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Abstract

This study examines the explosive behavior in the five local market prices of stock indices (in USD and TRY), 
bond, CDS, gold, and currency exchange rate of USDTRY at weekly observations over the sample period 
between 2005 and 2021. We find strong evidence of bubble formations in bond, gold, and currency markets 
during the crisis (financial and pandemic, such as ongoing COVID-19 outbreak) and non-crisis periods. 
The findings show both unidirectional and bidirectional causal linkages under the homoscedasticity and 
heteroscedasticity assumptions. Additionally, the causation is most pronounced under the homoscedastic 
model between the currency market with the CDS, gold, and stock markets.
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Öz

2005 ve 2021 yılları arasındaki dönemin dikkate alındığı bu çalışmada, hisse senedi (TL ve dolar bazında), 
tahvil, CDS, altın ve döviz gibi beş farklı finansal piyasanın haftalık frekansta kapanış fiyatları kullanılarak, 
bu fiyatlarda balon varlığı incelenmiştir. Hem finansal ve salgın dönemini içeren kriz, hem de kriz dışı 
periyotlarında geçerli olmak üzere altın, CDS ve tahvil piyasalarında fiyatlarda balon oluşumunu gösteren 
anlamlı bulgular elde edilmiştir. Bulgulara göre homoskedastik ve heteroskedastik modellerinde tek 
ve çift yönlü olmak üzere nedensellik ilişkilerine rastlanmıştır. Bu ilişkinin en çok CDS, altın ve hisse 
senedi piyasaları ile döviz piyasası arasındaki homoskedastik varsayımların geçerli olduğu model altında 
belirginleşmektedir.
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1. Introduction

Asset price bubbles in financial markets have been receiving tremendous attention among 
policymakers, academics, and the public because of their devastating effects on financial markets, the 
real economy, and wealth. Therefore, determining whether or not they exist and when their adverse 
effects will end is of great importance in terms of appropriate policy construction and portfolio 
management decisions. In literature, the debated questions are the pricing of assets, categorizing 
price movements, and determining the most suitable econometric approach in identifying bubble 
like-characteristics.

In their pioneering study, Blanchard and Watson (1982) argue that economists have been wrong about 
the pricing of assets depending on fundamentals of a stream of cash flows and discount rates given 
the assumption of rational expectations and rational behavior of investors; therefore, an asset price 
can rationally deviate from its fundamental price. A rational bubble can be defined, as in Diba and 
Grossman (1988), as a self-confirming divergence of asset (stock) prices from market fundamentals 
in response to external variables. Blanchard and Watson (1982) indicate that the probability of bubble 
formation in a (gold) market may be higher than in other markets (such as stock) due to the degree of 
difficulty in correctly assessing the fundamentals affecting the price. They also highlight the fact that 
the effect of a bubble is not only limited to that market but will also affect other markets.

In the paper of Brunnermeier (2008), the author divides the bubble literature into four groups of 
models in terms of identifying conditions under which bubbles can exist. In the first category, all 
investors are assumed to be rational and symmetrically informed whereas in the second category, 
they have a different level of knowledge and bubbles can arise because their existence need not be 
widely known. Apparently, these two groups of models are similar in terms of investors’ expectations 
but differ when it comes to assumptions for the distribution of information. In the third category, 
however, theoreticians focus on the interaction of rational and irrational investors with each other. 
According to these models, the rationale behind the persistence of a bubble in markets is the arbitrage 
limitations on rational investors. The models in the fourth category, on the other hand, point to the 
heterogeneity of investor beliefs, because of psychological biases, and therefore, accept the existence 
of divergence from fundamental prices.

Bubbles follow a succession of phases as the business cycle does. Asset prices are inclined to rise during 
the first phase (developing) and escalate at an increasing rate during the second phase (booming). El-
Montasser et al. (2016) point out that the prices during these phases generate expectations of further 
rises and attract new buyers. The prices, however, reach a peak in the third phase (peak) and, then, 
start contracting at the final phase. Rational investors benefit from every stage of the process while 
sophisticated investors wait for a convenient time to close out their positions. Latecomers, however, 
may suffer losses because they try to catch a falling knife. The effects of the collapse of rational 
bubbles are worse for the economy as well as for individual investors (Nazir et al., 2019). As stated 
by Balcilar et al. (2016), market agents sustain a belief that buying additional units is still profitable, 
despite being overvalued concerning their fundamentals, as they do not miss any opportunity to 
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make a profit. A rational intrinsic bubble emerges on the condition that prices rationally deviate from 
their fundamentals and form a bubble due to changes in investors’ sentiments (Froot and Obstfeld, 
1991). Alternatively, a speculative or irrational bubble emerges due to the self-fulfilling beliefs of 
investors, who fail to correctly and timely identify the bubble phases and indulge in herding (Tran, 
2017).

The unpredictability of bubbles and their potential to cause serious economic damage have been the 
subject of studies in which researchers have used various empirical approaches. As discussed in the 
papers of Gürkaynak (2008) and Homm and Breitung (2012), the relevant list includes the variance 
bound test (Shiller, 1981), two-step test (West, 1987), cointegration-based test (Diba and Grossman, 
1988), the concept of intrinsic bubbles (Froot and Obstfeld, 1991), and the Markov-Switching 
Augmented Dickey-Fuller (DF) test (Hall et al., 1999) to identify bubble formations in markets. Of 
these tests, the variance bound test and two-step tests have been rigorously criticized by Evans (1991) 
because of their drawbacks in detecting periodically collapsing bubbles.

Phillips et al. (2011, PWY hereafter) and Phillips et al. (2015, PSY hereafter) proposed a supremum 
DF to overcome the limitations of the aforementioned tests. The test has been widely used by 
researchers for studying bubble detection in financial markets. For instance, a voluminous literature 
provides significant evidence in support of the presence of bubbles in stock markets (Chan et al., 
2003; Gomez-Gonzalez et al., 2017; He et al., 2019) and against the unit root hypothesis (Deev et 
al., 2014; Yu and Hassan, 2010) for other than the Turkish stock markets. Regarding the Turkish 
stock indices, conversely, the findings are mixed, namely, the markets may show evidence of rational 
bubbles (Zeren and Yilanci, 2019) or not (Yanik and Aytürk, 2011).

There is also vast literature on bubble detection and estimation in currency markets. This list includes 
the papers of Evans (1986), Maldonado et al. (2019), Meese (1986), and Pavlidis et al. (2017) in favor 
of bubble existence, and West (1987), Wu (1995), and Bettendorf and Chen (2013) against the presence 
of bubbles in foreign exchange markets. Among these papers, Jirasakuldech et al. (2006) find non-
explosiveness in GDPUSD, USDCAD, USDDKK, USDJPY, and USDZAR at a monthly frequency using 
unit root, cointegration, and duration tests during the sample period 1989–2004. Jiang et al. (2015), on 
the other hand, document significant results in the USDCNY rate after 2005 as the exchange rate was 
under a managed floating exchange rate regime. The authors present evidence of two bubbles; the first 
bubble emerged during 2005–2006 and the second one appeared during the global financial crisis. The 
same results were obtained by Elike and Anoruo (2017), who provide significant evidence of explosive 
bubbles in the nominal USDZAR rate, the real exchange rate of traded and non-traded goods. Korkmaz 
et al. (2016) revealed significant evidence in favor of the bubble existence in stock index returns of 
Bist100, gold, and USDTRY foreign exchange rates, whereas the result was insignificant for the deposit 
interest rates and EURTRY exchange rates in Turkey. They stated that the existence of bubbles in gold 
prices has significantly negative impacts on the stock index volatility, whereas the result is negative, 
albeit not significant for the USDTRY foreign exchange rates.
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In retrospect of the literature, there is a bulk of research papers on bubble existence in gold markets, 
including Baur and Glover (2012), Bertus and Stanhouse (2001), Bialkowski et al. (2015), Çelik et al. 
(2019), Diba and Grossman (1984), and Korkmaz (2018). All of these papers, except for Korkmaz 
(2018), provide significant evidence in support of the presence of bubbles in the gold prices during 
notable historical events, confirming the role of gold as a safe-haven during the periods of turmoil. 
Among these papers, Baur and Glover (2012) showed that the gold markets have been dominated by 
chartists (feedback traders) and concluded that real demand for gold had dropped relative to investment 
demand. Bialkowski et al. (2015), on the other hand, concluded that it was not necessary to resort to the 
irrational bubble explanation to elucidate the significant fluctuations observed in the market.

