively low pH due to
abundant rainfall developed under coniferous
trees (Ozcan et al., 2018). The province has
placed an importance on its biodiversity,
with four plant and nature protection areas



Kastamonu Uni., Orman Fakiiltesi Dergisi, 2021, 21(3): 252-267

Kastamonu Univ., Journal of Forestry Faculty

Yener et al.

(the Karcal, the Black Sea and Yalnizcam
Mountains, and the Coruh Valley), one
biosphere reserve area (Camili), three
national parks (Karagol-Sahara and Hatila),
three nature reserves (Camili-Efeler, Camili-
Gorget, and Camburnu) and two nature
parks. The province, rich in biodiversity and
one of the 34 biodiversity hotspots in the
world because of the conservation and
protection requirements by the [UCN,
accommodating 2727 taxa, 500 (198 endemic
and 302 nonendemic) of which are rare and
at risk for extinction (Eminagaoglu et al.,
2015).

The climate in Artvin varies from arid to
semiarid inland, such as in Yusufeli, with
305 mm of annual precipitation, to humid-
oceanic in the coastal zone, such as in Hopa
with 2230 mm of annual precipitation. The
mean annual precipitation and the mean
temperature are approximately 1008 mm and
8-12 °C, respectively. The growing season in
the region is about six months (from May to
October). Although there is a water
deficiency in the summer, this deficiency is
alleviated by soil moisture utilization (Figure
3).
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Figure 2. Geological map of Artvin province and the positions of sample plots on it
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Figure 3. Precipitation and potential evapotranspiration extrapolated to the study site's average elevation

(1490 m)

Coniferous species such as Picea
orientalis, Pinus sylvestris, and Abies
nordmanniana ssp. hordmanniana, and

deciduous species, such as Fagus orientalis
and Carpinus betulus, are the main species in
the province (Eminagaoglu et al., 2015).
However, sample plots in the study area
contained mixed stands (Pinus sylvestris-
Picea orientalis-Abies nordmanniana and
Picea  orientalis-Pinus  sylvestris-Abies
nordmanniana). Along with these mixed
stands, llex aquifolium, Osmanthus decorus,
Rhododendron ponticum, Viburnum sp., and
Cornus sanquinea in Ormanli and Cerattepe
and Pyracantha coccinea, Rhododendron
luteum, Fragaria vesca, Vicia faba, Celtis
australis, Rubus sp., and Pteridium
aquilinum in Savsat and Ardanuc form the
understory vegetation.

Data Collection and Soil Analyses

Sample plots were surveyed during the
summer of 2011-2012. Twenty-two sample
plots covering a total area of 2500 m*(50 m x
50 m) were selected. Sample plots were
approximately equally distributed on north-
facing slopes (NFSs) and south-facing slopes
(SFSs). In each sample plot, aspect (ASP),
distance to the ridge, where the ridge=0 to
the bottom=100 (DTR), elevation (ELEV),
and slope (SLP) were determined
(Schoeneberger, 2012). For regression
analysis, the aspect values (azimuth) were
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transformed into the radiation index
(RADIND), ranging from 0.0 on NNE slopes
to 1.0 on SSW slopes using Eq. 1 (Bolton et
al., 2018). At each sample plot, coordinates
(LAT and LONG) were recorded by
handheld GPS with an approximately 5 m
accuracy.

RADIND =

[1—cos((%)(ASP—30))]

)

In each sample plot, a soil pit was dug,
and four disturbed soil samples were taken at
depths of 0-15 cm (SD1), 15-30 cm (SD2),
30-50 (SD3) cm, and >50 cm (SD4). Each
soil sample was air-dried and sieved through
2-mm mesh in the laboratory. Then, physical
and chemical analyses were performed on 88
disturbed soil samples, with two additional
replicates. The soil texture was determined
following the hydrometer method. The pH
was determined in a 1:2.5 soil distilled water
ratio using a glass electrode, and the organic
carbon (OC) content was determined by the
Walkley and Black wet digestion method.
The soil organic matter (OM) was calculated
by multiplying the OC content by a
coefficient of 1.724. The Kjeldahl digestion,
distillation and titration method was used to
determine the total nitrogen (TN), and the
carbon : nitrogen ratio (C:N) was defined as
the ratio of OC to TN (Narwal, 2004). Some
climate data, such as the mean annual
temperature (Tavg), the mean annual
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maximum temperature (Tmax), the mean
annual minimum temperature (Tmin), and
the annual total precipitation (Prec), were
obtained from the meteorological stations
closest to the sample plots and extrapolated
using 5 °C/km temperature lapse rate
(Demircan et al., 2011) and a 450 mm/km
increase in precipitation. Using these data,
the TavgG, TmaxG, TminG, and PrecG were
also computed for the mean annual
temperature, the mean annual minimum
temperature, the mean annual maximum
temperature, and the annual total
precipitation in the growing season. The
actual evapotranspiration (AET) and the
moisture  index (TMIND) were also
computed based on the Thornthwaite (1948)
method.

