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ABSTRACT. One of the objectives of this paper is to establish the exact con-
trollability for wave-type evolution equations on non-convex and/or cracked
domains with non-concurrent support crack lines. Admittedly, we know that
according to the work of Grisvard P., in domains with corners or cracks, the
formulas of integrations by parts are subject to geometric conditions: the lines
of cracks or their supports must be concurrent. In this paper, we have estab-
lished the exact controllability for the wave equation in a domain with cracks
without these additional geometric conditions.

1. INTRODUCTION

The presence of a crack in equipment (especially under pressure) requires, for
obvious safety reasons, to know precisely its degree of harmfulness. When this crack
propagates, under cyclic loading, it is important to evaluate and to quickly control
the evolution of this degree of harmfulness and more concretely the residual life of
the cracked structure.

In the works of the pioneers and precursors, not least Kondratiev [1], Grisvard [2],
Moussaoui [3] and Niane [4], the control and removal of singularities were estab-
lished in domains with corners or cracks.

Indeed, when these cracks propagate, under cyclic loading, it is important to eval-
uate and to quickly control the evolution of this degree of harmfulness and more
concretely the residual life of the cracked structure. Thin plates and shells are
widely used in aeronautics. Due to the significant stresses to which the structure
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of an aircraft is subjected in flight, for example, the appearance of small cracks is
inevitable. Depending on the situation, these cracks are more or less dangerous;
thus, certain cracks do not propagate, on the other hand, others present a certain
risk.The risks alluded to earlier must, consequently, be curbed. So, once a crack
has been detected, it is important to know if it can be dangerous or not? The
safety of persons and that of the goods involved means repairing the work first and
foremost. Notwithstanding, repairing all the cracks won’t be necessary as, if the
crack is not dangerous, it is no good repairing as it will be costly.

Accordingly, it is important to figure out whether or not the crack is dangerous,
and whether it can be spread. Apart from extreme cases (very small or very large
cracks), this diagnosis is not easy to make because even a small crack can spread
brutally. It is very clear that the accuracy of this diagnosis is very important.
More recently, Seck [5], Bayili [6], taking inspiration from the exact controllability
in Lipschitzian domains by Costabel [7], Niane [8] and Lions [9,10], established
results of exact controllability of the wave equation in non-regular Sobolev spaces.
But, in all these works, the domains admit a crack or a corner or even cracks with
condition of control: the lines of cracks are concurrent (or the supports of the lines
of cracks are concurrent).

In this paper, without making additional assumptions and conditions on the crack
lines and their supports, an exact controllability result was established for wave
equation.

2. REMINDERS OF FUNDAMENTAL RESULTS

2.1. Problem position. We denote by 2 an open polygonal uncracked, non con-
vex and bounded of R? and for 7' > 0, we denote by Qr = Qx]0, 7] .

Let T' the boundary of €2, v(x) the external unit normal at all points  (apart from
the vertices) of I' and X the lateral border of the cylinder Qr.

I" is the union of a finite number of closed line segments; the corresponding open
segments are denoted I';, 0 < j < N and S;; the end common to I'; and I'; if it
exists. We denote by w;; the measure of the angle made by I'; and I'; in S;; towards
the interior of .

We denote by v; the unit normal vector outside I'; and 7; the unit vector tangent
to I'; and directed towards the vertex S;. For zp any point of R?, we consider the
function m(z) = x — z¢ and a partition of the border as follows:

I'p={zelym(x)-v>0} Ti={zel;m(x) v<0},
and
25 =T5x%]0,T7.
Let ||.|| be the Euclidean norm in R? and introduce the following constants

Ry = R(zp) = max ||z — ]|, and Ty = 2R(zp).
zeQ
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Let also f € L?(Q) and y € Hg(2) be the unique solution of the homogeneous
Dirichlet problem

(P1) { _yﬁy::Of ’ (1)

In the space H = L?(2), we consider A the operator defined by:

D(A) = {y € Hy () -y € LAQ)},
VA e D(A), Ay = —Ay.

A: is a compact positive inverse self-adjoint operator see Brezis [11] and Hormander
[12].

y is solution of (I))(P1) = y € D(A).

