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Abstract: Magnetic hyperthermia therapy is expected to play an important role in 

the treatment of more and more cancers. The synergistic effects of using together 

hyperthermia and cancer drugs have been shown by literature studies to be more 

effective than either hyperthermia treatment alone or chemotherapy alone. In 

addition, magnetic materials that can be used as a contrast agent enable magnetic 

resonance imaging of the tumor, which is also useful in seeing the treatment 

progress. This study, which was designed for this purpose, occurred in three parts: 

In the first part, magnetic CoFe2O4/alginate composite beads were prepared and 

characterized with thermogravimetric analysis (TGA) and scanning electron 

microscope (SEM). In the second part, the swelling behaviour of magnetic 

composite beads was investigated at pH 1.2, pH 7.4 and pH 6.8. It was seen that at 

pH 7.4 and pH 6.8, that is, near neutral pH, CFA swelled by 81.54% and 82.69%, 

respectively. In the third part, 5-Fluorouracil was encapsulated at the different 

ratios in CoFe2O4/alginate composite beads, and release experiments were 

performed at pH 1.2, pH 7.4 and pH 6.8. 5-FU release was calculated with 

Korsmeyer-Peppas, Higuchi, first-order, and zero-order models. It was seen that 

the drug release systems prepared were suitable for all kinetic models. Magnetic 

CoFe2O4/alginate composite bead, which is the drug carrier, was determined to be 

suitable for controlled release for 5-Fluorouracil. 
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1. INTRODUCTION 

A polymeric bead is a type of hydrogel. It has porous with high surface area and 

hydrated molecular structure. A bead network is formed by chemical or physical crosslinking 

(Chang & Zhang, 2011). Due to the hydrated molecular structure, beads can absorb water and 

swell several times under appropriate physiological conditions (Yadollahi et al., 2014). Because 

of these features, they can stimulate the biological and physicochemical properties of the tissue 

microenvironment (Gaharwar et al., 2014). Many studies have involved the investigation of 

alginate beads usage: Alginate has been used for encapsulation of chemical and biological 

compounds with a wide range of applications in pharmaceutical cosmetics, drug delivery, 

agriculture, chemical engineering, food technologies, environmental engineering, textile 

 
*CONTACT: Yasemin Ispirli Dogac      y-ispirli@hotmail.com    Muğla Sıtkı Koçman University, Muğla 

Vocational School, Department of Chemistry and Chemical Processing Technology, Muğla, Türkiye  

ISSN-e: 2148-6905 / © IJSM 2022 

https://doi.org/10.21448/ijsm.1052662
https://dergipark.org.tr/en/pub/ijsm
https://www.sciencedirect.com/topics/materials-science/molecular-structure
https://www.sciencedirect.com/topics/materials-science/molecular-structure
http://orcid.org/0000-0001-5664-4030
http://orcid.org/0000-0001-8616-0280


Int. J. Sec. Metabolite, Vol. 9, No. 3, (2022) pp. 305-319 

306 

industry, and many other areas (Wan et al., 2011; Yagub et al., 2014; Fomina & Gadd, 2014; 

Doğaç et al., 2015; Wang et al., 2018; Doğaç & Teke, 2021). Why is it preferred for so many 

applications? Alginate is an anionic polysaccharide and has many abilities such as water-

solubility, high viscosity, hydrophilicity, pH sensitivity, biocompatibility, biodegradability, 

transparency, non-toxic and good forming ability. The sodium alginate solution can act as an 

irreversible chemical reaction with many polyvalent cations to form a crosslinking structure. 

So, when Ca2+ is added to the sodium alginate solution, a Ca2+ replaces two Na+ to form a 

calcium alginate structure (Doğaç et al., 2015; Wang et al., 2019; Doğaç & Teke, 2021).  