Data Analyses

The Pearson correlation coefficient was
used to examine the relationship between the
soil variables and the other factors. Then, to
estimate the values regarding various soil
properties using topographic and climatic
variables, multiple linear regression with the
stepwise procedure (MLR) parametric and
the regression tree (RT) nonparametric were
used. The Pearson correlation, multiple linear
regression, and regression tree technigues
were performed using R (Team, 2013), SPSS
(IBM, 2011), and DTREG v.14 (Sherrod,
2003), respectively. While a one-way
ANOVA was used to determine the variation
among soil depths, the Tukey HSD test was
used for pairwise comparisons. Since the
strength of the homogeneity of variances and
equal variances were not assumed, the
Games-Howell and Welch tests were used.
Some globally used predictive performance
indices, such as the root mean square error
(RMSE), the mean absolute error (MAE),
and the correlated Akaike information
criteria (AIC;), in addition to the adjusted
coefficient of determination (R%dj), were
selected to evaluate the models using Egs. 2,
3,4 and 5.

RMSE = /ﬁzéil(yi -9 2
MAE = =3, |y, — 9| (3)
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AICc = (n* LN(SSE/n) + 2 xk) + ((2k (k +
1))/(n —k—1))) 5)

where § is the predicted value of y, and y is
the mean value of y. n is the number of
observations, k is the number of estimated
parameters, and (k—1) is the number of
explanatory variables in the model. After
computing the AIC, scores of the model, the
evidence ratio, also called the relative
likelihood, was also calculated using Eg. 6,
according to Motulsky & Christopoulos
(2004).

—0.5AAIC,

(6)

where AAIC, shows the difference between
the AIC scores.

The most-used predictive performance
criterion is the R%g, even though some
authors claim that it is not a good criterion
for comparing different models (Aertsen et
al.,, 2012). Two of the most widely used
standards for representing model
performance have been the MAE and the
RMSE (Chai & Draxler, 2014). On the other
hand, Akaike's information criterion (AIC),
which determines the most optimal and
parsimonious model among competing
models by considering model complexity,
has recently been developed. The model with
the minimum AIC is chosen as the best
model. Lower RMSE, MAE, and AIC values
and higher R%*gvalues indicate better model
goodness-of-fit (Pham, 2019).

Evidence ratio = 1/e

Results and Discussion
Relationships Between the Physical Soil
Properties and Other Variables

