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Abstract
The estimation of parameters for a distribution function is a significant and prominent
field within statistical inference. This particular problem holds great relevance in various
domains, including industries, stock markets, image processing, and reliability studies.
There are two recognized approaches to estimation: point estimation and interval estima-
tion, also known as confidence intervals. In this study, our primary focus lies in the point
estimation of parameters associated with an exponential dispersion distribution function.
In this process, we consider one of the parameters as a random variable that requires esti-
mation. To tackle this, we adopt a Bayesian inference approach utilizing a one-parameter
dispersion distribution. We explore non-informative priors, such as uniform and Jeffrey’s
priors, and provide evidence of the effectiveness of our method through simulation studies.
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1. Introduction
The exponential dispersion model (EDM) represents a family of distributions character-

ized by two parameters, encompassing a linear exponential family along with an additional
dispersion parameter. These models hold significant importance within the field of statis-
tics, primarily as the response distributions for generalized linear models [21]. Over time,
EDMs have emerged as a distinct area of study, extensively explored in terms of their prop-
erties by [15, 16]. The role of EDMs extends to probability and statistics, with notable
applications in image processing [24]. One of the key advantages of EDMs lies in their
versatility, offering a diverse range of probability distributions that find practical utility,
such as Gaussian, Gamma, inverse Gaussian, and more. The determination of exponential
dispersion distribution (EDD) parameters serves as a pivotal topic within the realm of
statistical methodology, as evidenced by [23]. The adoption of Bayesian approaches in
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contemporary statistical analysis has gained significant traction, finding practical utility
across diverse scientific domains.

By integrating prior knowledge into the analysis, the Bayesian methodology enables
the process of refining prior beliefs in light of current data. The parameters to be esti-
mated, denoted as θ, are characterized, in part, by expressing prior beliefs through the
measure π(θ). In the presence of an observed sample y, the posterior density of θ can
be represented as p(θ|y) ∝ p(y|θ)π(θ), wherein the term p(y|θ) denotes the likelihood
function of the econometric model under estimation. Employing the principles of Bayes’
method, this equation facilitates the generation of the posterior distribution p(θ|y) for the
parameter θ taking into account both the prior information and the econometric model at
hand. In contemporary practice, the Bayesian approach has gained extensive popularity
as a means of parameter estimation. Particularly, its application in the analysis of failure
time data has garnered considerable attention. By integrating prior knowledge regard-
ing the parameters and effectively assimilating the available data, this method allows for
a comprehensive analysis. When there exists informative prior knowledge pertaining to
the parameter, its utilization becomes appropriate and well-founded. Nevertheless, when
confronted with scenarios lacking any prior knowledge about the parameter and inaccessi-
ble vital information from experts, a non-informative prior emerges as a viable substitute
[7, 10].

Within our research, our primary focus lies in the domain of Bayesian inference, specifi-
cally targeting the estimation of unknown parameters belonging to the EDD. In the realm
of Bayesian inference, the selection of appropriate priors has been a matter of great impor-
tance and extensive discourse. The concept of a prior distribution proves valuable when we
possess prior knowledge concerning the unknown parameter. However, in numerous prac-
tical scenarios, our prior information is severely constrained. Hence, it becomes prudent
to contemplate the utilization of a non-informative prior.

The uniform distribution stands out as one of the frequently employed non-informative
priors, particularly when confronting parameters that possess a bounded support (e.g.,
π(θ) = I[a,b](θ) as expounded in [11]). However, this uniform prior lacks the desirable
attribute of invariance under smooth one-to-one transformations. To tackle this concern,
H. Jeffreys proposed an alternative prior, as elucidated in [14]. This alternative prior is
derived by calculating the square root of the determinant of the Fisher information matrix
I(θ) and is expressed as π(θ) =

√
det I(θ). This new prior has the desirable property of

being invariant under smooth one-to-one transformations. But, it has some limitations
when there are nuisance parameters present [1].

