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PARITY OF AN ODD DOMINATING SET

Ahmet BATAL

Department of Mathematics, Izmir Institute of Technology, 35430, Urla, Izmir, TURKEY

Abstract. For a simple graph G with vertex set V (G) = {v1, ..., vn}, we de-

fine the closed neighborhood set of a vertex u as N [u] = {v ∈ V (G) | v is adja-
cent to u or v = u} and the closed neighborhood matrix N(G) as the matrix

obtained by setting to 1 all the diagonal entries of the adjacency matrix of G.

We say a set S is odd dominating if N [u] ∩ S is odd for all u ∈ V (G). We
prove that the parity of an odd dominating set of G is equal to the parity of

the rank of G, where the rank of G is defined as the dimension of the column

space of N(G). Using this result we prove several corollaries in one of which
we obtain a general formula for the nullity of the join of graphs.

1. Introduction

Let N [u] denote the closed neighborhood set of a vertex u in a simple graph G,
i.e.;

N [u] = {v ∈ V (G) |v is adjacent to u or v = u}.
Then, we say a subset S of vertices is odd (even) dominating if N [u] ∩ S is odd
(even) for all u ∈ V (G). In general, for an arbitrary subset C of vertices, we say a
set S is a C-parity set if N [u] ∩ S is odd for all u ∈ C and even otherwise [2]. If
there is a C-parity set for a given set C, we say that C is solvable. If there exists
a C-parity set for every set C of vertices in a graph G, then we say G is always
solvable.

Let n be the order of G, V (G) = {v1, ..., vn} and W be a subset of V (G). The
column vector xW = (x1, ..., xn)

t, which is defined as xi = 1 if vi ∈ W and xi = 0
otherwise, is called the characteristic vector of W . The closed neighbourhood
matrix N = N(G) of a graph G is obtained by setting to 1 all the diagonal entries
of the adjacency matrix of G. Equivalently, N(G) is the matrix whose ith column
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is equal to xN [vi]. It is easy to observe that S is a C-parity set if and only if

N(G)xS = xC (1)

over the field Z2 [9], [10].
Let us denote the vectors whose components are all 0 and all 1 by 0 and 1,

respectively. Then the following are equivalent. (a1 ) S is an odd dominating set,
(a2 ) S is a V (G)-parity set, (a3 ) N(G)xS = 1. Similarly, (b1 ) S is an even dom-
inating set, (b2 ) S is a ∅-parity set, (b3 ) N(G)xS = 0, are equivalent statements.
Note that every graph has an even dominating set, which is ∅. On the other hand,
it is proved by Sutner that every graph has an odd dominating set as well [9] (see
also [6], [7], [8]).

Let Ker(N) and Col(N) denote the kernel and column space of N , respectively.
Let ν(G) := dim(Ker(N(G)) and ρ(G) := dim(Col(N(G)). We call ν(G), the
nullity of G (Amin et al. [3] call it the parity dimension of G) and ρ(G), the rank
of G. We have ν(G) + ρ(G) = n by the rank nullity theorem.

From the matrix equation (1), we see that G is always solvable if and only if
ν(G) = 0. Moreover, ν(G) > 0 if and only if G has a nonempty even dominating
set.

We write pr(a) to denote the parity function of a number a, i.e.; pr(a) = 0 if a
is even and pr(a) = 1 if a is odd. In the case where A is a matrix, pr(A) is the
parity function of the sum of its entries. For a set S, we write pr(S) to denote
the parity function of the cardinality of S and say the parity of S instead of the
parity of the cardinality of S. Note that pr(S) = pr(xS). It was first noticed by
Amin et al. [ [1], Lemma 3], and follows immediately from Sutner’s theorem, that
for a given graph, the parity of all odd dominating sets are the same. Hence, the
value of pr(S), where S is an odd dominating set of a graph is independent of the
particular odd dominating set S taken into account.

Our main result Theorem 1 states that the parity of an odd dominating set is
equal to the parity of the rank of the graph.