In retrospect of the literature, however, the number of studies on bubbles in the bond and CDS 
markets, compared to other markets, is relatively scarce. Phillips and Yu (2011) documented 
bubble migrations from housing markets to first oil and then to bond markets. The bubble in 
bond markets, however, originated on September 22, 2008, corresponding to the Lehman Brothers 
bankruptcy, and collapsed on April 4, 2009, when the global economic implications of the crisis 
became evident. Huston and Spencer (2018) found that the explosive increase in monetary supply 
through quantitative easing had fueled bond prices after the crisis period, such as in 2011–2013 and 
2016, suggesting multiple bubbles in the market. Similarly, Chiu and Yeh (2019) stated that budget 
deficits, contractionary monetary policy, and oil shocks gave rise to multiple bubble existence in the 
government bond markets in developed countries. On the other hand, Oliveira and Santos (2015), 
using daily observations for 5-year maturity Greek sovereign credit default swaps (SCDSs), reported 
clear evidence of bubble existence in SCDSs spreads during the sample period between September 
2014 and March 2015, driven by the financial and political anxiety in Greece.

Although the pandemic crisis is not over yet, but its effect gradually decreases, literature that 
investigates the existence of price exuberance in the financial markets during the pandemic outbreak 
is scarce. For instance, Gharib et al. (2021) investigated the impact of the COVID-19 outbreak on 
the causal relationship between the WTI and gold prices. They detected evidence of mildly explosive 
episodes and a two-sided contagion effect of bubbles in both markets during the periods of the 
pandemic crisis. Using hourly exchange rate data of four currencies (EURO, GBP, YEN, and CAD), 
Narayan (2020) found no evidence of explosiveness in the foreign exchange rates of EURO, GBP, 
and YEN, but the test rejected the null of no existence of a bubble in CAD before the COVID-19 
period (2019M07–2019M12). However, the author put in evidence in favor of the existence of a 
price bubble in GBP, YEN, and CAD during the COVID-19 period (2020M01–2020M09), implying 
an increased market efficiency due to intensified bubble activities in the pandemic period. Jalan 
et al. (2021) examined the stock market performance of 43 firms in six industries, exhibiting 
sharp price increases during the COVID-19 period, using daily close-price observations covering 
November 2019 to January 2021. The results suggested the presence of rational bubbles in almost 
all industries, including “Bitcoin companies”, “Coronavirus therapeutics companies”, “Coronavirus 
Vaccine companies”, “Cryptocurrency companies”, “stay-at-home companies”, and “work-from-
home companies”. “Bitcoin” and “stay-at-home companies” showed the largest average bubble length, 
while “Coronavirus-Vaccine” and “Cryptocurrency companies” documented the lowest. Ural (2021) 
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studied the existence of price bubble formations in nominal USDKZT exchange rates, using the 
GSDAF test for the sample period extending from 2015M08 to 2021M04 at a weekly frequency. 
The author detected two explosive bubbles, one of which originated on July 209, 2018, and burst on 
September 16, 2018, and the second bubble episode started on March 8, 2020, and ended on April 5, 
2020. The author stated that these bubbles might be attributed to (i) the US sanctions on Turkey and 
the increased inflation (interest) rates and (ii) the oil price war between Russia and Saudi Arabia and 
the oil’s historic plunge with the onset of the COVID-19 outbreak, respectively.

The static or rolling/time-varying causal relationship between financial markets has been well 
documented in the existing literature. For example, Gök (2020) studied the dependence and 
causal linkages among stock, bond, CDS, currency, and gold markets in Turkey using both wavelet 
coherency and the Granger causality-in-variance test. The findings showed both unidirectional 
and bidirectional causalities during normal and tranquil periods. Using a bootstrap time-varying 
causality method, Gök and Kara (2021) reveal that the causal linkages among CDS, interest, and 
currency rates were strong but not homogenous during crisis and non-crisis periods. There was 
a time-varying but unidirectional causality from the bond to currency markets and bidirectional 
causality between the pairs of CDS–currency markets and CDS-bond markets during the ongoing 
pandemic crisis. In another noteworthy empirical study, Gök and Çankal (2020) examined the bond-
stock market relationship at the aggregate and sectoral levels and found that both market returns 
were significant predictors of each other in the medium and long time horizons and there was a 
one-way causality from the negative shocks in stock prices to the positive shocks in interest rates. 
No causality, however, was found by Noorie et al. (2020) among stock, CDS, and bond markets in 
Turkey. Hassan et al. (2017), on the other hand, investigated the CDS-currency market relationship 
in Turkey employing both the rolling window causality and the Markov Switching VAR methods 
during the period 2009–2015. The findings showed a one-way causal linkage from the CDS spreads 
to the USDTRY exchange rates in the post-crisis period, that is, during the period of stability in both 
markets in 2012 while the strength of causality differed according to the regime. Kanda et al. (2018) 
studied the dynamics of the causal interaction between currency and stock markets in the U.K. for 
the period 1791–2017. By utilizing the DCC-MGACRH based rolling causality test, they found 
evidence of time-varying information spillovers between the market returns, supporting either the 
flow-oriented, stock-oriented model or both models.

The results aforementioned showed that the empirical studies examining the presence of explosive 
behaviors in and causal interaction between the financial markets during both tranquil and turmoil 
periods are relatively scarce. To fill this gap in the literature, we study the existence of bubbles and 
the time-varying causality relationships among selected financial markets in Turkey. This paper 
complements the empirical literature in two major ways. First, it includes a larger data sample using 
weekly averages of five financial markets, including stock, bond, CDS, gold, and currency markets, in 
terms of local currency and USD (for only two stock indices) in Turkey, considering both local and 
non-resident investors. Second, it does not only consider the detected bubble episodes by either local 
or/and global crisis periods, but it also employs the recursive evolving causality test to identify the 
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contagion effect of bubbles in the financial markets following the procedure in Gharib et al. (2021) 
and Zhao et al. (2021).

This paper uses the GSADF test of PSY to identify bubbles in five Turkish markets over the period 
2005–2021 at a weekly frequency. The results reveal multiple bubble existence in only three out of 
eight variables. The recursive evolving causality test results show both unidirectional and bidirectional 
causal linkages under the homoscedastic and heteroscedastic assumptions. The causation is most 
pronounced under the homoscedastic model between the currency market with CDS, gold, and 
stock markets.

The layout of the study proceeds as follows. The following section describes the data and briefly 
introduces the relevant literature regarding the GSADF and the rolling recursive evolving 
causality tests. In section three, we discuss the empirical findings. Section four concludes the 
paper.