Let m + 1 be the number of non-convex angles of the 02 boundary of the domain
Q having m + 1 vertices (S;)o<i<m.-

It has been proved in Niane [4] that if @ is an arbitrarily small part of {2 not meeting
any vertex of cracks, there exist regular functions (g;)1<i<m With compact support
in @ such that for all f € L?(Q), if (A;)1<i<m are the coefficients of singularities of
the problem (P1) then the problem

yr = 0. @

72 {

admits a solution § € H*(Q), with u = — > Aihi,  A\i = [, fwidx where w; the
singular functions Cf. Grisvard [2] and < g;,w; >= §;; Moussaoui [3] and Niane
[4].

Let for i € {0,...,m}, (r;,0;) represent the polar coordinates of a point M of Q

N
relatively to the vertex S; with r; = || S; M || Gilbert [6].

Remark 1. The singular functions w; are harmonic

—Aw; =0 sur Q,
w; =0 OO\ {z;}.

2.2. Internal control of the homogeneous waves equation on a non-convex
domain. Let y: solution of the following homogeneous wave equation

y'—Ay=0 inQr,
(EOH) : y=0, in X, (3)

y(0) =0 ¥'(0) =y  in Q.
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FIGURE 1. Non-convex cracked domain

/!

Ay =~y in Qr,

(EOH) <= (EOH)' y=0, in X, (4)
y(0) =y ¥ (0) =1  inQ.

Let (yo,y1) € D(A) x H} () = the solution y of the equation (FEOH) (3) verified
y € C(0.T; D(A)) N CV(0,T: HY(©) N C2(0, T L2(2).

In addition, in Grisvard [2], the solution can be decomposed as folloow:

Y=yr+ Yoy Ni(t)S;(t) with:

Ai(t) = [o(—y")wi(t)dt and S;(t) = r*isin(a;60;) with a; : the singularity exponent
defined by «; = w-» Wi : the aperture angle at the vertex S;.

As in the first part, we can, for any ¢ > 0, add an internal check u(t) = — > \;(¢)g;(¢)
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of such that if g is the regularized solution of the equation
—Ag = —7" +u(t) n Qr,

y=20 mn X, (5)

9(0) =90, ¥'(0) =5 in Q.
then § € H?(Q).
In fact, § = 0 on the edge X, the solution y € C(0, T} H2(Q) N H(Q)).
Let V be a subspace of H'(2) of admissible solutions for the problem (EOH)
defined by

V={jeH(Q)/ js, =0} (6)
For continuity, let us state the following proposition:

Proposition 1. The problem (EOH)' admits an unique solution ¢ in the space
V' and there exist a constant Cr > 0 such that

1

~ - ~ 2
9llco,rmi ) < Cr {HyOHHé(Q) +l9llzz )| - (7)

Proof. Let A be the unbounded operator of L?(Q) previously defined. According
to Spectral Theory and by Fourier transform, A is diagonalizable and there exists a
countable Hilbertian basis of L?*(Q) made up of eigenvectors (zp)gen+ C D(A)

such that the sequence of eigenvalues (Ag)r>1 of associated eigenvalues verify:
(Ak) / +oo and Ay > 0.

2Kk € Hé(Q), —Az = A2k (8)
The family Z = (2 )x>1 Hilbert base of L*(Q) ie § € L*(Q) == § = 3> Jz) with

1
N ~ 9 ~ ~ 2
gk =<1, 2k >12(0) and 35,5, 27 < +o0. What’s more [|§]| 1> ) = (Z::i yl%)

SIS

§EHY(Q) <= §=> dkzk, Y b < +o0 and [[§llme) = | D_Mdi | - (9)
E>1 k>1 E>1

So, if § is solution of (EOH)' then
g(t,z) = Zkzl Jr(t) 2k (2),

Gok (%) = X p>1 Jowzk (),
R (10)

Gue(@) = g1 J1kzk(2),

Seor (10 = (D)) 21(2) = 0.
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We multiply the relation by the eigenfunctions z; and integrate on the cylinder

Qr
O (t) — Mg (t) = 0,
91 (0) = Jok,

k(1) = J1k-

And, for all & > 1, the solution of (see Lions [9,10])is under the form

. R . Sin(\/ /\kt)
Uk (t) = gorcos(\/ Ait) + G1p——F=,
(t) = Yorcos(/ e
So
N N o sin(v/ ARt
Ok (t,x) = Z <y0kcos(\/>\kt) + ylk(k)) zi(x).
k>1 VA&
Assume
||@||20(0,T;H3(Q)) = Supte[o,T]|@(t7~)||§{3(Q)
= supieior) Y [Melln(t)]
E>1
—

||g||2C(O7T;Hé(Q)) < el supreio,mldn(®)]?
k>1

Based on the relationship

2
. N Y
||y||?;(o,T;Hg(Q)) < 2 ZA’“ [ygk + )\1:}

k>1

< 2 Z M [0 + Gix]
k>1

let’s remember that

Jo(®) = D ps1 Yorzr(T),
o € HY () <— a1 Akl < 400 and

H?)O”%{é(g) = Ek>1 )‘k?jgk'