The use of magnetic polymeric materials is an innovative technology. The aim here is to add 

a magnetic property to the polymeric material in addition to its other properties. Generally, 

spinel ferrites are used when designing magnetic polymeric materials. Spinel ferrites are of 

interest in the field of medical diagnostics and therapy, enzyme immobilization, RNA/DNA 

purification, drug delivery systems, biosensors, immunosensors, information storage systems, 

microwave absorbers, magnetic fluids, and magnetic bulk cores (Kumar & Mohammad, 2011; 

Huang et al., 2012; Fan et al., 2017; Gong et al., 2017; Luo et al., 2017). The cubic-spinel 

structure of transition-metal oxides such as XFe2O4 (X=Ni, Mn, Co, Zn, Mg, Cu or Fe, etc.) is 

Fe3+ occupies the tetrahedral sites and X2+ resides in the octahedral interstitial sites of the close-

packed O2- ions (Köseoğlu, 2013; Doğaç et al., 2015; Ramakrishna et al., 2017; Lal et al., 2020; 

Dhiman et al., 2020; Wang et al., 2018; Doğaç & Teke, 2021). 

Today, the production of various materials and the evaluation of the usability of these 

materials in different applications are among the research that has been given a lot of attention. 

The synthesis of different magnetic materials and their optimization and application for 

different areas is one of the important topics in this field. It is thought that examining these 

materials, which researchers have been seriously interested in especially for the last ten years, 

on biomaterial production will contribute to the literature. 

Magnetic hyperthermia therapy is expected to play an important role in the treatment of more 

and more cancers. The synergistic effects of using together with hyperthermia and cancer drugs 

have been shown by literature studies to be more effective than either hyperthermia treatment 

alone or chemotherapy alone. In addition, magnetic materials that can be used as a contrast 

agent enable magnetic resonance imaging of the tumor, which is also useful in terms of seeing 

the progress of the treatment (Ito et al., 2003; Prasad et al., 2007; Kumar & Mohammad, 2011; 

Lartigue et al., 2013; Arami et al., 2015; Ganguly & Margel, 2021). 

Various magnetic carriers used for drug release systems were presented in the previous 

studies (Osterrieth & Fairen‐Jimenez, 2021; Ribeiro et al., 2021; Zhao et al., 2021; Zhalechin 

et al., 2021; Salmanian et al., 2021). Magnetic carriers such as Fe3O4/ Polyvinyl alcohol, Fe3O4/ 

silica, Fe3O4/ poly (ε-caprolactone), Salecan-g-PCH/Fe3O4/SiO2 loaded with a cancer drug 

Doxorubicin have been reported as drug release system (Kayal & Ramanujan, 2010; Chen et 

al., 2010; Wang et al., 2018; Hu et al., 2018). Alginate/Fe3O4 microspheres, 

chitosan/alginate/Fe3O4 hydrogels, alginate/gelatine/Fe3O4 hydrogels, cellulose/Fe3O4 

bionanocomposites, casein/folic acid/Fe3O4, chitosan/Fe3O4 nanoparticles, 

cyclodextrin/poly(methylmethacrylate)/SmFeO3, chitosan/polyacrylic acid/Fe3O4 hydrogels, 

etc. magnetic carriers have been applied for drug delivery of 5-Fluorouracil (Wang et al., 2009; 

Wang et al., 2017; Anirudhan & Christa, 2018; Chen et al., 2019; Amini-Fazl & Mohammadi, 

2019; Hariharan et al., 2019; Jahanban-Esfahlan et al., 2020; Yusefi et al., 2021).  Fe3O4 was 

used as a magnetic particle in most of these studies, and studies on other magnetic particles are 

less common. Therefore, this present study with different magnetic particles (CoFe2O4) will 

make a successful contribution to the literature.    

In this study, 5-Fluorouracil (5-FU), which is commonly used as a drug for many types of 

cancer was encapsulated with magnetic CoFe2O4/alginate beads to create a controlled drug 
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system.  This study includes characterization of the magnetic CoFe2O4/alginate beads, the 

swelling character of the release system and release kinetics. The success of the release system 

for many types of cancer cell cultures is still being investigated. 

2. MATERIAL and METHODS 

2.1. Materials 

Disodium hydrogen phosphate, acetic acid, sodium citrate dihydrate, Tris, HCl, ethanol, cobalt 

(II) chloride, iron (III) sulfate monohydrate, sodium alginate from Sigma Chemical, sodium 

hydroxide, citric acid monohydrate from Merck Chemical and 5-Fluorouracil (5-FU) 

(500mg/10mL) from Koçak Farma were purchased.  