The soil texture in the sample plots was
loamy sand (1.14%), loamy clay (19.3%),
clayey loam (10.2%), sandy loam (30.7%),
sandy clay (11.4%), and sandy clayey loam
(27.3%). Summary statistics regarding
physical soil properties are given in Table 1.
The lowest (44%) and the highest (85.5%)
sand content in the soils were within depth
interval SD3. The sand content did not vary
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with soil depth (p=0.065) (Table 1). The
positive effect of Y on the sand content
within depth intervals SD2 (r=0.51) and SD3
(r=0.44) can be attributed to decreasing
precipitation because there is a strong
correlation between Y and Prec and PrecG
(r=-0.63 and r=-0.68) (Table 1) (Figure 4b,
4c). Increasing rainfall increases the clay
content, quickens chemical weathering, and
decreases the sand content (Jenny, 1994;
Gunal & Ransom, 2006). While the lowest
clay content was determined in depth
intervals SD1 and SD2 as 5.1%, the highest
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was within depth interval SD2 with 34.10%
(Table 1). According to the one-way
ANOVA results (Table 1), the clay content in
depth interval SD1 (15.9£1.1%) was
significantly lower than in the other soil
depth intervals. The relatively low clay
content in the topsoil can be attributed to the
removal of various materials such as base
cations, organic matter, and clay by leaching.
The negative effect of Y (r=-0.44) on the
clay content, found by correlation analysis,
can also be related to decreasing precipitation
(Buol et al., 2011).
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Figure 4. Pearson correlation between variables regarding soil and other ecological factors (A: Soil depth-
1 (0-15 cm), B: Soil depth-2 (15-30 cm), C. Soil depth-3 (30-50 cm), and D: Soil depth-4 (>50 cm))
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Table 1.Some descriptive statistics regarding soil properties by depth interval
Soil SAND CLAY SILT pH oc N CN
Depth (%) (%) (%) (%) (%)
1 Xx+SE  68.3+1.5* 159+1.1* 15.8+0.8  5.0+0.1° 2.840.2° 0.340.0°  11.7£0.7%
Min. 51.70 5.10 11.80 3.90 1.09 15 5.65
Max. 82.50 26.40 22.40 6.61 3.78 42 16.40
2 X£SE  61.9+1.9° 212+1.4° 169+0.8°  5.1+0.1°  1.4+0.1°  0240.0°  8.3+0.4°
Min. 48.20 5.10 10.90 4.36 77 12 5.14
Max. 80.60 34.10 26.40 6.18 2.59 23 13.49
3 X£SE  61.742.4%  21.1+1.7°  172+1.0°  5320.1°  1.0£0.1°  0.120.0™  6.9+0.6™
Min. 44.00 5.70 8.80 4.46 46 .09 3.38
Max. 85.50 33.40 24.70 6.74 2.24 22 13.79
4 ESE 6244227 20.8+1.9°  16.7+0.7°  54%0.1°  0.7+0.1°  0.120.0°  5.3%0.5°
Min. 45.30 7.10 10.10 455 15 .08 1.94
Max. 82.00 34.00 22.40 6.88 193 .24 9.58
Sig. 0.065 0.012 0.654 0.044 <0.001 <0.001 <0.001
F 2.505 4.046 0.543 2.822 48.25 15.738 17.91

* X£SE: Meantstandard error, Min: Minimum value, Max: Maximum value.
*lower-case letters indicate significant difference by soil depth according to Tukey HSD following one-way ANOVA.

Increasing soil moisture due to
precipitation hastens chemical weathering
and moves minerals, such as alkaline
minerals, deeper into the soil profile. While
the minimum silt content was 8.8%, which
was in depth interval SD3, the maximum silt
content was 26.4%, which was in depth
interval SD2. No variation by depth was
found for the silt content (Table 1). The silt
contents of soils in depth intervals SD1, SD2,
and SD3 were negatively correlated with Y
and temperatures such as Tavg, TavgG,
Tmin, and TminG and positively correlated
with ELEV PrecG (Figure 4a, 4b, 4c). The
negative effect of temperature on silt content
due to increasing elevation can be attributed
to increasing precipitation, which directly
increases the chemical weathering of parent
material and rocks.

Relationships Between the Chemical Soil
Properties and the Other Variables

Summary statistics regarding chemical
soil properties are given in Table 1. While
the minimum pH value, found in depth
interval SD1, was 3.90 (very strongly acidic),
the maximum value, found in depth interval
SD4, was 6.88 (slightly acidic). According to
the one-way ANOVA, the pH value in depth
interval SD1 was significantly lower than the
pH values at the other depths (Table 1).
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According to correlation analysis, the pH
value of the soils was positively correlated
with the ELEV, whose coefficient ranged
from r=0.44 to r=0.56 and was negatively
correlated with the X (easting), DTR, Tavg,
Tmin and TminG (Figure 4a, 4b, 4c, 4d). The
positive effect of the ELEV and the negative
impacts of temperature, including the Tavg,
Tmin, and TminG, on pH can be attributed to
accelerated  nitrate  leaching  causing
acidification of soils (Kosiba et al., 2018)
due to a strong relationship between the
elevation and the air temperature, with a 5
°C/km temperature lapse rate. On the other
hand, the X and the DTR's adverse effects
can be related to soils' increasing water
retention capacity. As the DTR (distance to
the ridge) increases, the slope decreases.
Thus, soil erosion decreases, and clay and
organic matter content increase with
increasing DTR. All these changes increase
the water retention capacity of soils
(Kirkham, 2014). Unlike the results in the
present study, Zaimes et al. (2017) reported
decreased clay content (from 5.42 to 2.99%)
in the forested lands of Northern Greece as
approaching the streamline. A decrease in the
pH with an increase in the X can also be
attributed to increased precipitation and
moisture index, which remove base cations.
In the present study, the correlation
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coefficients were 0.66 and 0.67 between X
and Prec, and between X and TMIND,
respectively (Figure 4a). While the minimum
OC content was found within depth interval
SD4 with a value of 0.15% (extremely low),
the maximum OC content was found within
depth interval SD1 with a value of 3.78%
(very high) (Table 1). The OC content
decreased significantly from the topsoil to
the subsoil. Similar results were found by
Sariyildiz et al. (2017), who reported 26.9%
and 41.7% of decreases in OC in the young
and mature fir forest, from topsoil to subsoil.
The OC content was positively correlated
with the X, ELEV, RADIND, AET, TMIND,
Prec, and PrecG values and negatively
correlated with the Y, Tavg, TavgG, Tmin,
and TminG values. (Figure 4a, 4b, 4c, 4d).
Climatic factors such as temperature,
precipitation, moisture, and solar radiation
affect the decomposition rate of soil organic
carbon and the type and growth of plants
(Dick & Gregorich, 2004). According to
Van't Hoff's temperature rule, an increase in
temperature of approximately 10 °C
increases the chemical reaction's velocity
approximately two to three times.