(11)

(15)
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and

() = D s J1kzk(T),

g1 € LA(Q) &= { g1 Ml < oo and (16)
||?31||§{3(Q) =2 k1 Ak

Therefore, we get that § € C(0,T; Hi(Q2)) (1) with

3llco,rm@y < Cr (1ol + ]z (17)

]

2.3. Application to the removal of singularities. Let § regularized solution
of the equation

7' = Ag+ 30 g Jo (@ widz =0 in Qr,
(EOS) : §=0,  in3p, (18)
g(0) = go, ¥'(0) =1 in .
It will then be a matter of showing that the solution g of the equation (EOH) (3)
is in C'(0,T; H2(Q2) N H () ?
In general, it was proved in Grisvard [2] that the following wave equation

o' — Ap=fe L0, T; H (D)),

p=0 n X,
(EOS), : (19)
©(0) =g, ¢'(0)=¢; inQ,

(¢0: 1) € D(A) x D(A32),

admit a solution ¢ € C(0,T; D(A)) N CY0,T; HY(Q2)) N C(0,T; L*()) and that
this solution verifies the inequality:

Ielloorspean < K (ol + kel p, + 1 llmge) (20)

called continuous dependence of the solution compared to the initial conditions and
to the second member.
Let us apply this Grisvard result to the equation (EOS) ; For this consider for
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¢ € C?0,T; L*(%)), § = y(¢) is solution of the equation
7' = A§(Q) = = X% i Jo (widein Qr,
(EFOS)s : 7(¢)=0 m X,

9(€)(0) =5(Co); 9(Q)'(0) =5(¢y)  in Q.
(EOS);5 and the inequality implies a priori that y(¢) € C(0,T; D(A)) and that

y(Olleo,r;pay) < <|Zgz/ ¢ Q)) (21)

Consider the application A : ¢ — y({); Let us show that A is contracting ?
Let (1 — y((y), (o — y((y) and ¢ = ¢ — (o —> y(Q).
Applying it to the equation (EOS); we get

7'(C) — AG() = = > 9i ([ ("wid) in Qr,

§(¢) =0 in Xr.

More y(¢1)(0) = y(¢5)(0) = 0 (y(¢;) and y(¢y) have the same initial conditions as

Yo and y1).
From inequality we deduce

(EOS)4

Hy(C)HC(O,T;D(A)) < <| Zgz/ C//wiHLl(Q)dx) s (22)
i=1 Q
< (;min.nwin.nfgc dx|) , (23)
< (Z g¢||.||wz-||||<'||L1<m.mes<ﬂ>> L@
=1

< Ky <Z|gil|ﬂg(n)|wi||L1(Q>||C||L1(Q>> ; (25)

i=1
< Ksl[Cl|zr)- (26)
With the constant K5 = 31", ||gil| g3 o [lwil |21 (0 -
Let us show that 0 < K5 < 1 ie A is contracting ?

We know that the dual singular functions are such that:

w; = r-%sin(a0;)n; + ¢ with «; = WLL and w; > m, m;a truncation function
in the neighborhood of the vertices of z; and ¢; € H}(Q) for all i € {0, ..., m}.
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The application A is Lipschitzian, let us show that it is contracting ie 0 < K5 < 1
5

fwil| = |[r~ % sin(a;0:)n; + ll, (27)
1 .
< o llsin(aabn]| + 1G] (28)
1
< E"‘HCH (29)
where ag = minie{17___7m}ai thus rclw < T%O

The functions (g;)i1<i<m are compact support on & which is compact, so there is
go = mazi<i<mgi on @ such that ||g;|| < ||go|| for all . Therefore

m
1
Z [ga|[||wil| < m2||go||TT0 + C1 with C1 > 1 a constant.
i=1
As a result,

1
0< K5 < m2|\90\|r70 +Ch.