2.2. Synthesis of Cobalt Ferrite (CoFe2O4) Magnetic Nanoparticles 

CoFe2O4 magnetic nanoparticles were synthesized by co-precipitating Fe3+ and Co2+ ions 

(Reddy et al., 2015). First, 100 mL of 0.4 M Fe3+ solution and 100 mL 0.2 M Co2+ solution 

were mixed. Until the pH 12, 3 M NaOH solution was added dropwise to this mixture. The 

resulting solution was incubated at 80oC for half an hour. After that, it was cooled to room 

temperature. Then the solution was centrifuged at 1500 rpm for 30 minutes. The CoFe2O4 

particles were washed 3 times with distilled water and then left to dry in an oven at 60oC for 1 

week. 

2.3. Preparation of Cobalt Ferrite/Alginate (CFA) Magnetic Beads 

First, 1% or 2% (w/v) alginate solution was prepared by dissolving in distilled water. Different 

amounts (25, 50, 75 or 100 mg) of magnetic particles (CoFe2O4) were homogeneously dispersed 

in the alginate solution by ultrasonication for 30 minutes at room temperature. While the 

prepared 2% (w/v) CaCl2 solution was mixed in the magnetic stirrer, the CoFe2O4 

particles/alginate mixture was added dropwise with an injector and the formed beads were 

incubated in this solution for 1 day. These formed beads were washed 3 times in distilled water 

after 1 day.  

2.4. Characterization of CFA Magnetic Beads 

Thermal analysis of raw CoFe2O4 nanoparticles and CFA magnetic beads obtained under 

different conditions were performed using Perkin Elmer TGA 4000 (thermo-gravimetric 

analyser at a constant heating rate of 20º C/min at 30–650 º C under N2 atmosphere. Dried 

samples in the 4-5 mg range were used for TGA analysis. The surface morphology of CFA 

beads was studied by scanning electron microscopy (SEM) using JEOL JSM 7600 F model 

(JEOL, Akishima, Japan). SEM samples are coated with a thin layer of gold-palladium. 

2.5. 5-Fluorouracil (5-FU) Encapsulation with CFA Magnetic Beads 

A 2% (w/v) alginate solution was prepared to form 5-FU loaded CFA beads. 25 mg of CoFe2O4 

magnetic particles nanoparticles were homogeneously dispersed in the alginate solution. The 

volume fraction of 5-FU in beads has been changed to 1/2, 1/4, 1/6 and 1/8. While the 2% (w/v) 

CaCl2 solution was mixed in the magnetic stirrer, a dropwise drop of CoFe2O4 

particles/alginate/5-FU mixture was added to the CaCl2 solution. The formed beads were 

incubated in this solution for 2 hours. Then, the magnetic beads were washed three times with 

distilled water.  

2.6. Swelling Studies of 5-FU Encapsulated CFA Beads 

Swelling rates of the synthesized 5-FU encapsulated CFA beads were investigated separately 

for pH 7.4, pH 6.8 and pH 1.2 media used in drug release experiments. Approximately 0.05 g 

of dried beads were immersed in 50 mL of buffer solution (pH 7.4, pH 6.8 or pH 1.2) and 

incubated at room temperature for 5 hours to reach swelling equilibrium. At regular intervals 
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for 5 hours, the beads were removed from the buffer solution and reweighed. All experiments 

were performed with three repetitions. The swelling ratio was calculated using Equation 1. 

SR%= [(Wt-Wd)/Ws]x100                                                  (Equation 1) 

SR%, swelling rate %; Wt, the mass of the beads at any time t; Wd, dry mass of beads; Ws, 

the mass of beads after swelling 

2.7. Drug Delivery Experiments of 5-FU encapsulated CFA beads 

Drug delivery studies of 5-FU encapsulated CFA beads were performed in a 37oC water bath. 

It was conducted separately at pH 1.2, 6.8 and 7.4 to examine the drug delivery in the stomach, 

intestine and blood pH environment. 5-FU loaded CFA beads are placed in falcon tubes and in 

phosphate buffer solution for certain periods (30. Minutes, 60. Minutes, 90. Minutes, 120. 