The main objective of this paper is to propose non-informative priors with a uniform
distribution for a parameter of EDD with unbounded support (π(λ) = I(0,+∞)(λ)).
Our results show that the posterior distribution of the dispersion parameter exists and

converges towards the Gamma distribution (λ|y1, ..., yN ∼ Ga

(
N
2 + 1, 1

2

N∑
i=1

(yi − µi)2

V (µi)

)
),

given the condition
(∫ +∞

0
λs

N∏
i=1

f (yi;λ, µ) dλ < +∞
)

. Additionally, we discuss the use

of non-informative priors and Jeffrey’s priors in light of our study. The performance
of the proposed prior distributions is evaluated through a simulation study, and their
performance for EDD is compared under different loss functions [7, 19].

The rest of the paper is arranged as follows: Section 2 exhibits an overview of exponen-
tial dispersion models. A concise description of the Bayesian estimator with informative
prior is displayed in Section 3. Section 4 provides Bayesian analysis of the dispersion
parameter under non-informative priors. Unbounded uniform and Jeffreys priors are dis-
cussed. The results are illustrated simulated data specific models in Section 5. Lastly,
some conclusions and prospects are revealed in Section 6.
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2. Exponential dispersion distributions
In the following section, we shall provide a brief review of important characteristics of

exponential dispersion models according to [15].
Exponential Dispersion Models are based on Natural Exponential Families [24]. They

are a general class of models, defined by their probability density function

f (y; θ, λ) = eλ[θy−Kν(θ)]c(y, λ), y ∈ R (2.1)

where λ is the dispersion parameter and θ is called the canonical parameter, with domain
(λ, θ) ∈ Λ×Θ ⊆ R+ ×R. Kν (θ) = log

∫
R e

θxν(dx) is a known function called the cumulant
function of a generating probability measure ν (not Dirac) and c(y, λ) is a constant that
ensures equation (2.1) is a probability function.

For EDMs we have some well-known relations, if Y ∼ f (.; θ, λ), then µ = E(Y ) = K ′
ν(θ)

is the expectation of Equation (2.1) due to the relationship or map between θ and µ. The
variance of Equation (2.1) is V ar (Y ) = 1

λ
V (µ) and V (µ) being the variance function

which uniquely corresponds to an exponential dispersion model [23]. Let defined ψν(µ) =
(K ′

ν(θ))
−1 and V (µ) = K ′′

ν (ψν(µ)). It can also be shown that when the functions Kν(.)
and c(., .) as well as ψν are fixed, the subfamily arising from taking different θ consists of
elements that are all Esscher-transforms of each other. A family with Kν , c and θ fixed
and varying ψν can be generated by the operation of taking sample means. For further
information, we refer the reader to [18].

In what follows, we assume that the generating measure ν is infinitely divisible (i.e.,
Λ(ν) = (0,+∞)) and absolutely continuous with density c(y, 1) with respect to the
Lebesgue measure [15].

In Table 1, we present necessary details of absolutely continuous PDFs of the EDM
family specifying the normalizing constant (c(y, λ)), the cumulant function (Kν), canonical
parameter (θ), dispersion parameter (λ), mean (K ′

ν), inverse function of the mean (ψν)
and variance function (V ) of each distribution.

Table 1. Examples of some absolutely continuous PDF of EDMs.

bk Gaussian Gamma Inverse Gaussian Laplace

c(y, λ)
√
λ√
2πe

−λy2
2 λλyλ−1

Γ(λ)

√
λ√
2πy

− 3
2 e

− λ
2y λeλy

Γ(λ)2
∫+∞
λy e−2ttλ−1(t− λy)λ−1dt

Kν
θ2

2 − log(−θ) −
√

−2θ − log(1 − θ2)
K ′
ν θ −1

θ (−2θ)−1/2 2θ
1−θ2

ψν µ − 1
µ − 1

2µ2

∣∣∣√1+µ2−1
∣∣∣

µ

V 1 µ2 µ3

∣∣∣√1+µ2−1
∣∣∣

µ2
√

1+µ2

In this stage, we can introduce an important approximation of the probability density
function which is called the saddlepoint approximation [15] for dispersion models for the
distribution of y that is significant and useful in the asymptotic theory of the general linear
model.