2. Data and Methodology

2.1. Data

To investigate the existence of bubbles in Turkish financial markets, we used weekly average closing 
prices of two stock indices, XU100 and XBANK, both in terms of TRY and USD, and bond (2–year), 
CDS (5-year dollar-denominated sovereign CDS premiums), gold (per ounce in TRY), and currency 
market (USD against Turkish Liras, USDTRY). Considering that a bubble can be both the cause and 
the result of the crisis and for reasons of data availability, we start the sample period in mid-2005, 
i.e. it started in the second week of April 2005 and ended in the last week of June 2021, with 848 
observations. The variables of stock indices and USDTRY were obtained from the Central Bank of 
the Republic of Turkey (CBRT) EVDS Statistics database while the 2–year Turkish government bond 
yields and CDS spreads were retrieved from Bloomberg. Gold prices were available from the World 
Gold Council website. In Table 1, we present descriptive statistics of the continuously compounding 
returns.

Table 1 reveals that all variables, with the exceptions of XU100_$ and XBANK_$ posted positive 
average weekly performance during the sample period and that GOLD had the highest average 
return (0.39%) followed in turn by USDTRY (0.22%) and XU100_TRY (0.20%). The CDS spread 
changes showed the highest volatility (6.67%) for the underlying Turkish financial markets with a 
minimum (-44.8%) and maximum value (37.3%) found during the financial crisis of 2007–2009 
and the COVID-19 pandemic, respectively. On the other hand, the results of the Jarque-Berra (JB) 
test rejected the assumption of normality with a significantly negative or positive skewness and 
significantly positive excess kurtosis.
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Table 1: Descriptive Statistics for Return Series
Variables Mean Maximum Minimum SD Skewness Kurtosis JB
XU100_T 0.002 0.0964 -0.1537 0.0309 -1.02*** 3.03*** 470.23***

XBANK_T 0.0011 0.156 -0.1843 0.0403 -0.6*** 2.09*** 205.09***
XU100_$ -0.0002 0.1529 -0.2482 0.0424 -1.11*** 4.42*** 863.79***

XBANK_$ -0.0011 0.1899 -0.34 0.0514 -0.87*** 4.18*** 722.01***
BOND2 0 0.1692 -0.2982 0.033 -0.36*** 9.83*** 3429.67***

CDS 0.0002 0.373 -0.4483 0.0667 0.47*** 5.34*** 1036.76***
GOLD 0.0039 0.1077 -0.1117 0.0229 0.21** 2.77*** 277.76***

USDTRY 0.0022 0.1791 -0.0786 0.0173 1.84*** 15.94*** 9439.62***
Note: *** denotes rejection of the null hypothesis at the 1% and 5% significance levels, respectively. XU100_$ (1986-02-
07=100) and XBANK_$ (1997-01-02=100) indices were calculated using the weekly average of USDTRY rates.

2.2. Methodology

For brevity, this paper omits the mathematical details of two well-known methods applied here 
(GSADF and unit root test) and the readers are referred to Phillips et al. (2015) and Harvey et al. 
(2016).

To investigate the time-varying causality relationship among five financial market prices, we 
implement the recursive evolving causality test proposed by Shi et al. (2018). The starting point for 
this method can be written by an unrestricted VAR(p) in a multivariate regression format as
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respectively. XU100_$ (1986-02-07=100) and XBANK_$ (1997-01-02=100) indices were 
calculated using the weekly average of USDTRY rates. 

2.2. Methodology 

For brevity, this paper omits the mathematical details of two well-known methods applied here 
(GSADF and unit root test) and the readers are referred to Phillips et al. (2015) and Harvey et 
al. (2016).  

To investigate the time-varying causality relationship among five financial market prices, we 
implement the recursive evolving causality test proposed by Shi et al. (2018). The starting 
point for this method can be written by an unrestricted VAR(p) in a multivariate regression 
format as   

𝒚𝒚𝒕𝒕 = 𝛱𝛱𝒙𝒙𝒕𝒕 + 𝜀𝜀𝑡𝑡,         𝑡𝑡 = 1, … , 𝑇𝑇 (1) 

where 𝒚𝒚𝒕𝒕 = (𝑦𝑦1𝑡𝑡, 𝑦𝑦2𝑡𝑡)′, 𝒙𝒙𝒕𝒕 = (1, 𝑦𝑦𝑡𝑡−1
′ , 𝑦𝑦𝑡𝑡−2

′ , … , 𝑦𝑦𝑡𝑡−𝑝𝑝
′ )′

, and Π2x(2𝑝𝑝+1) = [Ψ0, Ψ1, … , Ψ𝑝𝑝]. Also, 
�̂�𝜔 = 𝑇𝑇−1 ∑ 𝜀𝜀�̂�𝑡

𝑇𝑇
𝑡𝑡=1 𝜀𝜀�̂�𝑡

′ with 𝜀𝜀�̂�𝑡 = 𝒚𝒚𝒕𝒕 − 𝛱𝛱𝒙𝒙𝒕𝒕 (Π̂ is the ordinary least squares estimator of Π), and 
X′ = [x1, … , x𝑇𝑇] is the observation matrix of the regressors. For the hypothesis testing, 
𝐻𝐻0: 𝑦𝑦2𝑡𝑡 ↛ 𝑦𝑦1𝑡𝑡, the Wald test takes the following form  

𝒲𝒲 = [𝑹𝑹 𝑣𝑣𝑣𝑣𝑣𝑣(𝛱𝛱)]′[ 𝑹𝑹( �̂�𝜔⨂(𝑿𝑿′𝑿𝑿)−1)𝑹𝑹′]−1[𝑹𝑹 𝑣𝑣𝑣𝑣𝑣𝑣(𝛱𝛱)] (2) 

In the equation, vec(Π̂) is the (row vectorized) 2 (2𝑝𝑝 + 1) × 1 coefficient of the ordinary least 
squares estimator, Π̂, and 𝐑𝐑 is the 𝑝𝑝 × 2(2𝑝𝑝 + 1) matrix. Each row of 𝐑𝐑 picks one of the 
coefficients to set to zero under the null hypothesis of no causality and the lagged values of 𝑦𝑦2𝑡𝑡 
has the 𝑝𝑝 coefficients in Eq. (2).  

 is the (row vectorized) 2 (2p+1)×1  coefficient of the ordinary least squares 
estimator, 

7 
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 , and 

Following the PSY procedure, the authors develop three tests based on the supremum norm of 
a series of recursively evolving Wald statistics for detecting changes in causality between 
variables, using three different algorithms: forward recursive, rolling window, and recursive 
evolving window. Given that the third algorithm gives the best finite sample performance 
results according to some papers (Shi et al., 2018; Gharib et al., 2021) we will describe its 
technical details only.     

Let 𝑓𝑓 be the (fractional) observation of interest and 𝑓𝑓0  be the necessary minimum (fractional) 
window size to estimate the model. We obtain the Wald statistic, denoted as 𝒲𝒲𝑓𝑓2(𝑓𝑓1), for each 
subsample regression over [𝑓𝑓1, 𝑓𝑓2] with a sample size fraction of 𝑓𝑓𝑤𝑤 = 𝑓𝑓2 − 𝑓𝑓1 ≥ 𝑓𝑓0 and define 
the sup Wald statistic as 

𝒮𝒮𝒲𝒲𝑓𝑓(𝑓𝑓0) = 𝑠𝑠𝑠𝑠𝑠𝑠
(𝑓𝑓1,𝑓𝑓2)∈∧0,𝑓𝑓2=𝑓𝑓

{𝒲𝒲𝑓𝑓2(𝑓𝑓1)} (3) 

where ∧0= {(𝑓𝑓1, 𝑓𝑓2) ∶ 0 < 𝑓𝑓0 + 𝑓𝑓1 ≤ 𝑓𝑓2 ≤ 1, and 0 ≤ 𝑓𝑓1 ≤ 1 − 𝑓𝑓0} with the condition of 0 <
𝑓𝑓0 < 1 for some minimal sample size in the regressions. Since this procedure allows variation 
in the window widths, it is called the recursive evolving procedure.  