A sufficient condition for A to be contracting is that

1 L jog( m2llgall
m2|\90||7w70+01<1<:>r26“° g( 1= ) (30)

Remember that
r=[[SiM]| = ||z — ]
ie M #£5;,Vie{l,..,m} on @.
Hence if M is far from the top of the crack ie 7 >> 1 the application A is contracting.
Thereby,

y(Ollco,r:pa)) < KsllCllez0,m;22(0)) (31)
Therefore, if holds then the application A is contracting and according to the
Fixed Point Theorem y(¢) = y(¢;) — y(¢3) = 0 and y being continuous so ( is
unique.
Hence the equation

70 -850 ==Y 0 [ @(Owidz 0 Qr,
i=1

(
Q

u(t)

(C) = 0 mn ZT7

<
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Proposition 2. The solution § is the reqularized solution, therefore the singularity

coefficient \ associated with it is null.

Proof. Let A the singularity coefficient associated with §. By definition,

A= /u(t)widx,
Q

= / —Zgi/;&"widx w;dz,

Q = Ja

= —/ / Zgzgj”wzwzdxdx,
QIR =1

= 7/ / Z < gi, w; > Agw;dzrde.
QIR

so < gi,w; >=1=—=

A = —// Agw;dxdz,
Q Q;
—//ZgAwidxdx

Q2=

because s, = 0.

We also know that the dual singular functions are harmonic ie Aw; = 0 hence

A=0

O

Remark 2. The corrective term or internal control u(t) depends on §", therefore

Y.

3. USE IN THE IMPLEMENTATION OF THE HUM METHOD

3.1. Preliminaries. Let y solution of wave equation

y'—Ay=0  inQr,

y(0)=yo, ¥(0)=y1  in Q.

For initial data yo and y; belonging respectively to H(Q2 and L?(Q). Let also be

the energy of (FOH) defined by

1
Ey = 5 (||yo\|H5(Q) + \|yl\|Hg(Q)> .

(39)
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We know that in a polygonal domain with corner, (z — xo).yg—f is not always a
square integrable on the edge near of corner. Grisvard [2] got around this difficulty
by imposing drastic geometric conditions. And, in Seck [5] this result has been
generalized with less constraints in non-regular Sobolev spaces. Also Niane [4] have
shown, without geometric conditions, the exact controllability of the wave equation
by combining a boundary control and an internal control on a small part whose
support is in the vicinity of a vertex crack.

3.2. Implementation of the HUM method. Let us return to the equation of
the following waves

¢'—Ap=u(p) inQr,
(EOS)s : =0 in X, (40)
@(O) = @Oa Q’/(O) - (701 in €.

From the above, with u(p) = Y7, g; (Jq ¢"widz), the solution ¢ € H?(Q2).
Indeed, we multiply the equation (FOS)s by mV{§ and integrate by parts:

/ (@" — Ap)mVydrdt = A mVyu(p)dzdt, (41)
= —mVyigi (/ cp”wzda:dt) (42)
i=1 T
Assume
I = / (" — AP)mVidzdt (43)
= / @"mVydzdt — A ApmVydzdt (44)
- I - I

3.3. Some integrations by parts.

3.3.1. First Term I;.

L = / @"mVydzdt,
Qr

T
= / / @"m(z)Viydzdt,
o Ja

T ~ 2~
_ ~ 0P 0°7

= 'm(x)V de—/ /fm dtdzx,
/Q“" (z)Vydzlo o Jo ot Fotox,
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3 _ T op 0,07
- /Q i) Videly _/ (/ (8t at(axk)) d‘”) di,
. y 0%y
/ dfc\o / / < Mk 55 > dxdt,

_ </> 3y e 9y,
- D 10 // koo, ot

Noting that: N = 2,divm = Zizl 887;: = 2 and applying Green again we have:

op 0y T omy, 0p 07 a7
L = [ Zmyo—daff - —
! o ot * oz, dzlg /0 S T T T L2 | d.
=0
dp 0y . r 99 0y
ot mkaxkdxh) + o dwma ot dxdt.

3.3.2. Second Term I.

I, = ApmVydxdt,
Qr

T
= / / ApmVydxdt,
0 Jo

.
Op op 0y ]

= \AV de — | == do| dt,
/0 /Q 4 (m"ak” /man F o

T r -
- / 02 e 2y — [ 02, 00 d]dt,
0

Q a.’L'Z axk 90 on ox Tk
T - .
_ omy 0p y &p / dp 0y
= /0 o 0 0z ot ) o 8x Bzvk o O m’“amkd dt.