Minutes, 150. Minutes, 180. Minutes, 4. Hours, 5. Hours, 6. Hour, 9. Hour, 12. Hour, 24. Hour) 

2000 µl of the sample was taken and 2000 µl of fresh buffer solution was added instead. To 

understand the drug delivery profiles, the absorbance values of the samples were measured at 

266 nm wavelength using a UV spectrophotometer (Thermo Scientific Multiscan GO, Japan). 

All experiments were performed with three repetitions. Korsmeyer-Peppas (Equation 2), 

Higuchi (Equation 3), first-order (Equation 4) and zero-order models (Equation 5) were used 

for mathematical modeling of drug delivery.  

F= (Qt/Q) =Km .t
n         (Equation 2) 

F, Fraction of drug released at time t; Qt, amount of drug released at time t; Q, the total amount 

of drug in a dosage form; Km, kinetic constant; n, release exponent; t, time in hours.  

𝐹 = 𝐴√𝐷(2𝐶 − 𝐶𝑠)𝐶𝑠. 𝑡            (Equation 3) 

F, Fraction of drug released at time t; A, carrier surface area; D, drug diffusion coefficient in 

the carrier; C, initial drug concentration in the carrier; Cs, the solubility of the drug in the carrier; 

t, time in hours.  

logC=logC0-K. t/2,303          (Equation 4) 

C, drug concentration at time t; C0, initial drug concentration; K, first-order rate constant; t, 

time in hours.  

Qt=Q0+K0. t          (Equation 5) 

Qt, amount of drug released at time t; Q0, the initial amount of drug; K0, zero-order rate 

constant; t, time in hours.  

3. RESULTS and DISCUSSION 

3.1. Optimization of CFA Magnetic Composites 

To synthesize CFA magnetic beads, firstly CoFe2O4 magnetic nanoparticles were formed by 

the co-precipitation method in an alkali medium. Then, the CoFe2O4 particle/alginate mixture 

was injected dropwise into the CaCl2 solution for the crosslinking reaction. Thus, CoFe2O4 

particle/alginate beads were prepared. Hydrogen bonds from the –OH group of magnetic 

particles and also -COO- groups in alginate provide the colloidal stability and formation of the 

core-shell structure which is specific to magnetic composites (Doğaç & Teke, 2021). The high 

adsorption ability of magnetic polymer occurs due to chelation between CoFe2O4 particles and 

alginate. 

Optimization parameters of CFA magnetic beads prepared in this study were determined as 

1.5-2 % alginate concentration, 25-100 mg magnetic CoFe2O4 particle amount. To define the 

optimum parameters, CFA magnetic beads that provided the formation of equal-sized beads 
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were defined as positive due to the absence of tail formation. Also, in some values, no bead 

formation occurred due to the high viscosity of the CoFe2O4 /alginate mixture. Evaluation is 

given in Table 1. So, 2% alginate concentration, 25 mg and 50 mg CoFe2O4 amounts were used 

in the next experiments. 

Table 1. Preparation parameters and evaluation of CFA magnetic beads. 

Sample name 

Alginate 

Concentration 

(%)(w/v) 

CoFe2O4 

Amount (mg/mL) 
Evaluation 

CFA-25-1.5 % 1.5 25 * 

CFA-50-1.5 % 1.5 50 * 

CFA-75-1.5 % 1.5 75 * 

CFA-100-1.5 % 1.5 100 * 

CFA-25-2 % 2 25 + 

CFA-50-2 % 2 50 + 

CFA-75-2 % 2 75 ** 

CFA-100-2 % 2 100 ** 

Evaluation: Examples were named with abbreviations. CFA was used as an abbreviation for cobalt ferrite-alginate 

composite; 25, 50, 75 and 100 indicated mg amount of cobalt ferrite; 1.5 and 2 showed alginate concentration. 

During examining the parameters, CFA beads that provided the formation of equal-sized beads were defined as 

positive (+). 

* These beads were not used as tails occur. 