Assume that 𝑓𝑓𝑏𝑏 and 𝑓𝑓𝑠𝑠 represent the origination and termination points, estimated as the first 
chronological observation whose test statistic is respectively greater or less than the critical 
value, in the causal relationship, the dating rules of recursive evolving procedure are given as 

𝑓𝑓𝑏𝑏 = 𝑖𝑖𝑖𝑖𝑓𝑓
𝑓𝑓∈[𝑓𝑓0,1]

{𝑓𝑓 ∶ 𝒮𝒮𝒲𝒲𝑓𝑓(𝑓𝑓0) > 𝑐𝑐𝑐𝑐𝑐𝑐}   & 𝑓𝑓𝑠𝑠 = 𝑖𝑖𝑖𝑖𝑓𝑓
𝑓𝑓∈[𝑓𝑓𝑏𝑏,1]

{𝑓𝑓 ∶ 𝒮𝒮𝒲𝒲𝑓𝑓(𝑓𝑓0) < 𝑐𝑐𝑐𝑐𝑐𝑐}
(4) 

where 𝑐𝑐𝑐𝑐𝑐𝑐 is the corresponding critical value of the 𝒮𝒮𝒲𝒲𝑓𝑓 statistic. Note that, the origination 
and termination dates of episode 𝑚𝑚 are searched, respectively, with 𝑚𝑚 ≥ 2 in the sample 
ranges of [𝑓𝑓𝑚𝑚−1𝑏𝑏, 1] and [𝑓𝑓𝑚𝑚𝑠𝑠, 1]. 
It should be noted that the Wald statistics of the subsamples take two different forms: 
homoscedastic and heteroscedastic. Under the assumption of homoscedasticity, the Wald 
statistic can be written as    

𝒲𝒲𝑓𝑓2(𝑓𝑓1) = (𝑹𝑹�̂�𝜋𝑓𝑓1,𝑓𝑓2)′ {𝑹𝑹 [�̂�𝜔𝑓𝑓1,𝑓𝑓2⨂ ( ∑ 𝒙𝒙𝒕𝒕𝒙𝒙𝒕𝒕
′

⌊𝑇𝑇𝑓𝑓2⌋

𝑡𝑡=⌊𝑇𝑇𝑓𝑓1⌋
)

−1

] 𝑹𝑹′}

−𝟏𝟏

(𝑹𝑹�̂�𝜋𝑓𝑓1,𝑓𝑓2). (5) 

where 𝐑𝐑 is the coefficient restriction matrix (of full row rank 𝑑𝑑) and �̂�𝜋𝑓𝑓1,𝑓𝑓2 is the estimated 
coefficient population. The homoscedasticity consistent version of the sup Wald statistic is 
defined as 

𝒮𝒮𝒲𝒲𝑓𝑓(𝑓𝑓0) = 𝑠𝑠𝑠𝑠𝑠𝑠{𝒲𝒲𝑓𝑓2(𝑓𝑓1) ∶ 𝑓𝑓1 ∈ [0, 𝑓𝑓2 − 𝑓𝑓0], 𝑓𝑓2 = 𝑓𝑓} (6) 
The heteroskedasticity consistent version of the Wald statistic and its corresponding 
heteroskedasticity consistent sup Wald statistic is given, respectively, by 
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where 𝐑𝐑 is the coefficient restriction matrix (of full row rank 𝑑𝑑) and �̂�𝜋𝑓𝑓1,𝑓𝑓2 is the estimated 
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defined as 
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 picks one of the coefficients to set 
to zero under the null hypothesis of no causality and the lagged values of y2t has the p coefficients in 
Eq. (2).

Following the PSY procedure, the authors develop three tests based on the supremum norm of a 
series of recursively evolving Wald statistics for detecting changes in causality between variables, 
using three different algorithms: forward recursive, rolling window, and recursive evolving window. 
Given that the third algorithm gives the best finite sample performance results according to some 
papers (Shi et al., 2018; Gharib et al., 2021) we will describe its technical details only.
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condition of �̂�𝜗𝑡𝑡 = 𝜀𝜀�̂�𝑡⨂. 

3. ANALYSIS AND RESULTS 

In this section, we will provide and discuss the findings of bubble detection and the LOGIT 
model, which are prepared in agreement with research and publication ethics.   

3.1. GSADF Test Results 

We report the findings of the GSADF tests for the weekly observations numerically in Table 2 
and graphically in Figures 1. 

Table 2: The PSY Test Results 

Variables Test Statistics 0.10 0.05 0.01 

XU100_TR 2.3134 2.892 3.278 4.117 

XBANK_TR 1.9201 2.660 3.043 3.822 

XU100_$ 2.1515 2.704 3.053 3.767 

XBANK_$ 2.5315 2.642 3.085 3.973 

BOND 7.5141*** 4.514 5.155 6.547 

CDS 5.7456 5.899 7.209 10.267 

GOLD 8.8634*** 4.698 5.441 6.914 

USDTRY 6.8505** 5.244 6.187 8.688 

Notes: *** and ** denote rejection of the null hypothesis at the 1% and 5% significance levels, 
respectively. Test statistics and critical values are, respectively, obtained through the wild bootstrap 
approach proposed by Harvey et al. (2016) with “nboot = 5000” iterations using the R package of 
psymonitor (Caspi et al., 2018) and exuber (Vasilopoulos et al., 2018). Calculation of the PSY test 
statistic are achieved with the command PSY(y, swindow0, IC, adflag) while the bootstrapped critical 
values are obtained with the command radf_wb_cv(y, minw = swindow0, nboot = nboot, seed = NULL) 
where “y” is the closing prices of underlying variable, “swindow0 = floor((0.01 + 1.8/sqrt(848))*848)”, 
“IC = 1 (AIC)” and “adflag = 0”. Further, “tb = 32 + swindow0 – 1” and “nCores = 2”. 

As shown in the second column, the sequential ADF unit root test provides significant 
evidence of footprints, namely, it supports the possibility of bubbles in only three out of eight 
variables in the first stage as the GSADF test rejects the null of no existence of a bubble in the 
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−1 )𝑹𝑹′]−𝟏𝟏(𝑹𝑹�̂�𝜋𝑓𝑓1,𝑓𝑓2). (7) 

𝒮𝒮𝒲𝒲𝑓𝑓
∗(𝑓𝑓0) = 𝑠𝑠𝑠𝑠𝑠𝑠

(𝑓𝑓1,𝑓𝑓2)∈∧0,𝑓𝑓2=𝑓𝑓
{𝒲𝒲𝑓𝑓2(𝑓𝑓1)

∗ }
(8) 

where �̂�𝑀𝑓𝑓1,𝑓𝑓2 ≡ 𝐼𝐼𝑛𝑛⨂�̂�𝑄𝑓𝑓1,𝑓𝑓2with �̂�𝑄𝑓𝑓1,𝑓𝑓2 ≡ 1
𝑇𝑇𝑤𝑤

∑ 𝒙𝒙𝒕𝒕𝒙𝒙𝒕𝒕
′⌊𝑇𝑇𝑓𝑓2⌋

𝑡𝑡=⌊𝑇𝑇𝑓𝑓1⌋  and Σ̂𝑓𝑓1,𝑓𝑓2 ≡ 1
𝑇𝑇𝑤𝑤

∑ �̂�𝜗𝑡𝑡�̂�𝜗𝑡𝑡
′⌊𝑇𝑇𝑓𝑓2⌋

𝑡𝑡=⌊𝑇𝑇𝑓𝑓1⌋  with the 

condition of �̂�𝜗𝑡𝑡 = 𝜀𝜀�̂�𝑡⨂. 