L J
Let’s study the integral J:
o0p 023
q Oz; M Ox;0xy
/ m 0p &9 dx
k 3% 83318:1%

8y x—/ mEn 0p &ljda
ﬁxk 5‘:51 ox; 90 k kaxi 0x;

J dz,
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By grouping together we get:

T -~ ~ -
omy 0p 7 / 0 P |0y

I = XY 7 d

2 /o UQ Jz, 0w, 0en T o D " D) B,

Op 8yd 8(,0 oy d]dt,
Tk

e} ox; O0x; 00 8n ko
o om0 g 0
o Qr 8% ’ 81}1 8xk dudt + Qr &rk (mk 8%1)

99 0y 9% 9y
/ m.n oz, 6chal odt - Bnm o kdadt

9y

oz, dxdt

Back to I =11 + I and (45):

——dxdt

B omy 0p g
I= d |0 / dwm T 3td xdt + Ow: O, D

9 @ a 0p 9y a;a o7
xdt — t— —_— np——dodt .
+/QT axk( (“)xz)(“)xzd / mn ox; (Q)xzd od /ZT 3nmk Tt oxy, do

L

Also
1 0P

L = 8—m .nVydodt,

= 1/ <a¢>mnd0dt
on

The two equations have the same initial and boundary conditions.
Let’s study L 7

0p _0p 07

0x; “on" or;’
Decomposition according to the normal and the tangential. However
00 _ 0P
% =Vp=—mn
on; 8n 6n1 ! ¥ on

So we deduce that:

_[op Oy, T / dp 0y / omy 0p 7§
I= 8t mka dx|y + o dwm ot 8td xdt + 95, O, 8xkdacdt—i—

09 gt — 0% 0y _1/ 9%,
8xk 8%) B, Lt / Mg = e dodt =5 ET( 5) m.ndodt.  (45)
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3.3.3. Third Term I3.

/ { mVngz (/w widl'> dmdt},
/ / { mVngz ( / w”wid:c) dxdt}7

- mVy < gi,w; > @' dxdxdt,
IR

d;i=1

/ //mVy(p”dxdxdt
—/ //mV@]V(pdwdmdt—/ myp(o)dodt,
o JalJa sr Joo

=0
/ / / mVyVedrdrdt.

Let’s recap I = I3([@6) <>
Q%fmk(,fjdx|§+/wa %%d dt + /QT %’Zf g:i azkd vt
+/QT aik( 0%)@3‘11‘1 dp/ mn gigid dt;/ET(gi) m.ndodt
- / / / mViVdedrdt  (46)
0 QJQ
1 03

0P . 5 B 0y 0p 0y
2/ET(({)”) m.ndodt = ot mkax dz|t + /Q divm 5% ot Y qudt

I3

omy, &p y 9y
+/ 8:@ "Ox; Oa:kd o + 8xk 81‘1)81‘161 vdt
7/ m.n yd dtJr/ //mVngodzdxdt (47)
S ox; 8302

3.4. Getting started with the HUM method. For zy € R?, assume
Y =T5x]0,T[, % =Tox]0,T].
Let ||.|| the Euclidean in R? and introduce the following constants.

Ry = R(xp) = ma%(Hx — x|, To = 2R(x).
TE
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Let us define in the same way the energies (see Lions [9, 10]) associated respectively
with the systems (EOS)s, (40) and (EOH) :

Bt do2) = 5 | [ IVe0Ida+ [ (G20 a].

Bt i) = | [ 19301 edo + [ (5 0)2as].

3.4.1. Direct Inequality. Back to the relationship .

1 0P . o 0p oy o0p 0y
2/ET(C,M) m.ndodt = atmka kd x|l + QTUZwm8 9 dxdt +
8mk 990y 9 ¢\ 9y
. — — dt
o 89@- 9, 0 U [ Ty " oy G, T
- / A / / / mV§Vpdrdrdt (48)
5’:17z ox;