Let us consider a continuous reproductive exponential dispersion model Y ∼ f (.; θ, λ),
we thus obtain the approximation for the density of Y , for some λ large by the following
formula:

f (y;µ, λ) = λ
1
2 (2πV (y))− 1

2 eλ[ψ(µ)y−K(ψ(µ))] when λ 7→ +∞. (2.2)
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3. Informative Bayesian estimation of the EDD
There exist two distinct types of estimation procedures, namely point estimation and

confidence interval estimation [1,3,25]. In our analysis, we will direct our attention toward
point estimation, which pertains to the process of approximating a parameter associated
with a distribution function by utilizing sample data governed by a specific probability
distribution.

Suppose the observed data Y = (y1, y2, . . . , yN ) follows f(.;µ, λ), where µ and λ are
unknown and N is the sample size. There are two approaches for obtaining a point esti-
mator for unknown parameters: the classical method and the decision-theoretic approach.
In this section, we will focus on estimating parameter λ using Pearson’s method.

Our present emphasis will be directed towards the estimation of vector parameters (µ, λ)
within the context of the exponential dispersion distribution. Consider a set of N inde-
pendent and identically distributed observations (y1, . . . , yN ) drawn from the probability
density function f(.;µ, λ). The likelihood function LN of (y1, . . . , yN ) is given by

LN (y1, ..., yN ;µ, λ) =
N∏
i=1

[
c (yi, λ) eλ(ψ(µ)yi−K(ψ(µ)))

]
. (3.1)

Due to the necessity of transforming multiplication into addition, the log-likelihood lN is
expressed as follows:

lN (y1, ..., yN ;µ, λ) = logLN (y1, ..., yN ; Θ)

=
N∑
i=1

[log (c (yi, λ)) + λ (ψ(µ)yi −K(ψ(µ)))] .

In order to calculate the estimator of µ, we need to solve the following equation:

∂lN (y1, ..., yN ;µ, λ)
∂µ

=
N∑
i=1

(
ψ′(µ)yi − µψ′(µ)

)
=

N∑
i=1

ψ′(µ) (yi − µ) .

By making it equal to zero, we obtain

µ̂ = 1
N

N∑
i=1

yi = Y . (3.2)

Since the log-likelihood function is strictly concave with respect to µ, then µ̂ the maximum
likelihood estimate for the mean µ. In general cases, the maximum likelihood estimate of
λ = 1

σ2 does not exist and it is estimated by the Pearson estimator given by

λ̂ = N − q
N∑
i=1

(yi − µ̂)2

V (µ̂)

, (3.3)

where µ̂ is the estimation of the mean µ and q is the total number of unknown parameters.
For more details see [15,16].

4. Non-informative Bayesian estimation of the EDD
Bayesian inference holds immense significance in contemporary statistics, particularly

within the realm of mathematical statistics. Its applicability extends beyond and finds
utility in diverse fields such as engineering, medicine, accounting, and image processing
[3]. By employing Bayes’ rule, Bayesian inference recalibrates the probability estimation
of a hypothesis in light of fresh evidence. This approach incorporates both pre-existing
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knowledge regarding the parameters and the accessible data [1]. In the absence of prior
knowledge about a parameter and inability to obtain information from experts, a non-
informative prior is a suitable alternative [5, 10]. Non-informative priors have minimal
impact on the posterior distribution.

The objective of this research is to examine the utilization of a non-informative prior
to estimate the parameter λ of EDD, while the scale parameter µ remains known. In
Bayesian analysis, λ is treated as a stochastic variable and is assigned a prior distribution.
The adoption of a non-informative prior is preferred due to its versatility and capability
to encompass a range of distributions.

Bayesian analysis combines prior information π(λ) and sample information (y1, . . . , yN )
to form the posterior distribution of λ, given Y = (y1, . . . , yN ), from which decisions
and inferences are made. f(λ|Y ) represents updated beliefs λ after observing the sample
Y . This text will derive the estimation of the unknown parameter λ of EDD using non-
informative priors. We will prove the existence of the posterior distribution and the
expectation a posteriori (EAP) estimator of λ. The following results will be established.

