
Hacettepe Journal of
Mathematics & Statistics

Hacet. J. Math. Stat.
Volume 52 (2) (2023), 326 – 339
DOI : 10.15672/hujms.1050505

Research Article

An efficient numerical method for a singularly
perturbed Volterra-Fredholm integro-differential

equation

Muhammet Enes Durmaz1, Ömer Yapman∗2, Mustafa Kudu2,
Gabil M. Amiraliyev2

1Department of Information Technology, Kırklareli University, 39000, Kırklareli, Turkey
2Department of Mathematics, Faculty of Arts and Sciences, Erzincan Binali Yıldırım University, 24100,

Erzincan, Turkey

Abstract
The scope of this study is to establish an effective approximation method for linear first
order singularly perturbed Volterra-Fredholm integro-differential equations. The finite dif-
ference scheme is constructed on Shishkin mesh by using appropriate interpolating quad-
rature rules and exponential basis function. The recommended method is second order
convergent in the discrete maximum norm. Numerical results illustrating the preciseness
and computationally attractiveness of the proposed method are presented.
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1. Introduction
Volterra-Fredholm integro-differential equations (VFIDEs) have arisen in different areas

of science and engineering. Population dynamics, oceanopraphy, fluid mechanics, finan-
cial mathematics, plasma physics, artificial neural networks, electromagnetic theory and
biological processes are among these fields (see, e.g., [10, 29]).

In this paper, the following SPVFIDE is being analyzed:

Lu := L1u +
x∫

0

K1(x, s)u(s)ds + λ

l∫
0

K2(x, s)u(s)ds = f(x), x ∈ (0, l] , (1.1)

u(0) = A, (1.2)
where L1u = εu′ + a(x)u, ε ∈ (0, 1] is a perturbation parameter and λ is a real parameter.
We presume that f(x), a(x) ≥ α > 0, (x ∈ [0, l]), K1(x, s) and K2(x, s)

(
(x, s) ∈ [0, l]2

)
are

the sufficiently smooth functions satisfying certain regularity conditions to be specified.
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Many papers have been written about different types of VFIDEs. Existence and unique-
ness of the solution were discussed in [16, 22]. Furthermore, numerous analytical and nu-
merical methods have been presented for solving VFIDEs. For instance, Adomian decom-
position method, spectral collocation method, Legendre wavelet method, 2D Block-Pulse
functions method, finite difference method, Legendre collocation method, Bernstein poly-
nomials method, Homotopy perturbation method [6,7,14,23,30,31]. The above-mentioned
studies were only related to the regular situations. (i.e. when the boundary layers are
absent).

Singularly perturbed problems (SPPs) are mostly characterized by a small parameter
ε that multiplies some or all of the higher-order terms in the equation, because boundary
layers are generally found in their solutions. The approximation solutions of SPPs and
their applications have been studied in many papers and books, one can refer to [20,26,32].
SPPs are widely used in vast number of applications in the field of population dynamics,
fluid dynamics, heat transport problem, nanofluid, neurobiology, mathematical biology,
viscoelasticity and simultaneous control systems etc. It is remarkable that, when a small ε
parameter is multiplied with the derivative, the vast majority of classic numerical methods
on uniform meshes fail to solve problems until the step-size of discretization is considerably
reduced. So, as the ε perturbation parameter gets small, the truncation error happens
boundless. To solve SPPs, the so-called the fitted finite difference method is used for many
approaches (see, e.g., [11, 13,25,27,28]).

In the literature, there have been studies in which different techniques were applied
regarding SPVFIDEs. By using Richardson extrapolation, the order of convergence of nu-
merical scheme for singularly perturbed Volterra integro-differential equation (SPVIDE)
was improved in [24]. Delay forms of SPVIDEs were discretized in [21,35]. Amiraliyev et
al. recently constructed an exponential-difference scheme with an accuracy of O

(
N−1) for

the first-order linear singularly perturbed Fredholm integro-differential equation (SPFIDE)
on a uniform grid in [1], and finite difference scheme with an accuracy of O

(
N−2 ln N

)
on a Shishkin grid for the second-order linear SPFIDE in [12]. The first and the second
order difference schemes were proposed in [4, 34]. In recent years, many authors have
applied different methods such as homotopy analysis method, modified variational iter-
ation method, Adomian decomposition method that is named Laplace discrete Adomian
decomposition method, modified homotopy perturbation method to obtain approximate
analytical solutions for Volterra, Fredholm, Volterra-Fredholm, fuzzy Volterra-Fredholm
integro-differential equations in [8, 9, 15,17–19].

