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Abstract 

 

RNA interference (RNAi) is one of the primary machineries involved in 

the regulation of gene expression using small double-stranded RNA 

(dsRNA) in eukaryotic cells. MicroRNA (miRNA) is a class of small 

non-coding RNAs, regulating gene expression through canonical and 

non-canonical ways. Previous studies have shown that miRNA coding 

sequences make up 1% of the human genome and currently 1917 human 

miRNAs are displayed in the miRBase database. Expression levels of 

circulating miRNAs are related to various pathophysiological conditions 

such as cancer, infectious conditions, cardiovascular diseases, 

neurodegenerative diseases, and many more. Therefore, it is important 

to identify, detect and analyse miRNAs by using in silico and 

experimental analyses. In this review, after a brief description, we 

discuss the use of miRNAs for diagnosis and prognosis as biomarkers 

and biosensors in addition to miRNA-based therapies. 

 

1. Introduction 

 

RNA interference (RNAi) is one of the primary machineries related to gene expression 

regulation in eukaryotic cells. RNAi delivered into cells initiate the degradation of messenger 

RNA (mRNA) via the cells’ inner mechanism (Figure 1). This mechanism limits the gene 

expression by either suppressing transcription or activating a sequence-specific RNA 

degradation process (Almeida and Allshire, 2005; Deng et al., 2014; Xin et al., 2017). 
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Figure 1. RNAi mechanism (Brüggenwirth and Martins, 2020) 

 

In the process of gene expression regulation, Dicer protein binds to dsRNA, cleaving it into 

small pieces named as siRNA. These siRNAs bind to an Argonaute (Ago) protein which is 

part of the RNA-induced silencing complex (RISC). RISC divides siRNAs into two parts 

including passenger strand and guide strand. The passenger strand is degraded while the guide 

strand serves as a search probe that connects RISC for complementary RNA targets. After this 

identification, targeted gene expression could be regulated by various mechanisms 

(Brüggenwirth and Martins, 2020). 

 

2. Small non-coding RNAs (sncRNAs) 

 

    sncRNAs with 20-25 nt in length including microRNA (miRNA), small interfering RNA 

(siRNA), and short hairpin RNA (shRNA) etc. have gained considerable attention in a wide 

range of applications in plant, animal and human (Liu and Paroo, 2010; Castel and 

Martienssen, 2013; Inal et al., 2014; Movahedi et al., 2018). These sncRNAs perform their 

mechanisms via both transcriptional gene silencing (TGS) and post-transcriptional gene 

silencing (PTGS) (Axtell and Bowman, 2008; Covarrubias and Reyes, 2010). Both in silico 
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and experimental analyses have been performed to identify novel sncRNAs and their targets 

playing important roles in different metabolic pathways (Chetta et al., 2020; Zhang et al., 

2020; El-Kafrawy, et al., 2021; Garcia et al., 2021; Rana et al., 2021). Obtaining data from 

these investigations provide new insight to figure out the complexity and functions of 

sncRNAs (Wittmann and Jäck, 2010). 

 

2. miRNA 

miRNAs are 17-25 nt in length, constituting up to 1% of the human genome (Friedman et 

al., 2009) and currently 1917 human miRNAs are displayed in the miRBase database 

(Kozomara et al., 2019). They regulate gene expression by binding to seed sequences of target 

mRNAs (Figure 2) (Bartel, 2004; Bartel and Chen, 2004). In eukaryotic organisms, miRNAs 

target mRNA involved in various metabolic pathways such as growth, development, abiotic 

and biotic stress (Eren et al., 2016; İlhan et al., 2016; Jian et al., 2017; Stepien et al., 2017).  

 

Because of technological limitations to investigate miRNAs, the significance of miRNAs 

was understood after the discovery of lin-4 and let-7 which control nematode (Caenorhabditis 

elegans) development via incomplete base pairing to the 3′ UTRs of target mRNAs to prevent 

translation (Lee et al., 1993; Reinhart et al., 2000). For plants, Reinhart et al. (2002) detected 

miRNAs in a model organism, Arabidopsis. They revealed that ncRNAs could be arisen early 

in eukaryotic evolution (Reinhart et al., 2002). A single miRNA might potentially target 

several mRNAs whereas one mRNA might contain multiple binding sites for miRNAs 

(Chevillet et al., 2014). 

 

 

Figure 2. miRNA:target mRNA relationships. Blue numbers indicate miRNA position. 