4.1. Proposed method for estimating using unbounded uniform Prior
The uniform prior distribution is often used in Bayesian analysis because it produces

non-informative priors and appropriate posterior distributions. This prior assigns equal
weight to all possible values [11]. In this section, we propose using the uniform prior with
unbounded support of the λ. Let Y = (y1, ..., yN ) be a sample of reproductive exponential
dispersion distribution, the likelihood function of λ using f(., µ, λ), is given by

l (Y ;µ, λ) =
N∏
i=1

f (yi;µ, λ) .

Assume that the non-informative prior for λ follows an improper unbounded uniform
distribution π(λ) = I(0,+∞)(λ) and the posterior distribution of the parameter λ exists, if
and only if, the integral ∫ +∞

0
l (Y ;µ, λ) dλ < +∞

converges almost surely. In this case, the posterior density function f (λ;µ, y1:n) of the
parameter λ, is defined by

f (λ;µ, y1:N ) =

N∏
i=1

f (yi;µ, λ)

∫ +∞

0

N∏
i=1

f (yi;µ, λ) dλ
. (4.1)

If
∫+∞

0 λf (λ;µ, y1:N ) dλ < +∞, then the non-informative Bayesian estimator λ̂ of λ is
given by

λ̂ = E (λ|y1:N , µ) =
∫ +∞

0
λf (µ, λ; y1:N ) dλ. (4.2)

Now, we put forward a sufficient condition such that the non-informative Bayesian
estimator of the parameter λ exists. The results are as follows

Theorem 4.1. Let y1, ..., yN be N positive sample from a reproductive exponential disper-
sion model f (y1:N ;µ, λ), then∫ +∞

0
λs

N∏
i=1

f (yi;µ, λ) dλ < +∞

converges almost surely, for all s ⩾ 0. As a matter of fact, the non-informative Bayesian
estimator λ̂ of λ exists.
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Proof. Before drawing in the proof of Theorem 4.1, we use Lemma 6.1 which goes back
to [17] (See Appendix 6).

Since ν is concentrated on R+, then there exists t0 ∈ Θ(ν) such that, (−∞, t0] ⊂ Θ(ν).

The likelihood function is given by

l (Y ;µ, λ) =
N∏
i=1

c (yi, λ) eλ[ψ(µ)yi−Kν(ψ(µ))].

In order to prove that the integral
∫ +∞

0
λs

N∏
i=1

f (yi;µ, λ) dλ converges, we shall firstly

prove that the integral

I =
∫
RN+

∫ +∞

0
λset

∑N

i=1 yi l (Y ;µ, λ) dλdy1...dyN

converges for all t ∈ (−∞, inf (t0, 0)). Indeed,

I =
∫
RN+

∫ +∞

0
λset

∑N

i=1 yi

(
N∏
i=1

c (yi, λ) eλ[ψ(µ)yi−Kν(ψ(µ))]
)
dλdy1...dyN

=
∫ +∞

0
λs
[
N∏
i=1

∫ +∞

0
etyic (yi, λ) eλ[ψ(µ)yi−Kν(ψ(µ))]dyi

]
dλ.

Moreover, since
1 =

∫
R
eλ(θy−K(θ))c(y, λ)ξ(dy),

we notice that
eλK(θ) =

∫
R
eλθyc(y, λ)ξ(dy). (4.3)

Using Equation (4.3), we get∫
R
etyic (yi, λ) eλ[ψ(µ)yi−Kν(ψ(µ))]dyi =

∫
R
etyi[

t
λ

+ψ(µ)]−Kν(ψ(µ))c (yi, λ) dyi

= eλ[Kν(
t
λ

+ψ(µ))−Kν(ψ(µ))].
According to Lemma 6.1

lim
λ−→0+

Kν
(
t
λ + ψ(µ)

)
−Kν (ψ(µ))

1
λ

= 0,∀t < inf (t0, 0) ,

and note that we have

Kν

(
t

λ
+ ψ(µ)

)
−Kν (ψ(µ)) = Kp(ψ(µ),ν)

(
t

λ

)
.