The decomposition rate of the SOM rises
with temperature. Therefore, the SOM
decreases with increasing temperature. The
negative effect of temperature can be
attributed to the increasing decomposition
rate, which depends on the rate of chemical
reactions. The positive impact of ELEV,
TMIND, AET, Prec, and PrecG on soil
organic carbon can be related to increasing
soil moisture, depending on the factors
mentioned above. Miles et al. (2016)
reported a positive correlation between
organic matter and precipitation (R*=0.81)
and a negative correlation between organic
matter and temperature (R?=0.14) in South
African sugarcane soils. For example, Jenny
(2012) reported decreasing organic carbon
content due to increasing temperature and
increasing organic carbon content due to
increasing precipitation. He stated that the
organic carbon content of soils on
Graywackes in New Zealand rose from 4.04
to 13.79 g¢/m’* when the mean annual
precipitation increased from 345 mm to 1775
mm. In a study done by Selhorst (2011) on
home lawn turfgrass development and
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maintenance in diverse climatic regions of
the United States, a positive correlation was
found between the SOC and the Prec
(R?=0.13-0.15). Still, after the precipitation
reached the threshold (650 mm/year), the
relationship changed to negative. While the
minimum TN occurred in depth interval SD3
with a value of 0.09%, the maximum TN
occurred in depth interval SD1 with a value
of 0.42%. The TN content of soils decreased
with depth (p<0.001, Table 1). TN was
positively correlated with ELEV, RADIND,
TMIND, AET, Prec, and PrecG and
negatively correlated with Y, Tavg, TavgG,
Tmax, TmaxG, Tmin, and TminG. The
factors related to the OC were also associated
with the TN because of the close relationship
between OC and TN, ranging from r=0.55 in
depth interval SD3 to r=0.68 in depth interval
SD4 (Figure 4b, 4c, 4d). The close
relationship between the OC and the TN was
also stated by Selhorst (2011). They
expressed that a 0.1 increase in soil nitrogen
caused a 0.99% increase in the SOC.
Increasing nitrogen concentration led to a
decrease in the SOC decomposition, which
increased the mean residence time. The
greater the TN, the greater the SOC in forest
ecosystems.

The positive effect of the factors
mentioned above on the TN can be attributed
to increasing soil moisture that improves
chemical weathering and decomposition. The
negative impact of the Y and temperature can
be attributed to the hastening of plant
residual decomposition (Buol et al., 2011).
Jenny (2012) also reported that the soil
organic nitrogen content in North America’s
Great Plains area decreased approximately 5-
fold when the temperature dropped from 20
°C to 0 °C. While the minimum CN (1.94)
was found within depth interval SD4, the
maximum CN (16.80) was found in depth
interval SD1. The CN significantly decreased
with depth (p<0.001, Table 1). According to
the Pearson correlation, the CN was
positively correlated with DTR, RADIND,
and ELEV and negatively correlated with Y
(Figure 4b, 4d). Relief, or distance to the
ridge, and slope and aspect, are the factors
affecting the local climate, leaching, the
transport of materials such as clays, organic
matter, carbonates and bases, the
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development of soil horizons, and plant
nutrition (Kirkham, 2014).