** No beads were formed because of the high viscosity. 

3.2. Characterization of CFA magnetic beads 

3.2.1. TGA experiments 

After the evaluation depending on different parameters (Table 1), TGA experiments were made 

for crude CoFe2O4 (CF) and two different samples (CFA-25-2 and CFA-50-2) which were 

prepared with 2% alginate concentration and 25-50 mg CoFe2O4 particles amount. The 

experiments were applied with a Perkin Elmer TGA 4000 thermogravimetric analyser between 

30-650ºC at a constant heating rate of 20ºC/min. The TGA results are given in Figure 1. 

Figure 1. TGA curves of crude CoFe2O4 particles (CF) and CFA.  
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Two-step degradation took place in the samples. As the temperature increased, the mass loss 

gradually increased and the first sharp decay stages took place after 220 °C. This is due to the 

release of water which is tightly bound via polar interactions with the carboxylate groups of the 

alginate and the decomposition of the cyclic products, followed by the loss of CO2 from the 

polysaccharide (alginate). In thermogravimetric results of magnetic composites, when the 

polymer part is entirely burned at certain temperatures, significant combustion does not occur 

in magnetic particles due to their structure. The lack of significant mass loss (~2 %) in the raw 

CoFe2O4 particle sample supports this situation. For this reason, it can be said that the remaining 

mass as a result of the analysis shows the magnetic particle ratio. By the curves in Figure 1, the 

CoFe2O4/alginate ratios of the beads were calculated. The results are given in Table 2. So, it 

was observed that the composites consisted of approximately 50% (44.34% and 48.08%) 

CoFe2O4 magnetic particles. TGA curves and magnetic particle/polymer ratios found in the 

study are in agreement with the literature. In the study of Amiri et al. in 2018 about 

CoFe2O4/alginate hydrogels, the composition ratio of the hydrogel was found to be 5% alginate 

and 95% CoFe2O4 according to TGA results (Amiri et al., 2018). According to the TGA results, 

it was observed that there was no significant difference in the ratios of CoFe2O4 and alginate 

with the amount of CoFe2O4 particles of 25 or 50 mg. For this reason, in the other experiments, 

the amount of CoFe2O4 was kept constant at 25 mg like an alginate concentration (2%). 

Table 2. CoFe2O4 and alginate ratios of CFAs according to TGA curves. 

Sample 

name 

Remaining CoFe2O4 ratio at 

TGA curve % 

Adjusted CoFe2O4 rate % Alginate concentration % 

CFA-25 %42.36 %44.34 %55.66 

CFA-50 %46.10 %48.08 %51.92 

Examples were named with abbreviations. CFA was used as an abbreviation for cobalt ferrite-alginate 

composite; 25 and 50 indicated mg amount of cobalt ferrite. Both samples were prepared with 2% (w/v) 

alginate. 

3.2.2. SEM-EDS analysis 

SEM images and EDS spectrum of 5-FU loaded and 5-FU unloaded CFA beads are shown in 

Figure 2. According to the SEM images, the spherical form of the CFA beads and the 

morphological roughness of the surface were obvious. It can be said that it has a high surface 

area depending on the roughness of the surface. In addition, SEM analyses determined that the 

samples mostly consisted of uniform beads. Also, the observation of 5-FU molecules on the 

composite surfaces from SEM photographs after 5-FU encapsulation (Figure 2-c) indicated that 

the drug was dispersed throughout the structure. the EDS spectra (Figure 2-d) showed that O 

(from alginate and CoFe2O4), C (from alginate), Fe (from CoFe2O4), Co (from CoFe2O4) and 

so, CoFe2O4 and alginate formed as a composite structure. In addition, the presence of Na 

determined in the spectrum is due to sodium alginate and the presence of Ca is due to Ca2+, 

which provides a bead form by cross-linking the alginate chains. The mean diameters of the 

beads were in the range of 0.93 to 0.99 mm.  
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Figure 2. The photograph, SEM images and EDS spectrum of CFA beads (2% alginate and 25 mg 

CoFe2O4) (a) and (b) CFA, (c) CFA-5-FU, (d) EDS spectrum of CFA, (e) The photograph of magnetic 

beads attracted by the magnetic bar. 