Therefore,

lim
λ−→+∞

λ2λseλNKp(ψ(µ),ν)( tλ) = lim
λ−→+∞

eλ[NKp(ψ(µ),ν)( tλ)+(s+2) logλ
λ ]. (4.4)

Since
K ′
p(ψ(µ),ν) (θ) = K ′ (θ + ψ(µ)) ,

we get
K ′
p(ψ(µ),ν) (0) = K ′ (ψ(µ)) = µ.

By applying Taylor’s formula of order 1, the Equation (4.4) becomes

lim
λ−→+∞

e
tNK′

p(ψ(µ),ν)

(
α(t,λ)t
λ

)
+(s+2) logλ

λ = etNµ < +∞,
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where 0 < α(t, λ) < 1. Then, the integral I converges ν- a.s.

By the Fubini-Tonelli formula, we conclude that the integral

et
∑N

i=1 yi

∫ +∞

0
λs

N∏
i=1

f (yi;µ, λ) dλ < +∞.

Finally, we deduce that
∫ +∞

0
λs

N∏
i=1

f (yi;µ, λ) dλ < +∞ ν- a.s and this stands for the

desired result. □
Remark 4.2. If the observations yi are not all positive, we suppose that λ ∈ [ε,+∞) and
according to Equation (4.4), the integral I converges ν a.s.

Remark 4.3. Note that for s = 0, the non-informative Bayesian density function
f (λ;µ, y1:N ) exists. If s = 1, the non-informative Bayesian estimator λ̂ exists. The
conditional variance of the non-informative Bayesian estimator V (λ|y1:N , µ) exists for
s = 2.

According to Theorem 4.1, we have shown the existence of a parameter λ and to define
this parameter we use the following proposition.

Proposition 4.4. ([15]) Let Y = (y1, ..., yN ) ∼ f (.;µ, λ) be a continuous exponential
dispersion model renormalized saddlepoint approximation (2.2). Then,

Y
d→ N

(
µ,
V (µ)
λ

)
when λ 7→ +∞,

where d→ denotes convergence in distribution.

Theorem 4.5. Let y1, ..., yN be observations from f (.;µ, λ). Then
(1) The posterior distribution of λ is given by

λ|y1, ..., yN ∼ Ga

(
N

2
+ 1, 1

2

N∑
i=1

(yi − µi)2

V (µi)

)
.

(2) The non-informative Bayesian estimator of λ is λ̂ = N + 2
N∑
i=1

(yi − µi)2

V (µi)

.

Proof. According to Theorem 4.1 and Proposition 4.4, the non-informative Bayesian den-
sity function f (µ, λ; y1, ..., yN ) (represented by the equation (4.1)) of the parameter λ can
be evaluated as

f (λ;µ, y1, ..., yN ) ∝
N∏
i=1

f (yi;µ, λ)

∝
N∏
i=1

N

(
µi,

V (µi)
λ

)

∝ λ
N
2 e

−λ
2
∑N

i=1
(yi−µi)2

V (µi)

∼ Ga

(
N

2
+ 1, 1

2

N∑
i=1

(yi − µi)2

V (µi)

)
.

Therefore, for λ is large enough λ � λ0, the non-informative Bayesian density function
f (µ, λ;Y ) is only the Gamma distribution with a shape parameter N

2 + 1 and a scale one
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1
2

N∑
i=1

(yi − µi)2

V (µi)
. Consequently, the non-informative Bayesian estimator λ̂ of λ represented

in Equation (4.2), is obtained as λ̂ = N + 2
N∑
i=1

(yi − µi)2

V (µi)

.

□

4.2. Proposed method for estimating Jeffrey’s prior
Jeffrey’s prior, as discussed in the work by [5], is derived from the observed Fisher

information matrix. This prior is characterized by its local uniformity, rendering it a non-
informative choice. Its value lies in the fact that it remains relatively stable within regions
where the likelihood holds significance, while maintaining limited influence beyond that
range due to its local uniformity property. The justification for employing Jeffrey’s prior
stems from its invariance under parametrization, as emphasized by [26] in their study.

4.2.1. Information matrices. Jeffrey’s proposed a non-informative prior, which is com-
monly used in cases where the parameters are poorly informed or unknown. It defines the
density of the parameters as proportional to the positive square root of the Fisher infor-
mation matrix.