The positive effects of the DTR and
elevation can be related to increased soil
moisture, which depends on the changing
RADIND. In the present study, the DTR was
negatively correlated with the RADIND (r=-
0.59), which means that as the DTR
increased, the aspect turned from SSW to
NNE and improved the soil moisture. On the
other hand, the positive effect of the ELEV
can be attributed to increasing precipitation
(r=0.48 and 0.75 for Prec and PrecG,
respectively). The climate affected the soil
properties in two main ways: directly (the
rate and type of soil erosion, weathering,
salinization, and  desertification) and
indirectly (the net primary productivity,
hydrological cycles, energy balance, and
carbon storage). Due to the effects of
precipitation and temperature on soil water
availability, the weathering of rocks,
transportation, and distribution of weathered
material on soil have also been influenced.
These climate parameters also affect soil
organic carbon accumulation and carbonate
leaching. Because of the leaching of base
cations in the wet climate, the pH is
relatively low, and Al, Mn, and Fe contents
are higher than those in the temperate arid
climate. The climate also affects the soil
biota, which changes the soil organic carbon
dynamics (Lal & Stewart, 2018). Effects on
soil temperature regimes and soil hydrology
due to changes in rainfall and potential
evapotranspiration would be expected
depending on global climate change. In
countries with temperate climate zones,
including Turkey, it is anticipated that minor
increases in rainfall would be compensated
by  wvegetation and crops through
evapotranspiration, which occurs at higher
temperatures. Therefore, hydrologic and
chemical effects on the soils might be small.
The adverse effects on soil organic carbon
due to higher temperatures would also be
compensated by organic matter from
vegetation in better growing circumstances,
more elevated CO, in the atmosphere, and
higher evapotranspiration (Brinkman, 1990).
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Modeling of Soil Properties and Selection of
the Best Model

Many studies have modeled soil
properties so far, using soil-forming factors
such as topography and climate. While some
researchers (Ziadat, 2005; Hong, 2011;
Patriche et al., 2011; Aartsma, 2016; Mason
& Sulaeman, 2016; Mosleh et al., 2016;
Pinheiro et al., 2018) used only statistical
methods such as linear regression, regression
tree, generalized additive models, and
artificial neural networks, some others
(Gutiérrez et al., 2011; Miller et al., 2015;
Lin et al., 2016; Liu et al., 2017) used
geostatistical techniques such as inverse

distance  weighting, ordinary  kriging,
geographically weighted regression, and
spline models.

The multiple linear regression (MLR)
parametric and the regression tree (RT)
nonparametric techniques were used in the
present study to model and predict the soil
properties in depth intervals SD1, SD2, SD3,
and SD4. Model performance metrics such as
the R%q, RMSE, MAE, and AIC; are given
in Table 2. In the model predictions, three
dependent variables in depth intervals SD1
and SD4, and one dependent variable in
depth intervals, SD2 and SD3, were not
predicted by the MLR. Unlike the MLR, the
RT models predicted all of the soil variables
(Table 2).
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Table 2. Performance indices of models for regression trees and multiple linear regression modeling

techniques
Regression Tree Multiple Linear Regression Evidencee
Variablesin  R%; RMSE MA AIC, \Variablesin R%; RMSE MAE AIC. Ratio (%)
SOIL DEPTH 1
San TminG 030 427 262 76.93 No variables were entered into the equation
Cla Y, Tmax 056 253 1.65 56.29 No variables were entered into the equation
Silt Tmin 058 170 1.04 3630 Tmin,ELEV 052 178 107 40.87 9.8
pH ELEV 039 034 0.18 -33.83 Tmin 036 035 019 -32.86 1.6
ocC ELEV 042 040 023 -2686 Y,RADIND 0.30 043 028 -21.54 50.4
TN SLP 030 0.04 0.03 -123.45 PrecG 0.18 0.05 0.03 -120.03 55
CN SLP, TmaxG 042 190 1.23 4381 No variables were entered into the equation
SOIL DEPTH 2
San TminG 038 510 3.12 84.69 Tmin 025 5.62 348 88.99 1.7
Cla TminG 0.19 447 253 7892 No variables were entered into the equation
Silt TminG 039 220 130 47.66 TminG 023 246 155 5259 11.8
pH AET 040 029 0.19 -40.89 X,ELEV 054 025 0.16 -45.63 10.7
ocC SLP 0.46 025 0.16 -48.18 Y 046 025 0.16 -48.01 1.1
TN SLP 053 0.02 0.01 -169.46 PrecG 056 0.02 001 -171.03 2.2
CN DTR 018 129 0.74 24.08 Y, DTR 042 1.05 065 17.81 22.9
SOIL DEPTH 3
San TminG 0.33 6.73 4.07 96.93 TminG 0.17 748 481 101.60 10.3
Cla TminG 029 491 313 8303 Y 015 537 343 87.01 7.3
Silt  TminG, Tmin 050 235 156 53.06 TminG 0.46 251 168 5352 1.3
pH TmaxG 033 035 024 -3311 X, TavG 042 032 020 -34.96 25
oC SLP 0.46 027 0.16 -44.73 Y 038 029 019 -41.79 4.3
TN AET 053 0.02 0.01 -159.56 TavgG 052 0.02 001 -159.21 1.2
CN SLP 010 191 117 4143 No variables were entered into the equation
SOIL DEPTH 4
San TminG 027 6.49 443 9533 No variables were entered into the equation
Cla TminG 023 575 378 90.01 No variables were entered into the equation
Silt ELEV 014 235 141 50.68 No variables were entered into the equation
pH AET,Tmax 059 0.28 0.17 -40.06 X, PrecG 052 031 019 -36.74 5.3
OC ELEV,DTR 050 0.23 0.14 -49.74 Y 039 026 017 -46.61 4.8
TN AET 0.44 0.03 0.02 -147.30 PrecG 028 0.03 002 -141.73 16.2
CN ELEV,Tavg 037 141 091 30.61 ELEV 017 166 117 3521 10