Until now, numerical investigations of SPVFIDEs have not common yet. Solving of
such kind of problems is so difficult. Because of existence of the perturbation parameter,
traditional numerical methods do not give reliable results. Therefore, we need uniform
and robust numerical techniques. The major contribution of this article is to present a
robust and effective numerical technique for solving SPFVIDEs.

The rest of the paper is arranged as follows: We state asymptotic estimates of the
exact solution and construct the finite difference scheme on a Shishkin mesh in Section
2. In Section 3, we present error approximations and convergence analysis. A numerical
example is given in Section 4 which validate the theoretical analysis in practice the method
is second order convergent. The paper ends with "Conclusion" section.

2. The mesh and difference scheme
First, we have remarked some analytical bounds that will be utilized subsequently

during error analysis.
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Lemma 2.1. Assume that f, a ∈ C2[0, l] and ∂mK1
∂xm ∈ C[0, l]2, ∂mK2

∂xm ∈ C[0, l]2, (m =
0, 1, 2). Moreover

eα−1K1lα−1 |λ| max
0≤x≤l

l∫
0

|K2(x, s)| ds < 1.

Then the solution u(x) of the problem (1.1)-(1.2) satisfies the bounds

∥u∥∞ ≤ C, (2.1)∣∣∣u(k)(x)
∣∣∣ ≤ C

{
1 + 1

εk
e− αx

ε

}
, x ∈ [0, l], k = 1, 2, (2.2)

where

K1 = max
[0,l]2

|K1(x, s)| .

Proof. The proof is done by similar approach as in [5, 12]. □

Now, we turn to establishment of the difference scheme. Let ωN be any non-uniform
mesh on [0, l] :

ωN = {0 < x1 < ... < xN = l, hi = xi − xi−1} , ωN = ωN ∪ {x0 = 0} .

To any mesh function v (x) identified on ωN , we use

vi = v(xi), v
x,i

= vi − vi−1
hi

, ∥v∥∞ ≡ ∥v∥∞,ωN
:= max

0≤i≤N
|vi| .

We construct the difference scheme on Shishkin mesh to solve the problem (1.1)-(1.2). For
an even number N , we divide each of the subintervals [0, σ] and [σ, l] into N

2 equidistant
subintervals. The transition point σ is determined as

σ = min
{

l

2
, α−1ε ln N

}
.

We use the notation h for the mesh width in [0, σ] and the notation H for the width in
[σ, l]. Hence, the mesh stepsizes are

h = 2σ

N
, H = 2(l − σ)

N
.

xi node points are specified as

ωN =
{

xi = ih, i = 0, 1, ..., N
2 ; xi ∈ [0, σ] ;

xi = σ +
(
i − N

2

)
H, i = N

2 + 1, ..., N ; xi ∈ [σ, l] .



An efficient numerical method for a SPVFIDE 329

We construct the numerical method using the identity

χ−1
i h−1

i

xi∫
xi−1

L1u (x) φi(x)dx + χ−1
i h−1

i

xi∫
xi−1

 x∫
0

K1 (x, s) u (s) ds

φi(x)dx

+ χ−1
i h−1

i λ

xi∫
xi−1

 l∫
0

K2 (x, s) u (s) ds

φi(x)dx

= χ−1
i h−1

i

xi∫
xi−1

f(x)φi(x)dx, 1 ≤ i ≤ N, (2.3)

with the basis functions
φi(x) = e− ai(xi−x)

ε

and

χi = h−1
i

xi∫
xi−1

φi(x)dx = 1 − e−aiρi

aiρi
, ρi = hi

ε
.