The seed sequence is between 2-8 nt in miRNA position. Flank regions correspond to mRNA 

regions are found on either side of the seed region. Watson-Crick (WC) matches in the seed 

region are presented as red colour, and green colour for G:U wooble (Peterson et al., 2014) 
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3.1. miRNA Biogenesis 

 

Biogenesis of miRNA starts with the processing of RNA pol II and III affecting primary 

miRNA (pri-miRNA) in the nucleus (Lee et al., 2004; Krol et al., 2010). Nearly half of the 

identified miRNAs are found in intragenic regions. They could be processed from introns and 

a few exons (de Rie et al., 2017). On the other hand, the remaining miRNAs are in intergenic 

regions regulated by their promotors (Kim and Kim, 2007). There are two different miRNA 

biogenesis classified as canonical and non-canonical pathways (Figure 3). miRNA-mediated 

silencing complex (miRISC) complex containing the sense miRNA strand which binds to the 

target mRNA through its 3′-untranslated regions (3 ′-UTR) in canonical pathways (Chevillet 

et al., 2014). On the other hand, about 60% of the relations between the miRISC complex and 

mRNA are non-canonical in human (Helwak et al., 2013) which means their chains aren't 

always entirely complementary to each other (Jonas and Izaurralde, 2015).  

 

The production of pri-miRNA transcript is produced at the beginning of canonical RNA 

biogenesis and then microprocessor complex consisting of Drosha and DiGeorge Syndrome 

Critical Region 8 (DGCR8) cuts the pri-miRNA. As a result of cutting, precursor-miRNA 

(pre-miRNA) is produced and exported to the cytoplasm via Exportin5/RanGTP-dependent 

manner. In the cytoplasm, pre-miRNA duplex is bound to Ago family of proteins to form a 

miRISC. Another pathway, non-conical pathway is classified in Drosha/DGCR8-independent 

and Dicer-independent pathways. shRNAs are cut by microprocessor complex and exported 

to the cytoplasm via Exportin5/RanGTP similar to canonical pathway. Moreover, shRNAs 

were further processed via AGO2-dependent but Dicer-independent manner. Mirtrons and 7-

methylguanine capped (m7G)-pre-miRNA are processed to obtain mature miRNAs and this 

process is carried out by Dicer. Exportin5/RanGTP carries Mirtrons while Exportin1 is 

important for m7G -pre-miRNA (Hayder et al., 2018).  
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Figure 3. miRNA biogenesis (O’Brien et al., 2018) 

 

3.2. miRNA Detection Methods 

 

Novel miRNAs can be identified and analysed by using different methods. These methods 

are generally divided into groups in silico analyses and experimental analyses. Different 

miRNAs databases such as miRBase (Kozomara et al., 2019) miRandola 

(http://mirandola.iit.cnr.it/) and human infections (http://mir2disease.org/) etc. have been 

commonly used for detection of novel miRNAs related to disease and different metabolic 

pathways. By using reference sequences obtained from these databases, NCBI-BLAST, 

RNAfold, RNAHybrid, BLAST2GO and other related programs have been widely used for 

identification of miRNA and their targets via in silico analyses (Altschul et al., 1990; Kruger 

and Rehmsmeier, 2006; Conesa and Götz, 2008; Lorenz et al., 2011). 
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Northern blot analysis (Sempere et al., 2004; Válóczi et al., 2004), in situ hybridization 

(Kloosterman et al., 2006), real-time PCR (Chen et al., 2005; Wang et al., 2009), miRNA 

microarray (Thomson et al., 2004; Wang et al., 2014), and next-generation sequencing (NGS) 

(Wang et al., 2015) utilising massive parallel sequencing on platforms such as Illumina 

Genome Analyzer, ABI SOLiD, or Roche/454 Genome Sequencer FLX (Mardis, 2008) are 

employed in experimental analyses. Since each technology has strengths and weaknesses, 

Hong et al. (2021) proposed that miRNA-Seq for miRNA biomarker discovery and even 

identification of novel miRNAs. It is worth noting that miRNAs’ expression profiles in 

plasma and serum have important for the potential usage of them as biomarkers for early 

disease diagnostics and the treatment of diseases (Nik and Shahidan, 2019). 

 

3.3. Application of miRNAs as a Biomarker for Human Diseases 

 

miRNAs are stable and tissue-specific molecules in extracellular compartment. These 

properties make circulating cell-free miRNAs as a promising class of non-invasive 

biomarkers for human (Hong et al., 2021). Circulating miRNAs are covered by membrane-

bound vesicles such as exosomes. Numerous investigations showed that different 

pathophysiological conditions including cancer, liver damage, contagious conditions, 

cardiovascular diseases, neurodegenerative disease are related to expression of circulating 

miRNAs (Bhardwaj et al., 2013; Zeng et al., 2017; Aghili et al., 2018; Biswas et al., 2019; 

Coban et al., 2020; Teksoy et al., 2020). 