3. ANALYSIS AND RESULTS 

In this section, we will provide and discuss the findings of bubble detection and the LOGIT 
model, which are prepared in agreement with research and publication ethics.   

3.1. GSADF Test Results 

We report the findings of the GSADF tests for the weekly observations numerically in Table 2 
and graphically in Figures 1. 

Table 2: The PSY Test Results 

Variables Test Statistics 0.10 0.05 0.01 

XU100_TR 2.3134 2.892 3.278 4.117 

XBANK_TR 1.9201 2.660 3.043 3.822 

XU100_$ 2.1515 2.704 3.053 3.767 

XBANK_$ 2.5315 2.642 3.085 3.973 

BOND 7.5141*** 4.514 5.155 6.547 

CDS 5.7456 5.899 7.209 10.267 

GOLD 8.8634*** 4.698 5.441 6.914 

USDTRY 6.8505** 5.244 6.187 8.688 

Notes: *** and ** denote rejection of the null hypothesis at the 1% and 5% significance levels, 
respectively. Test statistics and critical values are, respectively, obtained through the wild bootstrap 
approach proposed by Harvey et al. (2016) with “nboot = 5000” iterations using the R package of 
psymonitor (Caspi et al., 2018) and exuber (Vasilopoulos et al., 2018). Calculation of the PSY test 
statistic are achieved with the command PSY(y, swindow0, IC, adflag) while the bootstrapped critical 
values are obtained with the command radf_wb_cv(y, minw = swindow0, nboot = nboot, seed = NULL) 
where “y” is the closing prices of underlying variable, “swindow0 = floor((0.01 + 1.8/sqrt(848))*848)”, 
“IC = 1 (AIC)” and “adflag = 0”. Further, “tb = 32 + swindow0 – 1” and “nCores = 2”. 

As shown in the second column, the sequential ADF unit root test provides significant 
evidence of footprints, namely, it supports the possibility of bubbles in only three out of eight 
variables in the first stage as the GSADF test rejects the null of no existence of a bubble in the 

.
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3. Analysis and Results

In this section, we will provide and discuss the findings of bubble detection and the LOGIT model, 
which are prepared in agreement with research and publication ethics.

3.1. GSADF Test Results

We report the findings of the GSADF tests for the weekly observations numerically in Table 2 and 
graphically in Figures 1.

Table 2: The PSY Test Results
Variables Test Statistics 0.10 0.05 0.01
XU100_TR 2.3134 2.892 3.278 4.117
XBANK_TR 1.9201 2.660 3.043 3.822
XU100_$ 2.1515 2.704 3.053 3.767
XBANK_$ 2.5315 2.642 3.085 3.973
BOND 7.5141*** 4.514 5.155 6.547
CDS 5.7456 5.899 7.209 10.267
GOLD 8.8634*** 4.698 5.441 6.914
USDTRY 6.8505** 5.244 6.187 8.688

Notes: *** and ** denote rejection of the null hypothesis at the 1% and 5% significance levels, respectively. Test statistics and critical 
values are, respectively, obtained through the wild bootstrap approach proposed by Harvey et al. (2016) with “nboot = 5000” iterations 
using the R package of psymonitor (Caspi et al., 2018) and exuber (Vasilopoulos et al., 2018). Calculation of the PSY test statistic are 
achieved with the command PSY(y, swindow0, IC, adflag) while the bootstrapped critical values are obtained with the command 
radf_wb_cv(y, minw = swindow0, nboot = nboot, seed = NULL) where “y” is the closing prices of underlying variable, “swindow0 = 
floor((0.01 + 1.8/sqrt(848))*848)”, “IC = 1 (AIC)” and “adflag = 0”. Further, “tb = 32 + swindow0 – 1” and “nCores = 2”.

As shown in the second column, the sequential ADF unit root test provides significant evidence of 
footprints, namely, it supports the possibility of bubbles in only three out of eight variables in the first 
stage as the GSADF test rejects the null of no existence of a bubble in the bond, gold, and currency 
markets. Our findings regarding the existence of bubbles reinforce the results of some papers for 
bond markets (Lamoen et al., 2017; Huston and Spencer, 2018; Chiu and Yeh, 2019), gold markets 
(Zhao et al., 2015; Long et al., 2016; Pan, 2018), and currency markets (Hu and Oxley, 2017; Afşar et 
al., 2019; Korkmaz et al., 2016). The findings regarding the nonexistence of bubbles in equity markets 
contradict a few papers (Chang et al., 2016; Çağli and Mandaci, 2017; Liaqat et al., 2018; Korkmaz et 
al., 2016) but support Çıtak (2019) and Tasci and Okuyan (2009), who argue that since Istanbul Stock 
Exchange (ISE) indices do not have much depth, the lack of speculative bubble may be the result of 
the large and relatively rational investors’ precautionary behaviors. Further, the outcome related to 
CDS spreads concurs with the finding of Oliveira and Santos (2015), who report significant evidence 
of the existence of multiple periodically collapsing bubbles in SCDSs spreads in Greece.

In the second stage, we further analyze the bubble-detection findings for three markets in Figures 1. 
In the top panel, we plot the historical path of weekly observations for the FPI, where the periods of 
historic domestic and international events are demonstrated by the shadow area. The figure displays 
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findings for the date-stamping strategy over the sample period, depicting the sequence of the backward 
SADF statistics with the solid blue line and the 95% critical values with the solid red line on the left axis, 
whereas the relevant time series is plotted on the right axis with the solid black line.

Apparently, we can see evidence of multiple episodes of exuberance in all asset prices during both 
tranquil and turmoil periods in the local or/and global economy. We begin by analyzing the bubble 
periods for bond yields, where the BSADF sequence exceeds the 95% critical value of 1.0475 (shaded 
area). We observe four genuine bubbles with a total of 40 weeks in bond markets. The first bubble 
emerged in the 4th week of November and burst in the 3rd week of December 2012, i.e. with a 4 
weekly durations while the second bubble originated and terminated, respectively, in the 2nd week 
and ended in the 4th week of December 2017, i.e. with 3 weekly durations. The test detects the third 
obvious bubble (the largest bubble in the bond market –lasting 27 weeks– and the fifth-largest among 
the three markets), from May 9 to November 7, 2018, and the fourth obvious bubble originating 
and bursting from May 1 to June 5, 2019, coinciding with the 2018–2020 currency crisis in Turkey. 
During this period, the government bond rates of 2-year jumped to reach their zenith of almost 27.65 
percentage points due to the political/military tensions with Trump’s U.S.