The variables in the sand models were Y
and X for the RT, and Tmin and TminG for
the MLR. The explained variance for the RT
was 27 to 48%, with an RMSE from 3.60 to
6.49%; and the explained variance for the
MLR was 17 to 25%, with an RMSE from
5.62 to 7.48. The variables in the clay models
were X, Y, Tmax, and TminG for RT and Y
for MLR. The explained variance was 23 to
56% for the RT, with an RMSE from 2.53 to
5.75; the explained variance was 0.15% for
the MLR, with an RMSE of 5.37. No clay
models for the MLR were developed except
for the SD3 depth interval. The variables in
the silt models were X, Tmin, TminG, and
ELEV for the RT and Tmin, TminG, and
ELEV for the MLR. The explained variance
was 14 to 58% for the RT, with an RMSE
from 1.70 to 2.35; the explained variance
was 23 to 52%, with an RMSE from 1.78 to
2.51%. No MLR silt model was developed
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for the SD4 depth interval. For soil texture
components such as sand, clay, and silt, all
RT models with higher R%g and lower
RMSE, MAE, and AIC, were superior to the
MLR models (Table 2). Y
(northing=4555799.5) was the primary split
affecting the sand content. The greater the Y,
the more sand up to this point. After that
point, the X (easting=729685) was
determinative (Figure 5a). The other splits
predicting sand in depth intervals SD2, SD3,
and SD4 were the X. While the primary split
for clay is also the Y (4555799.5) before the
Tmax (13.75 °C) (Figure 5b), the only split
for silt is the Tmin (1.75 °C) (Figure 5c¢). The
X and the TminG predicted the clay content
in depth intervals SD2, SD3, and SD4. The
X, the TminG, and the ELEV were the other
splits predicting silt in depth intervals SD2,
SD3, and SD4, respectively. In this study, the
explained variance in the soil texture ranged
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from 14 to 58% for the RT and from 15 to
52% for the MLR (Table 2). The range for
soil texture in other studies showed a wide

(Henderson et al., 2005; Mosleh et al., 2016,
Sindayihebura et al., 2017; Pinheiro et al.,
2018; Padarian et al., 2019; Zeraatpisheh et

variation, ranging between 5% and 51% for al., 2019).
the MLR and 9% to 69% for the RT
"Node 1 (Node 1 (Node 1
(a) [Entlre Group) (b) Enhéezﬁroup] (c) Enlnezﬁroup]
=22 = =
SAND1 £8.259 ‘ CLAYT =15.895 SILT1 = 15.841
Std. dev. = 6.691 | Std. dev. =5.140 Sld dev. = 2.440
¢ - Node 2 Node 3 1 (Node2 (Node 3
Node 2 Node 3
e Bt Y <= 45711415 Y5 45711415 | | Tmin<=1.75 Tmins 1.75
N=§ N=i7 N=17 N=5 N=6 N=16
SAND1 =61.140 SAND1 = 70.353 CLAY1 =17.353 CLAY1=10940 | | SILT1 = 20.200 SILT1 =14.206
Std. dev. = 6.890 Std. dev. = 4.969 | Std. dev. =4.654 Std. dev. =3.288| | Std. dev. =1.665 | Std. dev. = 2.332
| Node 4 Node 5
Tmax <=13.75 Tmax > 13.75
N=8 N=9
CLAY1 =13.788 CLAY1 = 20,522
Std. dev. = 2.309 Std. dev. = 3.851