1 ~ T ~ i
= 7/ (%)Qm.ndadt—/ //ngjV@dxdxdt: %@mkaiydﬂg
7

2 on
+/ dwma—a—d dt+/ 5‘mk 09 4 ——dzdt
Qr

ot Ot Ox; Ox; Oy,
0 o . 0f / o0p 0y
dxdt — dodt. 49
+/QT axk( 8%)8% mn Ox; 0x; (49)
We know that:
op 0y . dp 0y . 1
- dzl; < R, - 24 50
Q at mkamk x|0 - o Q 8t 8$k Jj|0 ( )
and noticing that: |ab] < 1(a® + b?) we have:
99 9y 1 / 0.9 07 1o
de < = — — dx. 51
o atan =2 ), |G g | (51)
Therefore:
920y jr T 00,9 , 07 9
< = . 52
o Ot dxy |0—2/QT (Cop)" + (g, " | ot (52)
Assume
[0F3 1% axk
Yr=YX7uUXs, My = maxi<; y<oMaZ, 3, 87(x)|

Consider an open ball B; which does not meet any crack vertex ie h = nh (In the
general case we can recover the domain 2 by a finite union of B; ie Q = UN% B;).

omy, 0p 0y B / omy, 0p 07
Qr Om; “0x; axkd dl = B, x]0,T Oz; 0x; (“)xkd wdt,
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M ~
< B[ EEr e (2 s
2 J.xjor L Oz oz,
M A ~
< 5 / (11913 ze) + 173122 doa(s3)
B; x]0,T[

Relationships 7 , and , we deduce:
1 [ 05, o [T . Y[ 0p 0y
- °gr . _ < R
2/ZT((%) m.ndodt Z/ // mV§Vedrdrdt < Ry Z_;/ B¢ 90,02 z|F +

T 8(70 2 3y M,y ~ 112 ~
|G+ ] o dt+2 [ (198l + il e (50
1 0P ot dp 9y
— < .
= 2/2T(an)mndadt < ROZ/ ataxd\o
&P 2 0y o
- dzdt
* / { 5$Ck)
M
4 Z 1/ ||w|\L2 ) + Vil a2 | dedt
+ / / / mVyVpdxdxdt. 55
; L) & (55)
Therefore
Ng T N T
> / / / mV§Vedrdrdt < ROZ / / ViV drdadt
i1 Y0 B; /B, Ny B; JB;
op 2 Y o
<
= ROZ/// [8:% G|
<

wY [ [ (a2 G
< Ro imeswo [E(t, 80, 21) + E(t, 5o, 1)) - (56)

Starting from the fact that the energy associated with the wave equation is constant,
we obtain:

Ny T N
> / / / mVjVgdedrdt < 2Ry Y mes(Bi)E(t, @y, ¢1)- (57)
i=1 70 J/B;JB; i=1
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So the relation implies
N

1 0P 5 690 oy ,
— <
/ (an) m.ndodt < Ry. E 9t Bay —dx|;

" *Z/ [8% axk)]ddt

Ns M, ) )
i Z 7 / i x]0,T[ |:||v<p||i2(R2) + ||vy||L2(R)2 dxdt
i=1 ,

+ 2Ro Y _mes(Bi)E(t, ¢y, ¢1), (58)
1 9% T.Ry & % 07
- Vlmndodt < —2. / X2 dxdt
Q/ET(an)m“ odb = 5 ; 5 o + (g
N,
T P .o 9y 1o
= s dadt
* zz_;/B [<at) ()’
N,
- Ml ~ 112 ~
+ — Volltzmey + I VY| L2 r)2 | dxdt
; 2 JBixjo,1 [” It () Volle }
Ns
+ 2Ro Y mes(B)E(t, &g, ¢1), (59)
=1
1 % TRy+1 & %
= —V2m. <0 . / Z)2 || 12 (r2Y)2
2/ET(an) m.ndodt < 5 Z:ZI . [( 815) + (IV@lL2®2)) ]dwdt-ﬁ-
N, ~ Ny
2 Ml/ |: 8y 2 - :| ~ ~
— =)+ (||VY|| L2 (r2 dxdt + 2R, mes(B;)E(t, ¢q, ¢1), (60
22 Jpoor (3¢ (IVllL2®e)) o; B;)E(t, o, 1), (60)
1 [ 07, TRo+1 M 4L .
5 3. . < — Y T 5 i » P0os
Q/ZT(an)mndadt < ( 5 +2R0;mes(B) E(t, 39, 1)
From
1,00 4 .
||7||L2 < C%(Q)E(t,<ﬂ0a<ﬂ1)v (62)