Figure 1: Date-Stamping Periods of Exuberance in Bond, Gold, and Currency Markets

Note: The green shaded bars in the top panel represent quantitative easing periods launched by the FED and the ECB during 
and after the crisis periods, including financial and pandemic. Similarly, the red ones in the same panel represent the crisis 
periods in the US (GFC, the recent global financial crisis), the EU (EUSD, the European sovereign debt crisis), Turkey (GP, 
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the Gezi Park protests and TCC, “currency and debt” crisis in Turkey), and the ongoing COVID-19 pandemic. The gray 
shadows in the three bottom panels are sub-periods with bubbles lasting at least 3 weeks (>log (T=848)= 2.9) following 
the suggestions of the PWY procedure. If the corresponding BSADF test statistics in the blue solid line exceed the 95% 
GSADF critical value, we conclude that the underlying time series with a green solid line has evidence of a bubble. Note that 
calculation of the PSY statistic sequence and the critical values can be achieved, respectively, with the commands PSY() and 
cvPSYwmboot() contained in the psymonitor R package.

The second panel of Figure 1 shows significant evidence of bubble existence in the Turkish gold 
market, where the BSADF sequence exceeds the 95% critical value of 1.1505 (shaded area). Six 
bubbles are detected with a total duration of 241 weeks in the market. The first bubble episode 
was observed between May–June 2006, lasting three weeks. The second obvious bubble started on 
February, 13 and ended on March 16, 2008, coinciding with the global financial crisis around mid-
2008, and the third bubble –lasting 4 weeks– originated and terminated at the end of this crisis. 
The fourth bubble was the shortest –lasting only 3 weeks– from February to March 2011. But 
after five weeks, the second largest-lasting bubble with 49 weekly durations appeared, coinciding 
with the European sovereign debt crisis of 2009–2012 and the end of second quantitative easing 
launched by the FED between November 2010 and June 2011. The sixth and the largest-lasting 
bubble with 172 weekly durations started in March 2018, and ended in June 2021, coinciding with 
the Turkish currency crisis because of heightened tension between Washington and Ankara and 
the current pandemic crisis. These results indicate that both international and domestic events 
(rising inflation and depreciation of Turkish lira against other currencies) could significantly 
contribute to bubble occurrence in a market and, therefore, induce Turkish investors toward the 
safe-haven of gold as well as investing in currency, stock, cryptocurrency money, and buying real 
assets such as automobiles, house, etc.

The bottom panel in Figure 1 displays significant evidence of two long and six short bubble 
presence in the Turkish currency market, with a total duration of 342 weeks since the test 
statistic exceeds the right-tailed critical value of 1.1842 at the 5% significance level. The first 
bubble emerged in the 60th week and ended in the 65th week of 2006 (May–June), coinciding 
with the crisis period of exchange rate shocks led by rises in interest rates. Although Turkey’s 
economy had advanced 9.6% year-on-year (YoY) in the second quarter of 2006 due to ongoing 
positive accelerations in the EU accession negotiations, it had been exposed to an exchange rate 
shock because of the increase in interest rates of the central banks of developed countries in May 
2006, which had significant adverse effects on the inflation expectations and, therefore, burst 
the bubbles in the financial markets. Hence, total FPI in Turkey fell by $10 billion indicating 
a decrease of – 16.8 percent in the 2006Q3 from $59.6 to $49.6 billion. During the European 
sovereign debt crisis, the market witnessed the second bubble with a length of 3 weeks, 
originating and terminating in August 2011. As the test revealed, the currency market entered 
a bubble period with a 3 weekly duration in late August 2013, ascribing to the period when the 
termination date of QE3 was released by the Federal Open Market Committee (FOMC) in late 
2013. This announcement and the Gezi Park protests occurring in Turkey between May 27, 2013, 
and September 21, 2013, were the main two drivers of the bubble formation in the currency 
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market. Legitimating the arguments stated in the finance literature, the political uncertainty at 
the beginning of 2014 in Turkey led to the occurrence of multiple exuberances in the currency 
market. The test detected a bubble episode with a length of 7 weeks in the market, coinciding 
with the period when the CBRT increased sharply its benchmark 1-week repo interest by 550 
basis points (bps) to 10% aiming to calm down the markets.

Further, it revealed another bubble formation in the USDTRY exchange rate, originating in 
February 2015 and collapsing at the end of March 2016. It was the second and third-largest lasting 
bubble in the currency and the three Turkish markets. Although a quantitative easing program 
was launched by the European Central Bank (ECB), initiated in March 2015 and terminated in 
September 2018, the Turkish lira lost 15.1 percent of its value against the US dollar during this 
bubble episode. We may attribute this explosive behavior to the Sah Firat operation to evacuate the 
Tomb of Suleyman Shah in Syria, the CBRT’s policy rate cut decision from 11.25 to 10.75, terrorist 
attacks in Turkey, and the uncertainties regarding the general election in Turkey. After five weeks, 
the market again entered two bubble episodes in May and July 2016. The test finds evidence of a 
persistent and large bubble with a length of 8 weeks and a short-lived episode of a bubble with a 
length of 4 weeks.

The largest-lasting bubble in the financial markets was witnessed in the currency market between 
September 2016 and the end of the sample period (June 2021). We observe the longest-lived bubble 
formation with a length of 250 weeks, lasting about five years. The main rationale behind these 
bubbles before 2018 may be the surprise winning of Trump’s U.S. presidential election, strengthening 
the USD against global currencies. We may also attribute to heightening tension between Turkey and 
the EU when the European Parliament called for the freezing of membership talks with Turkey, the 
visa crisis, and the political/military tensions with the U.S. During the 2018–2020 currency crisis 
driven by threatens of economic sanctions by the Trump administration on the Turkish economy, the 
presidential election and the renewal of local elections in Istanbul had helped to long live the bubble 
formation in the market. The Turkish economy was mired in stagflation in 2018, with the highest 
annual inflation rate of 25.24%, a 15-year high, in October 2018, and coupled with a contracting 
of GDP by – 2.8% (2018Q4), – 2.3% (2019Q1), and – 1.6% (2019Q2). This bubble did not burst in 
2020, instead, the persistent bubble behaviors continued during the pandemic era due to the rising 
inflation and dollarization rate. Besides, the dismissals of central bank governors before their term of 
office expire and the unannounced foreign-exchange sales, i.e. through back-door steps, to stabilize 
the lira, leading net reserves –with the swaps stripped out– to fall below zero are the other main 
factors that lead to the lira undervalue against the dollar.

The visual examination suggests that the explosive behaviors in the three markets mostly are 
encountered at different lengths and overlap during the recent local currency crisis in Turkey and the 
ongoing pandemic. Further, the worsening of foreign policy with the USA and the EU and local and 
general elections held since 2015 may cause bubbles in Turkish markets. The findings regarding the 
exuberance dates broadly agree with the results from Korkmaz et al. (2016) and Gharib et al. (2021) 
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for gold prices; Ural (2021) and Narayan (2020) for currency markets; and Huston and Spencer 
(2018) and Chiu and Yeh (2019) for bond markets.

3.2. Shi et al. Causality Test Results

Following the procedure in Gharib et al. (2021) and Zhao et al. (2021), we also investigate the 
contagion effect of bubbles in financial markets by employing the recursive evolving causality test 
under the homoscedastic and heteroscedastic assumptions. But, before the causality testing, we must 
identify the integration order of the underlying variables. The findings related to the Harvey et al. 
(2013) test with two structural breaks for the five asset prices expressed in natural logarithms are 
given in Table 3.