Node 1 Node 1 ' Node 1
(d) [Entire Group) (e) [Entire Group) [Entire Group]
tN=22 3 —tN=22 N =22
pH1 = 4.9545 0C1 = 2.8286 TN1 =0.2523
Std. dev. = 0.5771 Std. dev. = 0.6928 Std. dev. = 0.0703
Node 2 Node 3 [ Node 2 Node 3 | Node 2 [ Node 3
ELEV <=1178 ELEV > 1178 ELEY <= 1668 ELEY > 1668 SLP <=22.85 SLP > 22.85
N=5 N=17 N=14 N=8 N=6 N=16
pH1 = 4.2680 pH1 =5.1565 0C1=24793 0C1 = 3.4400 TN1=0.3183 TN1 =0.2275
Std. dev. =0.1993 | Std. dev. = 0.4898 Std. dev. = 0.6098 Std. dev. = 0.2861 | | Std. dev. = 0.0736 Std. dev. = 0.0502

)

D

(Node 1
[Enhre Group)

CN1 11704
Std. dev. = 33?4

Node 2 [ Node 3

SLP <=28.42 SLP > 28.42
N=10 N=12
CN1=9858 CN1=13.243
Std. dev. =3.137 Std. dev. = 2.733

( Node 6 Node 7

TmaxG <= 20.65 TmaxG > 20.65
N=5§5 N=7

CN1 =10.654 CN1 =15.091
Std. dev. = 1.667 Std. dev. =1.617

Figure. 5. Regression tree models predicting soil properties in soil depth 1. a) sand, b) clay, c) silt, d) pH,
e) organic carbon, f) total nitrogen, and g) carbon/nitrogen)

For example, Pinheiro et al. (2018)
developed texture models whose explained
variance ranged from 38 to 51% for the MLR
and from 48 to 60% for the RT in the Guapu-
Macacu watershed, Brazil. Their RT models
performed better than their MLR models, as
occurred in the present study. Another study
(Padarian et al., 2019) used the RT and
convolutional neural networks (CNN) to
model soil texture. As a result, the RT
outperformed the CNN with a higher
coefficient of determination ranging from 38
to 42%, with an RMSE from 10.67 to 22.009.

The variables entered into the RT pH
models were ELEV, X, Tmax, TmaxG and
AET; X, ELEV, Tmin, Tavg, and PrecG
were the variables entered into the MLR pH
models. The explained variance for the RT
was 33 to 59%, with an RMSE from 0.28 to
0.35; the explained variance was 36 to 52%,
with an RMSE from 0.25 to 0.42 (Table 2).
The pH in the SD1 depth interval was
predicted by ELEV (1178 m). The greater the
ELEV, the higher the pH (Figure 5d). The
other predictors for depth intervals SD2,
SD3, and SD4 were X, TmaxG, and AET
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and Tmax, respectively. The explained
variance determined by the RT in other
studies (Henderson et al., 2005; Lourenco et
al., 2018; Pahlavan-Rad &
Akbarimoghaddam, 2018; Padarian et al.,
2019) ranged between 44 and 77%.
Pahlavan-Rad & Akbarimoghaddam (2018),
for example, modeled pH with an RMSE of
0.20 to 0.45 using the distance to the river,
elevation, and slope. The study (Patriche et
al., 2011) explained 52% of the variance in
the pH with an RMSE of 0.62 by MLR and
48% of it with an RMSE of 0.64 by the RT in
the soils of Romania. The predictors for the
MLR were Y, elevation, surface ratio, and
wetness index, and the predictors for the RT
were X, Y, and soil type. Variables in the OC
models were Y, ELEV, SLP, and DTR for
the RT, and were X, Y, RADIND, and PrecG
for MLR. The explained variance was 42 to
50% for the RT, with an RMSE from 0.23 to
0.40, and the explained variance was 30 to
46% for MLR, with an RMSE from 0.25 to
0.43. The OC in depth interval SD1 was also
determined using the ELEV (1668 m)
(Figure 5e). The other predictors for the OC
in depth intervals SD2, SD3, and SD4 were
the SLP, SLP and Y, and DTR, respectively.
The RT and the MLR were also used in the
studies (Mason & Sulaeman, 2016, Mosleh et
al., 2016; Zeraatpisheh et al., 2019), and
other techniques were used to model soil
properties, including terrain attributes,
remote sensing, and geology. The R’y
ranged from 0.04 to 0.36 for the RT and from
0.05 to 0.50 for MLR. While Mason &
Sulaeman (2016) found that the RT
(R*:RMSE=0.24+0.69) was better than the
MLR (R*+RMSE=0.05+0.76), Zeraatpisheh
et al. (2019) found that MLR
(R>:RMSE=0.36+0.4) was better than the
RT (R“RMSE=0.50+0.35). The variables in
the TN models were X, Y, and SLP for the
RT, and TavG and PrecG for MLR. The
explained variance for the RT ranged from
30 to 53, with an RMSE from 0.02 to 0.04,
and it ranged from 18 to 56 with an RMSE
from 0.02 to 0.05 for MLR. The only split for
the TN in depth interval SD1 was the SLP
(22.85%), which negatively affected the TN
(Figure 5f). The other splits for the TN in
depth intervals SD2, SD3, and SD4 were the
SLP, Y, and X.TheRT was also used to