 

3.3.1. miRNA-based biomarkers for diagnosis and prognosis 

 

    Circulating miRNAs might be used for diagnosis of infectious diseases such as Dengue, 

Ebola and others (Duy et al., 2016; Ouyang et al., 2016; Trilobet et al., 2020). Biswas et al. 

(2019) investigated 372 microRNAs in plasma samples from HIV-1 infected individuals to 

detect early/acute HIV-1 infection. They reported a miRNA panel (PeHIV-1) containing four 

differentially expressed miRNAs (miR-16-5p, miR-20b-5p, miR-195-5p, and miR-223-3p) in 

infected individuals when compared to healthy controls. Another frequent form of malignant 

disease, ovarian cancer, cause more than 150,000 women to die every year. On the other 

hand, this disease is diagnosed with late-stage disease. Therefore, it is important to improve 

early diagnosis biomarker systems. Berner et al. (2021) aimed to identify microRNAs to 
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detect ovarian cancer reporting that miR-15a and let-7a are highly suitable for ovarian cancer 

patients. 

 

    In addition to diagnosis, miRNAs have also been utilised as novel biomarkers in the 

prediction of prognosis (Zhang et al., 2019; Sun et al., 2019) and integrating multiple 

miRNAs might be more effective than single ones to predict prognosis (He et al., 2019). It is 

suggested that miR‑103a-3p might be a potential non-invasive diagnostic and prognostic 

biomarker (Liu et al., 2022). Moreover, hsa-miR-584-5p detected as tumor suppressor 

miRNA is a potential candidate biomarker for coronary artery diseases (Coban et al. 2020). 

 

3.3.2. miRNA-based biosensors 

 

    In recent years, biosensors with increased sensitivity via nanomaterials have gained 

more attention especially for early detection of diseases to prevent the progression. One of 

these investigations was performed by Aghili et al. (2018). They improved an electrochemical 

nanobiosensor based on the quantification of the circulating biomarker miR-195 for the early 

detection of Parkinson's disease. Specific and sensitive biomarkers are also very important for 

early cancer diagnosis. Zeng et al. (2017) demonstrated an ultrasensitive electrochemical 

biosensor, detecting microRNA biomarkers related to multiple pancreatic carcinomas. Four 

miRNAs, miRNA21, miRNA155, miRNA196a, and miRNA210, distinguished from healthy 

controls with very high sensitivity.  

 

Exosomes found in human biological fluids have clinical importance in the diagnosis of 

various diseases. Song et al. (2021) examined the effect of the combination of exosomal 

miRNA-125b and miRNA-361 for the progression of Alzheimer's disease. They reported that 

sensor depending on these sequences can be applied clinically for AD diagnosis and has the 

potential to outstanding the field of dementia research and treatment in the future. 

 

3.3.3. miRNA-based therapies 

 

miRNA therapeutics in combination with chemotherapy could be used in the effective 

treatment of certain diseases. Apurinic/apyrimidinic endodeoxyribonuclease 1 (APEX1) is 

overexpressed in gastric cancer, performing several functions. Since miR-27a-5p inhibits this 

enzyme’s activity, He et al. (2021) studied with APEX1/miR-27a-5p axis, suggesting this axis 
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as a new therapeutic agent. Another investigation was performed by Zhang et al. (2020). They 

showed that the inhibitory role of miRNA-5119 mimic-engineered dendritic cell vaccines and 

also increasing role in anti-tumor immune response for mouse breast cancer model. In 

addition to miRNA/DC-based immunotherapy, platinum-based chemotherapy response 

depending on miRNA variants to detect the lung cancer susceptibility was also examined. 

Obtaining findings indicated that SNPs rs71428439 (miR-149), rs2910164 (R-146a), 

rs928508 (mir-30c-1) and rs629367 (let-7a-2) related with polymorphisms of rs11614913 

(miR-196a-2) and rs9280508 (miR-30c-1) notably affected the patients’ response, serving as 

potential clinical biomarkers to predict lung cancer risk (Fang et al., 2018). 

 

5. Conclusion 

 

In this review, we summarised the utilisation of miRNAs as biomarkers and biosensors, 

and even miRNA-based therapies for diagnosis and prognosis of diseases. Detection of 

miRNAs for a specific disease and also identification of differently expressed miRNAs 

between control and experimental groups provide new insight, especially for early detection. 

The results might be integrated into personalized medicine applications. 
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