We note that the function φi(x) is the solution of the problem

−εφ′(x) + aiφ(x) = 0, xi−1 < x < xi, φ(xi) = 1.

Using the method of exact difference schemes [2, 34] (see also [33], pp. 207–214), for the
first term in the left side of (2.3) we obtain

χ−1
i h−1

i

xi∫
xi−1

[
εu′(x) + a(x)u(x)

]
φi(x)dx = εθiux,i

+ aiui

+χ−1
i h−1

i

xi∫
xi−1

[a(x) − a(xi)] u(x)φi(x)dx (2.4)

with
θi = aiρi

1 − e−aiρi
e−aiρi . (2.5)

By Newton interpolation formula in respect to mesh points xi−1, xi we have

a(x) − a(xi) = (x − xi)ax,i
+

a′′(ξi(x)
)

2
(x − xi−1)(x − xi).

Therefore we get

χ−1
i h−1

i

xi∫
xi−1

[a(x) − a(xi)] u(x)φi(x)dx = a
x,i

χ−1
i h−1

i

xi∫
xi−1

(x − xi)u(x)φi(x)dx

+1
2

χ−1
i h−1

i

xi∫
xi−1

a′′(ξi(x)
)
(x − xi−1)(x − xi)u(x)φi(x)dx. (2.6)

Also using

u(x) = u(xi) −
xi∫

x

u′(s)ds,
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in the first term at the right side of (2.6), we have

χ−1
i h−1

i

xi∫
xi−1

[a(x) − a(xi)] u(x)φi(x)dx =

a
x,i

χ−1
i h−1

i

xi∫
xi−1

(x − xi)φi(x)dx

ui + R
(1)
i ,

where

R
(1)
i = 1

2
χ−1

i h−1
i

xi∫
xi−1

a′′(ξi(x)
)
(x − xi−1)(x − xi)u(x)φi(x)dx

− a
x,i

χ−1
i h−1

i

xi∫
xi−1

(x − xi)φi(x)
( xi∫

x

u′(s)ds

)
dx. (2.7)

Simple calculation gives

χ−1
i h−1

i

xi∫
xi−1

(x − xi)φi(x)dx = hiδi

with

δi = e−aiρi

1 − e−aiρi
− 1

aiρi
. (2.8)

It is easy to see that −1 ≤ δi ≤ 0.
After that, the identity (2.4) reduces to

χ−1
i h−1

i

xi∫
xi−1

[
εu′(x) + a(x)u(x)

]
φi(x)dx = εθiux,i

+ āiui + R
(1)
i , (2.9)

where

āi = ai + a
x,i

hiδi (2.10)

and δi is given by (2.8).
Analogously we derive

χ−1
i h−1

i

xi∫
xi−1

f(x)φi(x)dx = f̄i + R
(2)
i , (2.11)

where

f̄i = fi + f
x,i

hiδi, (2.12)

R
(2)
i = 1

2
χ−1

i h−1
i

xi∫
xi−1

f ′′(ηi(x)
)
(x − xi−1)(x − xi)φi(x)dx. (2.13)

For second term in the left side of (2.3), using the Taylor expansion

K2(x, s) = K2(xi, s) + (x − xi)
∂

∂x
K2(xi, s) + (x − xi)2

2
∂2

∂x2 K2
(
ξi(x), s

)
,
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we get

χ−1
i h−1

i λ

xi∫
xi−1

φi(x)

 l∫
0

K2(x, s)u(s)ds

 dx

= λ

l∫
0

K2(xi, s)u(s)ds + R
(3)
i + hiδiλ

l∫
0

∂

∂x
K2(xi, s)u(s)ds

≡ λ

l∫
0

K2(xi, s)u(s)ds + R
(3)
i , (2.14)

where
K2(xi, s) = K2(xi, s) + hiδi

∂

∂x
K2(xi, s), (2.15)

R
(3)
i = 1

2
χ−1

i h−1
i

xi∫
xi−1

(x − xi)2φi(x)

 l∫
0

∂2

∂x2 K2
(
ξi(x), s

)
u(s)ds

 dx. (2.16)

Next, using the composite trapezoidal integration on [0, l], for K2(xi, s)u(s), we have
l∫