2. Main Result

Lemma 1. Let A be a n × n, symmetric, invertible matrix over the field Z2 with
diagonal entries equal to 1. Then pr(A−1) = pr(A) = pr(n).

Proof. In the proof, all algebraic operations are considered over the field Z2. First
of all, note that since A is a symmetric matrix with nonzero diagonal entries, we
have

pr(A) =
∑
i,j

Aij =
∑
i

Aii =
∑
i

1 = pr(n).

Similarly,

pr(A−1) =
∑
i

(A−1)ii.

On the other hand,
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pr(n) = Tr(I) = Tr(AA−1)

=
∑
i,j

Aij(A
−1)ij

=
∑
i

Aii(A
−1)ii

=
∑
i

(A−1)ii.

□

We call a vertex a null vertex of a graph G if it belongs to an even dominating
set of G. Since the set of all characteristic vectors for even dominating sets of G is
a subspace of the vector space of all binary n-tuples, if v is a null vertex of G, then
precisely half of the even dominating sets of G contain v.

Lemma 2. Let G be a graph and v be a null vertex of G. Then there exists an odd
dominating set of G which does not contain v.

Proof. Let R be an even dominating set containing v and S1 be an odd dominating
set of G. Assume S1 contains v, otherwise we are done. Let S2 be the symmetric
difference of S1 and R. Clearly S2 is an odd dominating set which does not contain
v. □

Let G− v denote the graph obtained by removing a vertex v and all its incident
edges from a graph G. The number nd(v) := ν(G − v) − ν(G) is called the null
difference number. It turns out that nd(v) can be either −1, 0, or 1. Moreover,
Ballard et al. proved the following lemma in [ [5], Proposition 2.4.].

Lemma 3 ( [5]). Let v be a vertex of a graph G. Then v is a null vertex if and
only if nd(v) = −1.

Now we are ready to state our main result.

Theorem 1. Let G be a graph and S be an odd dominating set of G. Then pr(S) =
pr(ρ(G)). Equivalently, pr(V (G)\S) = pr(ν(G)).

Proof. We prove the claim by applying induction on the nullity of the graph. Let n
be the order of G. In the case where ν(G) = 0, there exists a unique odd dominating
set S such that NxS = 1. Note that N satisfies the conditions of Lemma 1. Hence,
together with the rank nullity theorem, we have

pr(S) = pr(xS) = pr(N−11) = pr(N−1) = pr(N) = pr(n) = pr(ρ(G)).

Now assume that ν(G) > 0 and the claim holds true for all graphs with nullity
less than ν(G). Since ν(G) is nonzero, there exists a non-empty even dominating
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set. Hence, there exists a null vertex v of G. By Lemma 2, there is an odd
dominating set S of G which does not contain v. Since S does not contain v, it is
also an odd dominating set of the graph G−v. Moreover, by Lemma 3, nd(v) = −1.
Hence, ν(G− v) = ν(G) + nd(v) = ν(G)− 1 < ν(G). By the induction hypothesis
pr(S) = pr(ρ(G−v)). On the other hand, using the rank nullity theorem we obtain
ρ(G− v) = n− 1− ν(G− v) = n− 1− ν(G) + 1 = n− ν(G) = ρ(G). We complete
the proof by noting that all odd dominating sets in G have the same parity. □

3. Some Corollaries

Corollary 1. Let G be an always solvable graph of order n. Then the odd domi-
nating set of G has odd (even) cardinality if n is odd (even).

Note that if every vertex of a graph G has even degree, then V (G) itself is an
odd dominating set. This, together with Theorem 1, gives the following.

Corollary 2. If every vertex of a graph G has even degree, then ν(G) is even.

Corollary 3. If the number of even degree vertices of a tree T is at most one, then
every odd dominating set of T has odd cardinality.