 

3.3. Determination of Swelling Behaviour of CFA Beads 

Swelling rates of the prepared CFA beads were examined separately for pH 1.2, pH 6.8 and pH 

7.4 media used in drug release experiments. Swelling curves are given in Figure 3. When Figure 

3 was evaluated, it was seen that at pH 7.4 and pH 6.8, that is, near neutral pH, CFA swelled 

by 81.54% and 82.69%, respectively. They exhibited similar swelling behaviours at these two 

pHs and the behaviours were quite good. At pH 1.2, that is in an acidic environment, although 

a decrease in the swelling rate was observed (67.17%), the structures continued to maintain 

their pH stability. The swelling character of the synthesized CFA beads is due to the polymer 

in their content, namely alginate. It is thought that the swelling phenomenon is mainly based 

on the -OH groups in the structure of the alginate, making H bonds with water and also the 

ionic interactions between the alginate chains themselves support swelling. In the literature, this 

interaction has been linked to the crosslinker density as it controls the chain mobility and it has 

been reported that while crosslinking density increases, swelling and sensitivity to pH decrease 

and the structural stability increases (Dai et al., 2008). 

Figure 3. Swelling behaviour profiles of CFA beads at pH 7.4 (a), pH 6.8 (b) and pH 1.2 (c). 
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3.4. Release Experiments and Release Kinetics of 5-FU Encapsulated CFA Beads 

5-Fluorouracil (5-FU) that is used for the treatment of breast, rectum, colon, stomach, 

pancreatic cancers and also bladder, cervix, neck, ovarian, liver, skin, and prostate cancers is 

selected as a model cancer drug during drug release experiments. If it is metabolized in free 

form, it reaches its maximum grade in plasma after 3 hours. Due to the increase in the drug 

amount in the blood in a short time, serious side effects occur in the patient. In this study, it was 

suggested to gradually increase the amount of drug in plasma and tissues by encapsulating 5-

FU to CFA and as a result, it was aimed to reduce the side effects that would occur in the patient. 

In 5-FU release experiments, the volume fraction of 5-FU in CFA beads was altered as 1/2, 

1/4, 1/6, and 1/8 and the release experiments were applied in vitro at pH 7.4 (blood), pH 6.8 

(colon-rectum) and pH 1.2 (stomach). Results were calculated based on Korsmeyer-Peppas, 

Higuchi, first-order and zero-order models. The Korsmeyer-Peppas model is appropriate for 

controlled drug systems prepared in different geometric shapes such as cylinder, sheet, disk and 

sphere. It means that the release is not late and there is no immediate release in the drug system 

(Korsmeyer & Peppas, 1983). The Higuchi model is suitable for slow-release systems that 

applied the release of randomly dispersed drug molecules in solid or semi-solid carriers with 

high surface area and high porosity (Higuschi, 1963). The first order model is based on a 

logarithmic reduction in the amount of unreleased drug over time and is a model that most 

conventional drug doses and sustained-release systems fit (Kitazawa et al., 1977). The zero-

order model indicates that the amount of drug released is constant at each time interval, and 

especially controlled or extended-release systems are intended to suit this model (Varelas et al., 

1995). R2 values of release systems calculated according to all models are given in Table 3. 

And also, the curves of the zero-order model of 5-FU encapsulated CFA beads are shown in 

Figure 4, Figure 5 and Figure 6. 

Figure 4. Zero order model of FU release of CFA at pH 7.4. 
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Figure 5. Zero order model of FU release of CFA at pH 6.8. 

 

 

Figure 6. Zero order model of FU release of CFA at pH 1.2. 
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When the experiments were evaluated at pH 7.4, pH 6.8 and pH 1.2, a slight relative decrease 

was observed in the release rate at pH 1.2. This may be attributed to the protonation of exposed 

carboxylic acid groups present in alginate in an acidic medium (pH 1.2). Protonation of the 

construct may have caused a decrease in the diffusion of the drug. This result seems to be in 

parallel with the decrease in swelling ratios obtained in swelling experiments. The high swelling 

rates obtained at pH 7.4 and 6.8 support the high release rate at these pHs. 