0

K2(xi, s)u(s)ds =
N∑

j=0
ℏjK2ijuj + R

(4)
i , (2.17)

where

R
(4)
i = 1

2

N∑
j=1

xj∫
xj−1

(xj − ξ)(xj−1 − ξ) d2

dξ2
(
K2(xi, ξ)u(ξ)

)
dξ. (2.18)

Eventually, for the fourth term in left side of (2.3), applying the interpolating quadrature
rules in [3], it is found

χ−1
i h−1

i

xi∫
xi−1

 x∫
0

K1 (x, s) u (s) ds

φi(x)dx =
xi∫

0

K1(xi, s)u(s)ds + R
(5)
i , (2.19)

where

K1(xi, s) = K1(xi, s) + hiδi
∂

∂x
K1(xi, s), (2.20)

R
(5)
i = χ−1

i h−1
i

xi∫
xi−1

dxφi(x)
xi∫

xi−1

d2

dξ2

 ξ∫
0

K1(ξ, s)u(s)ds

T1 (ξ − s) dξ, (2.21)

Ts (λ) =
{

λs

s! , λ ≥ 0;
0, λ < 0.

After, applying the composite trapezoidal rule on [0, xi], for K1(xi, s)u(s), we have
xi∫

0

K1(xi, s)u(s)ds =
i∑

j=0
ℏjK1ijuj + R

(6)
i , (2.22)

where

R
(6)
i = 1

2

i∑
j=1

xj∫
xj−1

(xj − ξ)(xj−1 − ξ) d2

dξ2
(
K1(xi, ξ)u(ξ)

)
dξ. (2.23)
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Combining (2.9), (2.11), (2.14), (2.17), (2.19) and (2.22), we obtain following difference
relation:

LN ui := εθiux,i
+ āiui +

i∑
j=0

ℏjK1ijuj + λ
N∑

j=0
ℏjK2ijuj = f̄i − Ri (2.24)

with remainder term

Ri =
6∑

k=1
R

(k)
i , (2.25)

where R
(k)
i , (k = 1, 2, 3, 4, 5, 6) are defined by (2.7), (2.13), (2.16), (2.18), (2.21) and (2.23)

respectively.

By neglecting the error term in (2.24) the following difference scheme is presented for
the approximate solution:

LN yi := εθiyx,i
+ āiyi +

i∑
j=0

ℏjK1ijyj + λ
N∑

j=0
ℏjK2ijyj = f̄i, 1 ≤ i ≤ N, (2.26)

y0 = A, (2.27)

where θi, āi, f̄i, K1ij and K2ij are given by (2.5), (2.10), (2.12), (2.20) and (2.15) respec-
tively.

3. Error estimates

Lemma 3.1. Presume that f, a ∈ C2[0, l] and ∂mK1
∂xm

,
∂mK2
∂xm

,
∂m+1K1
∂x∂sm

,
∂m+1K2
∂x∂sm

∈ C2[0, l]2,

(m = 0, 1, 2). Then the truncation error function Ri satisfies the estimate

∥R∥∞,ωN
≤ CN−2 ln N. (3.1)

Proof. Firstly estimate R
(1)
i . Since a ∈ C2[0, l], |x − xi−1| ≤ hi and |x − xi| ≤ hi, then

by using Lemma 2.1, it follows that

∣∣∣R(1)
i

∣∣∣ ≤ Ch2
i + |ax,iδi| hi

xi∫
xi−1

∣∣u′(x)
∣∣ dx ≤ Chi

hi +
xi∫

xi−1

∣∣u′(x)
∣∣ dx

 . (3.2)

For R
(2)
i , since f ∈ C2[0, l], analogously we have∣∣∣R(2)

i

∣∣∣ ≤ Ch2
i . (3.3)

Next for R
(3)
i , taking into account the boundedness of ∂2K1

∂x2 , from (2.16) it follows that∣∣∣R(3)
i

∣∣∣ ≤ Ch2
i . (3.4)

For R
(5)
i , taking into account the boundedness of ∂2K2

∂x2 , analogously we have∣∣∣R(5)
i

∣∣∣ ≤ Ch2
i . (3.5)