Proof. Let n be the order of T . By [ [3], Theorem 3] if every vertex of T has odd
degree, then ν(T ) = 1. By the handshaking lemma, n must be even, hence ρ(T ) is
odd. By [ [3], Theorem 4], if exactly one vertex of T has even degree, then ν(T ) = 0.
Since n must be odd, ρ(T ) is also odd. Hence in either case, every odd dominating
set has odd cardinality by Theorem 1. □

Corollary 4. Every odd dominating set of a graph G has an odd (even) num-
ber of vertices of odd degree if and only if ν(G) is odd (even). In particular, the
odd dominating set of an always solvable graph has an even number of odd degree
vertices.

Proof. Observe that for any subsets A, B of V (G), pr(A∩B) = xt
AxB . In particular,

pr(A) = xt
A1. Let A

c be the complement of A in V (G). Then we have xAc = xA+1.
Now let S be an odd dominating set of G and D be the set of vertices with odd
degree. Observe that N1 = xDc . Therefore NxSc = N(xS + 1) = 1 + xDc = xD.
Then, pr(D ∩S) = xt

DxS = (NxSc)txS = xt
ScNxS = xt

Sc1 = pr(Sc). On the other
hand, pr(Sc) = pr(ν(G)) by Theorem 1. Hence, the result follows. □

We define the join G1 ⊕ ... ⊕ Gm of m pairwise disjoint graphs G1, ..., Gm as
follows. We take the vertex set as V (G1 ⊕ ... ⊕ Gm) = ∪m

i=1V (Gi) and the edge
set as E(G1 ⊕ ... ⊕ Gm) = ∪m

i=1E(Gi) ∪ {(u, v) | u ∈ V (Gk), v ∈ V (Gl) k, l ∈
{1, ...,m} such that k ̸= l}. Then Amin et al. prove the following proposition in
[ [4], Corollary 6].

Proposition 1 ( [4]). ν(G1 ⊕G2) = ν(G1) + ν(G2) if either G1 or G2 has an odd
dominating set of even cardinality, and ν(G1⊕G2) = ν(G1)+ν(G2)+1, otherwise.
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Together with Theorem 1, the above proposition implies the following.

ν(G1 ⊕G2) = ν(G1) + ν(G2) + pr(ρ(G1)ρ(G2)). (2)

Equivalently,

ρ(G1 ⊕G2) = ρ(G1) + ρ(G2)− pr(ρ(G1)ρ(G2)). (3)

Equivalence of (2) and (3) follows from the rank nullity theorem.
Expressing the nullity/rank of G1 ⊕ G2 as a single formula involving nulli-

ties/ranks of G1 and G2 as above enables us to extend this result and to write
a formula for the nullity/rank of the join of arbitrary number of graphs as follows.

Proposition 2. Let {G1, ..., Gm} be a collection of pairwise disjoint graphs. Let j
be the number of graphs in {G1, ..., Gm} with odd rank. Then

ν(G1 ⊕ ...⊕Gm) =

{ ∑m
i=1 ν(Gi) if j = 0∑m

i=1 ν(Gi) + j − 1 otherwise

}
. (4)

Equivalently,

ρ(G1 ⊕ ...⊕Gm) =

{ ∑m
i=1 ρ(Gi) if j = 0∑m

i=1 ρ(Gi)− j + 1 otherwise

}
. (5)

Proof. We prove (5), then (4) follows from the rank nullity theorem. If j = 0,
then all graphs have even rank and the result follows applying (3) successively.
Now let j ̸= 0. Without loss of generality, we can assume that the first j graphs
have odd rank. Then, by (3), ρ(G1⊕G2) = ρ(G1)+ ρ(G2)–1, which is odd. Hence,
ρ(G1⊕G2⊕G3) = ρ(G1)+ρ(G2)−1+ρ(G3)–1 = ρ(G1)+ρ(G2)+ρ(G3)–2, which is
odd, and so on, yielding ρ(G1⊕G2⊕· · ·⊕Gj) = ρ(G1)+ρ(G2)+ · · ·+ρ(Gj)–(j−1),
which is odd. Since the rank of the joins of the m− j even ones is the sum of the
ranks (which is even), the join of all m of them is the sum of the ranks minus (j−1).

□
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