Table 3: Harvey et al. (2013) unit root test with one and two structural breaks
Level (Log) First Difference

Variable MDF1 MDF2 MDF1 MDF2

LN_XU100 -3.194 -3.217 -14.251*** -14.288***
LN_BOND2 -2.84 -3.307 -8.516*** -8.573***
LN_CDS -3.341 -3.461 -11.85*** -11.869***
LN_GOLD -2.253 -4.527* -14.77*** -14.905***
LN_USDTRY -3.534 -4.324* -11.299*** -11.31***

Note: *, **, or *** indicate rejection of the null hypothesis of a unit root where the relevant critical values for MDF1 test 
are – 3.57, – 3.85, and – 4.40 and for MDF2 test are – 4.30, – 4.58, and – 5.10 at the 10%, 5%, and 1% significance levels, 
respectively.

A perusal of Table 3 shows that the null hypothesis of the existence of a unit root could be strongly 
rejected for “LN_GOLD” and “LN_USDTRY” in the two breaks in trend case (MDF2), suggesting level-
stationarity in the logarithm of prices of gold and foreign exchange rate. The findings, on the other hand, 
overwhelmingly reject the null hypothesis in favor of the alternative hypothesis for the series by taking the 
first difference in the logarithms of prices, indicating that all series seem to be trend-stationary at the 1% 
significance level. Thus, the weekly prices of all variables are used for the causality test.

Identifying changes in the causal linkages as well as contagion effect of bubbles in the financial 
markets, we implement the recursive evolving causality test and display the results, along with the 
relevant bootstrapped critical values at the 5% significance level, in Figures 2 and 3. Note that, in 
estimating the bivariate VAR model and performing causality test for all subsamples, the optimal lag 
length (1) is determined through the Bayesian information criterion (BIC) with the maximum lag 
length of 12. The critical values are obtained from a bootstrapping procedure with 499 replications 
and the empirical size is controlled over 32 weeks, simulating M = 169 + 32 (contrsize) – 1 = 200 
observations for each bootstrapped sample.

The findings for testing the time-variant causality between the XU100 prices and 2-year government 
bond yields under the homoscedastic and heteroscedastic assumptions are given in the top and 
bottom panels in Figure 2. The Wald test statistic and the 5% critical value are indicated by a solid 
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black and horizontal dashed red line, respectively. Therefore, when the rolling window (M) test 
statistics (solid line) exceed the critical value (dashed line), then a significant change in causality is 
detected.

Figure 2: Shi et al. (2018) Recursive Evolving Causality Relationship Between XU100 and BOND2 
Under Two Models

Note: The parameters for the causality are defined as d=1 (the integration order), x=0, f0 = 0.20, contrsize = 32, IC_flag=20, 
alpha = 0.95, and M = floor(f0*nob) + contrsize – 1 (in the main function) and nboot = 499 (in the boostrap_RGC_
MW.m). The green bar in plots shows the periods where the null hypothesis is rejected at the 5% significance level under the 
homoscedastic (top) and heteroscedastic (bottom) assumptions.

The top panel shows seven periods of significant Granger causal flows from XU100 index to bond 
yields, lasting 324 weeks (the largest episode of causality is 139 weeks), whereas it displays four 
periods for the reverse direction, lasting 214 weeks (the largest episode of causality is 126 weeks) 
under the homoscedastic assumption. For example, the recursive evolving approach finds evidence 
of Granger causality running from XU100 index to bond yields, X → B (see Figure 3), from January 
25, 2012, to May 29, 2013, and from September 11, 2013, to October 15, 2014. The causality turns 
out to be bidirectional from this week until June 2016. Again, the results indicate a unidirectional 
causality, X → B , from June 10, 2015 to May 4, 2016. The reverse causal relationship, B → X, has 
been found for three weeks from July to August 2016. From this week, it shows a feedback causal 
relationship until May 9, 2018.
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Figure 3: Shi et al. (2018) Recursive Evolving Causality Test Under the Homoscedasticity 
Assumption

Notes: X, B, C, G, and F stand for, respectively, the changes in “XU100”, “Bond”, “CDS”, “GOLD”, and “USDTRY”. Each 
causality model is represented at the left hand, as, X → B , for example, while the critical value of 5% significance levels is 
given at the right hand of each panel. The shaded region shows the week during which the test is statistically significant at 
the 5% level. The blue (black) bars show the intervals where the Wald test statistic exceeds its relevant critical values for x↛y 
(y↛x) when the subsample (M) is 200.

Between the period May-August 201, bond yields Granger-cause XU100. Again, bidirectional 
causality occurs from the fourth week of August to the last week of October 2018. During the next 
five weeks, bond yields exert significant one-way causal effects on the stock index. However, stock 
index Granger – causes bond yields unidirectionally from December 2018 to January 2019 with four 
weeks duration. Later, the causality is bidirectional from January 23 to February 20, 2019, but, it 
seems to be unidirectional, B → X, from then until the end of March 2019 and from May 8, 2019, to 
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March 04, 2020, with no reverse direction. Looking at the bottom panel, we see that the episodes of 
causality under the heteroscedastic assumption entirely synchronize with the episodes of causality 
under the homoscedastic assumption, but the periods are shorter than that of the second assumption. 
The findings are moderately in line with Gök (2020) and Gök and Çankal (2020) for the causality 
relationship of B → X.

In the next figure, we show the causality relationship among all financial asset prices under the 
homoscedastic assumption, using blue bars for the causality relationship, for example, of X → C  and 
black bars for the reverse direction, C → X second panel from above. The recursive evolving approach 
detects two causality episodes from XU100 to CDS, lasting 27 weeks, and three causality episodes 
for the reverse direction, lasting 72 weeks. The causality relationship, X → C, lasts only one week in 
September 2018 but significant evidence re-emerged at the end of this month until the third week of 
March 2019 during the currency crisis in Turkey. From January 15 to 22, 2020, and at the third week 
of February 2020, the causality reverses, and CDS spreads Granger-cause stock index. The direction 
of causality does not change from the second week of March 2020 to the end of the sample period 
during the COVID-19 pandemic, indicating that the movements in CDS spreads are influential 
factors in predicting future stock prices in Turkey. The results contradict Gök (2020) and Noorie et 
al. (2020), who do not find any significant evidence of causality.

The next panel of Figure 3 shows that the test identifies three causality episodes from XU100 to 
Gold, X → G, lasting 148 weeks, and five causality episodes for the reverse direction, G → X, lasting 
33 weeks. For the first case, the first episode lasts 86 weeks from January 11, 2012, to August 28, 
2013; the second lasts 28 weeks, starting on August 15, 2018, and ending on February 20, 2019; and 
the third lasts 34 weeks, from March 25 to November 11, 2020. These episodes coincide with the 
Eurozone sovereign debt crisis and the Gezi Park protests, the currency, and the pandemic crisis, 
respectively. For the reverse direction, G → X, the procedure detects five episodes of causality, lasting 
six, seven, one, seven, and twelve weeks during the EU quantitative easing and the currency crisis 
in Turkey. These findings are consistent with the empirical evidence reported in Gök (2020) and 
Yamaka and Maneejuk (2020), who found one-way or two-way causal linkages between gold and 
stock markets during the crisis and non-crisis periods.