It remains to estimates R
(4)
i and R

(6)
i . From (2.18), under the condition of Lemma 2.1, we

have for this case∣∣∣R(4)
i

∣∣∣ ≤ C
N∑

j=1

xj∫
xj−1

(xj − ξ)(ξ − xj−1)(1 +
∣∣u′(ξ)

∣∣+ ∣∣u′′(ξ)
∣∣)dξ. (3.6)
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The same evaluation is similarly obtained for R
(6)
i . From

|Ri| ≤
4∑

k=1

∣∣∣R(k)
i

∣∣∣ ,
after taking into consideration (3.2)-(3.6), therefore we get

|Ri| ≤ C

h2
i + hi

xi∫
xi−1

∣∣u′(x)
∣∣ dx +

N∑
j=1

xj∫
xj−1

(xj − ξ)(ξ − xj−1)(1 +
∣∣u′(ξ)

∣∣+ ∣∣u′′(ξ)
∣∣)dξ

 .

This inequality by estimates (2.1) and (2.2) reduces to

|Ri| ≤ C

(
h2

i + hi

xi∫
xi−1

1
ε

e
−αx

ε dx +
N∑

j=1
h3

j +
N∑

j=1

xj∫
xj−1

(xj − ξ)(ξ − xj−1)1
ε

e
−αξ

ε dξ

+
N∑

j=1

xj∫
xj−1

(xj − ξ)(ξ − xj−1) 1
ε2 e

−αξ
ε dξ

)

≤ C

(
h2

i +
N∑

j=1
h3

j + hi

xi∫
xi−1

1
ε

e
−αx

ε dx +
N∑

j=1

xj∫
xj−1

(xj − ξ)(ξ − xj−1) 1
ε2 e

−αξ
ε dξ

)
(ε ≤ 1) (3.7)

Now we find a convergence error estimate for the right-side of (3.7) in our special piecewise-
uniform mesh. First note that the following estimates are valid for each values of σ :

h2
i =


h2 =

(
σ

N/2

)2
≤ CN−2, 1 ≤ i ≤ N

2

H2 =
(

l−σ
N/2

)2
≤ CN−2, N

2 + 1 ≤ i ≤ N

(3.8)

and
N∑

j=1
h3

j =
N/2∑
j=1

h3 +
N∑

j= N
2 +1

H3 = N

2
h3 + N

2
H3 = 4σ3N−2 + 4(l − σ)3N−2 ≤ CN−2. (3.9)

The case σ = l
2 can be analysed in the classical way. For this reason, we will consider only

the case σ = α−1ε ln N < l
2 and estimate the expression in the right-side in (3.7) on ωN .

The inequalities

hi

xi∫
xi−1

1
ε

e
−αx

ε dx ≤ h2

ε
=
(2α−1ε ln N

N

)2 1
ε

= 4α−2εN−2 ln2 N

≤ l

2
4α−1N−2 ln N ≤ CN−2 ln N, 1 ≤ i ≤ N

2
,

hi

xi∫
xi−1

1
ε

e
−αx

ε dx ≤ Hα−1
(

e
−αxi−1

ε − e
−αxi

ε

)
= Hα−1e

−αxi−1
ε

(
1 − e

−αH
ε

)

≤ Hα−1e
−αxi−1

ε ≤ Hα−1N−1 ≤ CN−2,
N

2
≤ i ≤ N,

imply that

hi

xi∫
xi−1

1
ε

e
−αx

ε dx ≤ CN−2 ln N, 1 ≤ i ≤ N. (3.10)
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Further, consider the splitting
N∑

j=1

xj∫
xj−1

(xj − ξ)(ξ − xj−1) 1
ε2 e

−αξ
ε dξ =

N/2∑
j=1

xj∫
xj−1

(xj − ξ)(ξ − xj−1) 1
ε2 e

−αξ
ε dξ

+
N∑

j= N
2 +1

xj∫
xj−1

(xj − ξ)(ξ − xj−1) 1
ε2 e

−αξ
ε dξ,

for the first sum on the right side of the above equality, we have
N/2∑
j=1

xj∫
xj−1

(xj − ξ)(ξ − xj−1) 1
ε2 e

−αξ
ε dξ = h2

σ∫
0

1
ε2 e

−αξ
ε dξ

≤ h2

ε
α−1 ≤ 2lα−2N−2 ln N. (3.11)