N,
T. 1 M -
where CUN) = <R(2)+ + 71 + 2R, E mes(Bi)> . (63)
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3.4.2. Inverse Inequality. Feedback on the relationship

1 0P . 5 op oy . 7 / . 0P 0y
- dodt = ——my——d. divm 2L Y gedt
2/ET(an) m-ndo o 0t " gy dtlo F | divm gy
Omy. 0p 0y / 0 a7
. —dxdt dxdt
+ /QT O0x; Ox; Oxy, vt + Or 8mk( 8:@)8@

— / m.n gf yd dt—|—/ //mVngpda:d:cdt (64)

omy, 0p 0F NS/ /T omy, 0p 0F
—Z dxdt = ——dzdt,
/ Ox; Ox; Oz Z . Ox; Oxz; Oxy,

omi |, 09 o 07 |5
< =
- Z/ / 0x; {39:1 +(81:k) dadt,
1 T omy,
< = % 22 U 22
< 3 NIvel +|Vy|R]§/Bi/O Lz
1 112 112 g
< 5 (I3l + V3] V. [ mCoi,
T -
< 5 [IVElRe +[IVillze] Nsm(z)
T.RoNs
< 20 [IVellz2 + 1Vllg-]
We deduce that:
Ns T
omy, 0p 09 T.RyNs 12 2
_ > — 2 2.
Y[ ] Gk dnd > SRR (VG + VAR (65)
In addition, let us pose My = min,cq||m(z)||3.:
0% 98 g r 9% 9y , da|
o Ot oz, o =M o Ot xy 110
therefore
3@ Jy T 1/ 0P .4 99 \o
——dx|y dx — ——)*| dxdt
o 0t azytodr =g || Gp) (G| dvdt =
1 9912 99 ¢ 0y
—= — dadt < — ——dx
2/ {(&) +(3xk)} | Ot 9y 0
So

8@ ay MQT/ 87@2 07 |
o " g 0 2 7 T[(ﬁt) + ()| ot (66)
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Also, from the relation we deduce

N T N
-> / / / mVijVgdrdrdt > —2Ry Y mes(B;)E(t, &y, ). (67)
— B; JB; =

We also know that,
/ a( 3“")8% dt = / Omy, 9 0§ . dt+/ mka 9 gt
Q Q T

. Oxy, *or; Oz, . Oy Ox; Oz dz? Ox;
op 0y / op 0y 0p 0y
dodt = dodt dodt
/ mn Ox; Ox; 510+ mn Ox; Ox; + In - n@xz ox;
m.n<0 m.n>0

By grouping and reducing simultaneously we have:

. aN M,.T 8‘70 2 a7y
> - i
SIS ey = 2L [ (224 (2L dvar
T.RoNs . ~
- S IVElR + 931
N a a
_ 2Ro;mes(3i)E(t7¢o,s~01)+/Q dwmaﬁd wdt
O (m, 2200 9% 0y
+ or axk( axl)a Zd wdt — / m.n 8x18xld odt —

2 2

N,
M>. T T.RyNs Z My T .
NPy 2 (‘ e e )E(t,soo,solx (68)

i=1

N
M. T T.RogNs . o
> ( 2L _ 0 _2RO§ mes(BQ) E(t, 09, $1)-

2 2 ;
i=1
By posing
N,
M, T T.RgN ~
C’}(Q)( - R2° SQROZmes(Bi)), (70)
i=1
1, 0p -
Sl ||L2(ZT > Cr(QE(t, 2o, §1)- (71)

3.5. Exact Controllability Result. Either the operator A : H} () x L?(Q2) Lions
[9] defined by:

A(@o; 1) = (7(0), =5(0)). (72)
Indeed, we know that Grisvard [2]:
A e L[HH(Q) x L*(Q), H () x L*(Q)] and (73)

(69)
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1A(@0, @0l Fr-1 () = 15022 () + 15 (0)1 -1 (- (74)

Considering &,, € C(0,T; D(A)) N C(0,T; D(A2)) N C%(0,T; L*(R)), and also
Pon € D(A), 3, € D(A}).

Assume (,, = {u(cp)] X6 = [>iq 9i (Jo ¢"widx)] x5 where O is an arbitrarily
small part of the domain 2 not meeting any vertex of cracks.

Let 2z, € C(0,T; HZ(Q)) N CY(0,T; L?(2)) solution of the following equation

2l — Az, =¢, in Qr,
(EOS)s : (zn).x5 =0 on X,

2 (T) =2, (T) =0 in Q.