264

model the TN in soils in some studies (Seiler
et al., 2007; Padarian et al., 2019). While
Seiler et al. (2007) found that the RT
(R?=0.83 with 0.30 RMSEP) was better than
the MLR (R?*=0.72 with 0.49 RMSEP),
Padarian et al. (2019) found that the RT
(R?=0.64 with 2.37 RMSE) was better than
the other techniques, such as the CNN and
partial least squares regression. The variables
in the CN models were X, Y, and SLP for the
RT, and Y, ELEV, and DTR for MLR. The
explained variance for the RT ranged from
19 to 26, with an RMSE from 1.28 to 2.29;
the explained variance for MLR ranged from
17 to 42 with an RMSE from 1.05 to 1.66.No
variables were entered into the equations for
depth intervals SD1 and SD3 for the CN. The
CN in depth interval SD1 was also predicted
by the SLP (28.42%) (Figure 5g). The other
predictors for the TN in depth intervals SD2,
SD3, and SD4 were Y, X, and Y. Almost all
of the RT models were superior to the MLR
models when considering model performance
metrics (R%q, RMSE, MAE, and AICc),
except for the pH, TN, and CN in depth
interval SD2 and the pH in depth interval
SD3 (Table 2). Considering the evidence
ratio, the difference between the AIC scores,
the RT models were 1.02 to 11.78, 1.62 to
10.66, 1.09 to 50.44, 1.19 to 16.16, 10.01 to
41.25 times more likely correct than the
MLR models for the texture, pH, OC, TN,
and CN, respectively.

Finally, at local scales, a comparison of
the RT technique with MLR to predict soil
properties shows that RT outperformed MLR
in the ability to increase prediction accuracy.

Conclusion

In this study, soil properties such as the
sand, clay, and silt contents, the pH, the
organic carbon, the total nitrogen, and the
carbon/nitrogen ratio were predicted using
soil formation factors such as topography and
climate. With this aim, first, the relationships
between soil properties and soil formation
factors were determined, and then, the most
commonly used MLR and RT techniques
were employed for developing models. Fifty-
six models in total, with twenty-eight from
each category, were developed. The most
important  variables affecting the soil
properties were the minimum temperature
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and the growing season  minimum
temperature for the physical soil properties,
the latitude (northing), the distance to the
ridge, and the minimum temperature for
chemical soil properties. Even with very low
coefficient determination, the RT models
predicted each soil's properties. In contrast,
the MLR models predicted each soil's
properties except for the sand, clay, and silt
contents and the carbon/nitrogen ratio.
Considering predictive performance metrics,
the RT models with a higher coefficient of
determination and a lower RMSE, MAE, and
AIC, were superior to MLR for almost all
soil properties.

The IPCC expects that the mean annual
temperature will change by 1.6-6.4 °C and
the mean annual precipitation will change by
at least -20% by 2100, while the atmospheric
CO, level will increase to 550 ppm. Indeed,
we found that the driving climatic factors on
the soil properties were temperature,
precipitation, actual evapotranspiration, and
radiation index. Therefore, climate change
may increasingly affect the soil organic
carbon and soil water parameters in the
future; thus, global climate change is one of
the most significant determinants in
estimating soil properties.

The techniques that someone with basic
statistical knowledge could use for modeling
soil properties in the present study are easy to
use, user-friendly, and low-cost. The
variables to predict soil properties used in the
models could also easily be obtained by
topographic maps (e.g., DEM) and climate
surfaces (e.g., worldclim.org) using GIS.
Therefore, the models in the present study
may be used mainly in tree species selection
for afforestation efforts in the mountainous
parts of the regions, requiring considerable
cost and labor. However, further studies with
large data sets and different tree species are
needed to improve these models.
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