If a partial integration formula is applied for the integral term of second sum, then we
have

N∑
j= N

2 +1

xj∫
xj−1

(xj − ξ)(ξ − xj−1) 1
ε2 e

−αξ
ε dξ = 2α−1

N∑
j= N

2 +1

xj∫
xj−1

(
xj − x − H

2

) 1
ε

e
−αx

ε dx

≤ 2α−1H

l∫
σ

1
ε

e
−αx

ε dx = 2α−2H
(
e

−ασ
ε − e

−αl
ε

)
≤ 2α−2HN−1 ≤ CN−2. (3.12)

Thereby from (3.11) and (3.12), we get

N∑
j=1

xj∫
xj−1

(xj − ξ)(ξ − xj−1) 1
ε2 e

−αξ
ε dξ ≤ CN−2 ln N. (3.13)

Thus for σ = α−1ε ln N, by (3.10) and (3.13) it follows that

hi

xi∫
xi−1

1
ε

e
−αx

ε dx +
N∑

j=1

xj∫
xj−1

(xj − ξ)(ξ − xj−1) 1
ε2 e

−αξ
ε dξ ≤ CN−2 ln N, 1 ≤ i ≤ N. (3.14)

The estimates (3.8), (3.9), (3.14) along with (3.7) yield (3.1). □

We proceed to estimate the error of the approximate solution zi = yi −ui, (0 ≤ i ≤ N) .
From (2.24) and (2.26) we have

LN zi = Ri, (3.15)
zi = 0, (3.16)

where the truncation error function Ri is given by (2.25).

By passing we note that since a ∈ C2[0, l] and |δi| ≤ 1, then exist a number ᾱ such
that for sufficiently large values of N will be āi ≥ ᾱ > 0.

Theorem 3.2. Let a, f, K1 and K2 satisfy the assumptions from Lemma 3.1. Moreover

(ᾱ)−1 e2(ᾱ)−1K̃1l |λ| max
1≤i≤N

N∑
j=1

ℏj

∣∣K2ij

∣∣ < 1. (3.17)
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Then for the solution y of the difference problem (2.26)-(2.27) holds the error estimate

∥y − u∥∞,ωN
≤ CN−2 ln N.

Proof. Applying Lemma 2.1 for the solution of (3.15)-(3.16) and Lemma 4.1 from [21],
we get

|yi| ≤ (ᾱ)−1 ∥R∥∞,ωN
+ (ᾱ)−1 K̃1

N∑
j=1

ℏj |yj | + (ᾱ)−1 |λ|
N∑

j=1
ℏj

∣∣K2ij

∣∣ |yj |

≤ ηN + (ᾱ)−1 K̃1

i∑
j=1

ℏj |yj | , (3.18)

where

ηN = (ᾱ)−1 ∥R∥∞,ωN
+ |λ| (ᾱ)−1 max

1≤i≤N

N∑
j=1

ℏj

∣∣K2ij

∣∣ ∥z∥∞,ω̄N

and

K̃1 = max
[0,l]2

|K1(x, s)| .

By the difference analogue of Gronwall’s inequality to the relation (3.18), we obtain

|zi| ≤ ηN exp

(ᾱ)−1 K̃1

N∑
j=1

ℏj

1 − (ᾱ)−1 K̃1ℏj

 , 1 ≤ i ≤ N.

Thereby

∥z∥∞,ωN
≤ ηN exp

(
2 (ᾱ)−1 K̃1l

)
,

for sufficiently large values of N and together with (3.17), we get

∥z∥∞,ωN
≤ C ∥R∥∞,ωN

.

This inequality together with (3.1) to get desired result. □

4. Numerical results
In this section, theoretical results are tested on two samples.

Example 4.1. We consider the following problem:

εu′ (x) + u (x) +
x∫

0

sin (x − s) u (s) ds +
1∫

0

su(s)ds = sin (x) , 0 < x ≤ 1,

u(0) = 1.