Next, we detect two long for X → F and one long period of causality for  F → X, lasting 536 and 344 
weeks, respectively. The null hypothesis can be strongly rejected since the test statistic sequence 
exceeds the 95% critical value of 6.24 for  X → F and 6.44 for the reverse direction. The recursive 
evolving approach finds evidence of Granger causality running from the XU100 index to the foreign 
exchange rate of USDTRY from March 2, 2011, to January 11, 2012. After this week, the direction 
of causality seems to be bidirectional until July 11, 2018, lasting 339 weeks. During the next four 
weeks, the direction is changing as F → X. From the following week, the causality running from 
XU100 to USDTRY remains until the end of the sample period, lasting 150 weeks and coinciding 
with the recent currency and ongoing pandemic crisis. In line with our results, Kanda et al. (2018) 
find evidence of time-varying causality between the stock and currency market returns for India and 
South Africa during the recent financial crisis.
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There are seven and eight episodes of Granger causality for the B → C relationship and in the reverse 
direction, C → B, lasting 246 and 131 weeks, respectively. During the European debt crisis, we 
find that CDS spreads Granger-cause bond yields from July 2010 to August 2018 – the most long-
lasting episode with 109 weeks. The findings reveal some shorter periods of unidirectional causality 
from December 2012 to June 2013, with several small breaks. During June 2013, the causality is 
bidirectional, coinciding with the Gezi Park protests in Turkey. From this date, the direction of 
causality remains the same, that is, bond yields Granger-cause CDS spreads from July 2016 to the 
onset of the COVID-19 pandemic. One week later, another episode of causality emerges until the 
second week of May 2020. The last episode lasts only two weeks, originating at the end of October 
and terminating at the beginning of November 2020. The results concur with the finding of Delis 
et al. (2011) and Gök and Kara (2021), who find a time-varying but unidirectional or bidirectional 
causality between those markets during the periods of debt and pandemic crises.

For the CDS-gold pair, the procedure detects one short causality episode for the C → G relationship, 
lasting 4 weeks, and two short and one long episode for the G → C relationship, lasting two, one, and 
151 weeks. The most long-lasting episode, running from gold to CDS, begins on August 15, 2018, 
and continues until the end of the sample period. The results are partly inconsistent with Gök’s (2020) 
findings, who finds significant unidirectional causality from CDS to gold but detect unidirectional 
lead-lag relationship during the different time periods, coinciding the crisis periods other than that 
of the financial crisis of 2007-2009, using the static causality and the wavelet coherency approaches.

The recursive evolving test identifies two and one long causality episode for C → F and F → C  
relationships, lasting 652 and 503 weeks, respectively. Since the time-variant Wald statistics exceed 
the critical value of 6.19, we observe one episode of unidirectional causality running from CDS to 
USDTRY during the global financial crisis. Likewise, from July 15, 2009, to November 9, 2011, there 
exists a one-way causality, but, then it turns out to be bidirectional and the type of causality remains 
unchanged until the end of the sample period. The results suggest that the movements in CDS can be 
predicted through the use of the currency market, during the episodes of financial and debt crises. As 
of November 2011, however, a feedback relationship emerges between those most sensitive markets 
to local and global developments. The results are consistent with the findings of Hassan et al. (2017) 
and Gök and Kara (2021), who reveal time-varying unidirectional/bidirectional causalities during 
the crisis and non-crisis periods.

Next, we investigate time-varying and the contagion effect of bubbles among three financial markets, 
i.e. bond, gold, and currency. By following Zhao et al. (2021), we compare the time, duration, and size 
of the bubbles in those markets and the results reveal evidence of contagion effects from the currency 
market to the others during the local currency and COVID-19 pandemic crises. For the bond-gold 
pair, for example, a visual inspection suggests that the causality seems to be running from bond yields 
to gold prices –with seven episodes and lasting 338 weeks– and not the other way around. As the times 
of bubbles and causal episodes do not match during the sample period, we may interpret this result 
as no contagion effect of bubbles between bond and gold markets. For the bond-currency markets 
pair, however, the procedure detects four causal episodes, lasting 228 weeks, for B→F relationships, 
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from November 2012 to May 2015 –with some small breaks– and May 23, 2015, to April 22, 2020. 
The causality is bidirectional for two weeks in May 2015. The results may be interpreted as a bilateral 
contagion effect of the bubble in bond and currency markets during the currency crisis since the times 
of bubbles and causal episodes do overlap around mid-2018. For the returns of gold-currency pair (d is 
set to zero due to their integration order, I(0)), the results suggest evidence of unidirectional causality 
running from currency returns to gold returns, with five episodes lasting 597 weeks. USDTRY exchange 
rates unidirectionally cause gold prices in TL from August 5, 2009, to the first week of December 2010; 
from February 23, 2011, to September 21, 2011; from the end of November 2011 to June 19, 2013; from 
the fourth to fifth week of July 2013; and from August 14, 2013 (during the last weeks of Gezi Park 
protests in Turkey) to the end of the sample period. Since the times of bubbles and causal episodes 
overlap during the currency and pandemic crisis, we may interpret this result as the unidirectional 
contagion effect of bubbles in the currency to the gold market.

The results regarding the causality test under the heteroscedastic assumption, not presented here but 
available from the author upon request, shows that the causality episodes are shorter than that of the 
findings given in the previous figure, that is, there is no significant difference between the results 
under two assumptions.

4. Conclusion and Discussion

In this paper, we tried to answer the questions of whether the Turkish asset prices feature bubble 
like-characteristics through the right-tailed unit root (GSADF) test using weekly averages for the 
sample period of 2005–2021. The answer is no for five out of eight variables, namely, the test strongly 
rejected the existence of bubble formations in stock (4) and CDS markets. Corroborating previous 
findings, the results showed evidence of bubbles in the currency, gold, and bond markets during both 
turmoil and tranquil periods, confirming the existing literature like Hu and Oxley (2017), Korkmaz 
et al. (2016), Zhao et al. (2015), Pan (2018), and Lamoen et al. (2017), etc., indicating divergence 
of Turkish asset prices from their market fundamentals. Furthermore, the role of gold as a safe-
haven was confirmed for Turkish investors during the currency and COVID-19 pandemic crises. We 
observed that bubbles in the currency market were more frequent and had a longer duration than 
the others, pointing to the lesser efficiency in this market. On the other hand, the estimation of the 
recursive evolving Granger causality test documented evidence of unidirectional and bidirectional 
causalities among financial markets under the homoscedastic and heteroscedastic assumptions. 
Compared with the duration of causal episodes, the findings under the homoscedastic assumption 
outperform and yield better finite sample performance than that of the heteroscedastic assumption-
based estimation. The causation is most pronounced under the homoscedastic assumption between 
the currency market with the CDS, gold, and stock markets. Finally, we detect a unidirectional and 
bilateral contagion effect of bubbles in the currency market to bond and gold markets during the 
currency and pandemic crises.

The results have significant implications for policymakers in attaining price and financial stability 
and investors for risk and portfolio management as well as arbitrage opportunities, as the existence of 
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a bubble in a market could create disruptive effects on an economy through redistribution of wealth 
(Jahan-Parvar and Waters, 2010; Elike and Anoruo, 2017). Given that GSADF tests could be used as 
a real-time bubble detector (Homm and Breitung, 2012), implementation of this approach and the 
time-varying causality tests by policymakers could provide important benefits in terms of assessing 
and measuring risks driven by exogenous or/and endogenous shocks, and taking preemptive 
measures in the markets. On the other hand, they need to be aware of the contagion effect of bubbles 
between markets and should follow appropriate policies, such as tightening monetary policy and 
decreasing the aggregate demand, in the case of a bubble formation, to minimize real and financial 
consequences. Investors, on the other hand, should react rationally to price movements and content 
themselves with a reasonable rate of return without changing their degree of risk aversion during 
the bubble episodes and, therefore, leaving the market before the collapse. We conclude that taking 
account of psychological and political factors affecting bubble formation in the markets warrants 
future research.
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