So we have :
(A(@ons P1n)s (2005 210)) = (2,(0), Pon) — (2n(0), 1) - (75)

By multiplying the equation (FOS)g by ¢,, and the equation (EOS) by z, we
get:

[ G- aepdni+ [ (@l Ap)zdeit = /Q S il ( / ||¢"||.||wi|dm) dt.

T =1

In particular on the open O:

—/ (20 — Azy) @, dxdt + / (Pr — Ap,,)zndxdt
0x]0,T]

0x]0,T
/O><]0
which is also written

Zmn(

T, =1

/ Zugin(/ ||¢”||.||wz«|dz>dt e ) T (P [T
Ox]0,T[ ;=7 (@]

05, \>
- ~ ) @, (0)dodt
/80><]0,T[ ( ov ) ()

=0

Oz 2
— =) z,(0)dodt.
/80><]0,T[ ( ov ) ©)

=0

[
||ca"||.||wz-|dx) dt,
O

)
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Therefore
m
/ anlw(/ ||¢“||.||wi|da:) dat
Oox]0,T[ ;=1 @]

Passing to the limit,

(Ao, 1), (P 210} = [ anin(/ |¢o"|.|wi||dx) i,
Ox]0,T[ ;4 o

But we also know that

Lo Sl ([ 12w ) d
Ox]0,T[ ;=4 o

- <¢m Z;) |g + <§b;u Zﬂ> |gv

s

= <A(9~00n’ Coln)’ (@On’ Coln» .

Lo 181l o dode,
ox]0,T[;,— /O

] / o"dxl|.| < gi,w; > |dxdt,
/OX]O,T[ ; (0]

1 -
am |5 [ 1@ as).
o

By covering the domain 2 by a disjoint finite union of openings O; ie 2 = U;il O;
and Oian :@ lf’L#]
Consequently, we deduce that:

(Apo, 1) (#0,1)) = Ko (T = To) Eo. (76)

A being linear, continuous and coercive on H}(Q) x L?(2) for T > T, then accord-
ing to a Classical Controllability Theorem, A is an isomorphism of Hg(Q) x L?(f)
in L2(Q) x H71(Q).

Let (20, 21) € L?(Q) x H=1(Q), the following equation

Y

Y

A(@()a ‘701) = (217 —20)7

admit a unique solution ($g, @1) € H} () x L*(Q) for all T > Ty,
Let us now consider ¢ and z respective solutions of the equations (EOS)s and
(EOS)¢ with as initial conditions:

20 = Qboa

21 = ()bla

Cn = (Zgi (/ @”widw)> Xo»
i=1 @

and

¢xXo  on X3,

0 on X5
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By a uniqueness of solutions theorem, we deduce that: @ = z so therefore z(T) =
2(T)=0.

Hence the result of exact controllability.
Remark 3. This result does not depend on any geometrical condition: consequently

the crack lines may not be concurrent; and, the exact controllability result has been
proven.

Y Y Y

I
4

X

FIGURE 2. Non-convex domain with non-concurrent cracks

4. CONCLUSION AND PERSPECTIVES

The presence of cracks, corners or angles in a mechanical device or materials
always leads to the appearance of singularities. And, once the diagnosis of these
cracks (desired or not) has been made, it is necessary to try to control them without
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major geomeric constraints.

One of the objectives that we set ourselves, within the framework of this research
paper, was assess the exact controllability of the wave equation in the cracked do-
mains without constraints on the cracks. If anything, the formulas of integrations
by parts (formulas of Green in the fields with corners and/or cracks) could be done
(to our knowledge) only if the lines of cracks or their support were concurrent.
Based on recent work by Dauge [13, 14], Dauge [15] and Costabel [16], we were able
to establish, without additional assumptions on the nature of the cracks or their sup-
port, the exact controllability of the wave equation with more cracks. Consequently
its results were obtained on a non-convex polygonal domain with non-concurrent
crack lines. From the results obtained in this paper, certain questions naturally
emerge. Our goal is to no longer have constraining geometric conditions (” Closer”
to reality).

When it comes to the perspectives, we have a double goal that we plan on achieving
in the near future. Firstly, generalize in higher dimension the results obtained in
this paper. And,secondly, make numerical simulations to support its theoretical
results.
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