The exact solution to this problem is unknown. Hereby, we use the double mesh princi-
ple. We introduce the maximum point-wise errors and the computed ε-uniform maximum
point-wise errors as

eN
ε = max

i
|yε,N

i − ỹε,2N
2i |∞,ωN

,

eN = max
ε

eN
ε ,
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where ỹε,2N
i is the approximate solution of the respective method on the mesh

ω̃2N = {xi/2 : i = 0, 1, ..., 2N}
with

xi+1/2 = xi + xi+1
2

for i = 0, 1, ..., N − 1.

We also describe the rate of convergence of the form

pN =
ln
(
eN /e2N

)
ln 2

.

Table 1. Computed errors and convergence rates for the Example 4.1.

ε N = 26 N = 27 N = 28 N = 29 N = 210

20 0.067501 0.020348 0.005763 0.001502 0.000373
1.73 1.82 1.94 2.01

2−4 0.073471 0.022457 0.006449 0.001716 0.000435
1.71 1.80 1.91 1.98

2−8 0.073741 0.022854 0.006701 0.001808 0.000468
1.69 1.77 1.89 1.95

2−12 0.072343 0.022734 0.006759 0.001849 0.000482
1.67 1.75 1.87 1.94

2−16 0.074378 0.023536 0.007046 0.001941 0.000509
1.66 1.74 1.86 1.93

eN 0.074378 0.023536 0.007046 0.001941 0.000509
pN 1.66 1.74 1.86 1.93

The values of ε and N for which we resolve Example 4.1 are ε = 20, 2−4, 2−8, 2−12, 2−16

and N = 26, 27, 28, 29, 210.

Example 4.2. Consider the another problem

εu′ (x) + u (x) +
x∫

0

xu (s) ds + 1
10

1∫
0

u(s)ds = − ε

(1 + x)2 + 1
1 + x

+ xε
(
1 − e− x

ε

)
+x ln (1 + x) + 1

10

(
1 − e− 1

ε + ln 2
)

, 0 < x ≤ 1,

u(0) = 2.

The exact solution of this problem is given by

u (x) = e− x
ε + 1

1 + x
.

We define the exact error eN
ε as follows:

eN
ε = ∥y − u∥∞,ωN

where y is the numerical approximation to u for various values of N , ε. The values of ε and
N for which we solve Example 4.2 are ε = 20, 2−4, 2−8, 2−12, 2−16 and N = 26, 27, 28, 29, 210.
The resulting values of eN and pN are listed in Table 2.
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Table 2. Computed errors and convergence rates for the Example 4.2.

ε N = 26 N = 27 N = 28 N = 29 N = 210

20 0.050413 0.014278 0.003906 0.001011 0.000251
1.82 1.87 1.95 2.01

2−4 0.060440 0.017118 0.004683 0.001212 0.000305
1.82 1.87 1.95 1.99

2−8 0.067053 0.019123 0.005268 0.001373 0.000348
1.81 1.86 1.94 1.98

2−12 0.070560 0.020404 0.005660 0.001475 0.000374
1.79 1.85 1.94 1.98

2−16 0.073873 0.021362 0.005967 0.001566 0.000397
1.79 1.84 1.93 1.98

eN 0.073873 0.021362 0.005967 0.001566 0.000397
pN 1.79 1.84 1.93 1.98

In Table 1 and Table 2, we observe that the ε-uniform rate of convergence pN is mono-
tonically increasing towards two, therefore in agreement with the theoretical rate given by
Theorem 3.2.

5. Conclusion
A novel second order numerical approach for solving the first order VFIDE with bound-

ary layer has been proposed. It has been done some stability estimates for the exact
solution and its derivatives before giving the numerical method. To solve the problem
numerically, exponential fitted finite difference approach on Shishkin mesh has been used.
The obtained outcomes are shown in Table 1 and Table 2. It has been proven that the order
of uniform convergence is almost O

(
N−2 ln N

)
. The presented method can also be applied

to partial and fractional types of integro-differential equations for future investigations.
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