The carrier (CFA) used in the present study has two different release studies with a different 

drug in the literature. CFA was studied for the release of chlorpheniramine maleate in 2017 and 

it was reported that the release diffusion was faster at pH 7.4 compared to pH 1.2, but R2 values 

were not given (Amiri et al., 2017). In this sense, although it was found to be compatible with 

the pH results found in our study, a comparison could not be made in this direction because the 

R2 values were not given in the article. In another study about CoFe2O4/alginate beads loaded 

with chlorpheniramine maleate, the release kinetics were determined according to the 

Korsmeyer-Peppas release model and this model was reported to be suitable (Amiri et al., 

2018). 

Table 3. Regression values of kinetic models of 5-FU encapsulated CFA beads. 

Kinetic models Volumetric ratio of 5-FU 
R2 values 

pH 7.4 pH 6.8 pH 1.2 

Korsmeyer -Peppas model 

1/2 0.9692 0.9275 0.9053 

1/4 0.9275 0.9368 0.9086 

1/6 0.9218 0.9389 0.9061 

1/8 0.9743 0.9788 0.9788 

Higuchi model 

1/2 0.9641 0.9326 0.9079 

1/4 0.9450 0.9589 0.9334 

1/6 0.9323 0.9619 0.9035 

1/8 0.9797 0.9655 0.9655 

First order model 

1/2 0.9751 0.9401 0.9238 

1/4 0.9587 0.9460 0.9361 

1/6 0.9186 0.9665 0.9027 

1/8 0.9837 0.9079 0.9464 

Zero order model 

1/2 0.9237 0.9887 0.9016 

1/4 0.9154 0.9813 0.9822 

1/6 0.9849 0.9857 0.9198 

1/8 0.9247 0.9652 0.9652 

The magnetic particle and alginate concentrations in all samples were kept constant at 25 mg and 2% (w/v), 

respectively. 
 

In the literature, different drugs encapsulated different magnetic polymeric systems were 

applied for controlled drug systems. When these literature data are examined, it was seen that 

Fe3O4 was generally chosen to form composites with polymeric structures (Supramaniam et al., 

2018, Wang et al., 2018, Pooresmaeil et al., 2020, Soumia et al., 2020). In this case, it is thought 

that the CoFe2O4 magnetic particles presented in this study will contribute to the literature. In 

these studies, it is not a coincidence that most cancer drugs (especially Doxorubicin) are used 

(Chen et al., 2010, Kayal & Ramanujan, 2010, Hu et al., 2018, Wang et al., 2018). 
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In particular, many studies have been conducted to benefit from magnetic targeting and 

hyperthermia, in which magnetic materials are used for cancer treatment. Hyperthermia is a 

practice that involves sending magnetically targeted magnetic nanoparticles to the tumor cell 

and then exposing this tumor to an external alternating magnetic field. Under a high frequency 

alternating magnetic field, the temperature inside the tumor cell increases due to heat generation 

from magnetic nanoparticles. Increasing temperature and heat shock cause denaturation of 

proteins and also kill cancer cells as it mediates the activation of the immune system. Apart 

from that, magnetic hyperthermia-based cancer treatments are more effective in cancer 

treatment, especially in combination with chemotherapy, due to their synergistic effects. This 

topic is also among the popular topics of recent years (Ito et al., 2003, Prasad et al., 2007, 

Laurent et al., 2011, Kumar & Mohammad, 2011). In the present study, magnetic 

CoFe2O4/alginate beads loaded with 5-Fluorouracil (5-FU), an important drug used in cancer 

chemotherapy, were selected and a system in which a synergistic effect could be created was 

designed. 

4. CONCLUSION 

Magnetic hyperthermia therapy is expected to play an important role in the treatment of more 

and more cancers. The synergistic effects of using together hyperthermia and cancer drugs have 

been shown by studies in the related literature to be more effective than either hyperthermia 

treatment alone or chemotherapy alone. In addition, magnetic materials that can be used as a 

contrast agent enable magnetic resonance imaging of the tumor, which is also useful in seeing 

the treatment progress. Therefore, in this study, cobalt ferrite/alginate beads were successfully 

prepared, optimized and characterized by the magnetic core-shell model. This magnetic 

material was used as the carrier for 5-FU to create the synergistic effect of the magnetic 

hyperthermia-cancer drug. Here, 5-FU was chosen as a model, and appropriate data were 

obtained for a controlled drug release system. It is thought that it will be successful in many 

different drug systems where the same carrier can be used. 
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