The general class of probability density f(y;µ, λ) in Equation (2.1) proposed by [16]
can be also written as

f(y;µ, λ) = c(y, λ)eλt(y,µ),

where t(y, µ) = θy −Kν (θ). For a density in the dispersion model family, we have
log f(y;µ, λ) = log c(y, λ) + λt(y, µ).

Since
0 = E

(
∂ log f(y|θ)

∂µ

)
= λE

(
∂t(y, µ)
∂µ

)
,

where θ = (µ, λ), we have that

E
(
∂2 log f(y|θ)

∂µ∂λ

)
= E

(
∂t(y, µ)
∂µ

)
= 0.

Therefore, the information matrix for dispersion models can be given by

I(µ, λ) =


−λE

(
∂2t(y, µ)
∂µ2

)
0

0 −E
(
∂2 log c(y, λ)

∂λ2

)
 .

In fact, we know more about the I(µ, λ) shape in the case of exponential dispersion models.
From Equation (2.1), we obtain

∂ log f(y|θ, λ)
∂µ

= ∂ log f(y|θ, λ)
∂θ

∂θ

∂µ

= λ(y − µ)
(
∂

∂µ
ψν(µ)

)
.

Hence,

−E
(
∂2 log f(y|θ)

∂µ2

)
= λ

∂

∂µ
ψν(µ) = λ

V (µ)
.

On the other hand, since
∂ log f(y|θ, λ)

∂λ
= ∂ log c(y, λ)

∂λ
+ (θy −Kν (θ)) ,
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we get

−E
(
∂2 log f(y|θ, λ)

∂λ2

)
= −E

(
∂2 log c(y, λ)

∂λ2

)
.

Thus, the information matrix for an EDM can be written as

I(µ, λ) =


λ

V (µ)
0

0 −E
(
∂2 log c(y, λ)

∂λ2

)
 .

It should be to note that Jeffreys prior is proportional to the square root of the de-
terminant of the information matrix, i.e., π(µ, λ) ∝ |I11I22|

1
2 , where I11 = λ

V (µ)
and

I22 = −E
(
∂2 log c(y, λ)

∂λ2

)
.

Proposition 4.6. Let µ or λ is considered the parameter of interest, while the other is
regarded as a nuisance parameter. Suppose I11 and I22, can be factored into functions of
µ and λ. Say,

I11 ∝h11(µ)h12(λ),
I22 ∝h21(λ)h22(µ),

where we assume the hij > 0, i, j = {1, 2}. Then, Jeffreys prior can expressed as

π(µ, λ) ∝ h
1
2
11(µ)h

1
2
12(λ)h

1
2
21(λ)h

1
2
22(µ). (4.5)

Proof. The proof of the theorem relies on the direct application of a result presented by
[5], taking advantage of the block diagonal structure of the information matrix. □
Proposition 4.7. The prior of the dispersion model with parameters µ and λ is given by

π(µ, λ) ∝
√

λ

V (µ)
h21(λ)h22(µ).

Proof. We can obtain the result directly by substituting the values of h11 and h12 into
the Equation (4.5) from Proposition 4.6. □

Table 2 gives a review of the outcomes for some typical members of the dispersion
family (Gaussian, Gamma and inverse Gaussian). The table incorporates also component
densities for some members of the dispersion model family (t(y, µ)) and the associated
Jeffreys priors. For each such distribution, we investigate the propriety of Jeffreys priors
(I11, I22, h11, h12, h21, h22, π(µ, λ)) and posterior distributions (f(µ, λ|y), f(λ|y)).

Remark 4.8. [8] showed that the posterior is proper under π for appropriate values of α
and β.

4.2.2. Main results. In what follows, we consider y ∼ f(.;µ, λ).
• Case of Gaussian distribution

Theorem 4.9. The density f(λ|y) clearly is a Gamma distribution with respect

to y i.e., λ ∼ Ga

(
N
2 ,

1
2

N∑
i=1

(yi − µ)2
)

. Therefore, the estimator λ̂ of λ can be

obtained as
λ̂ = N

N∑
i=1

(yi − µ)2
. (4.6)
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Table 2. Summary of component densities for some dispersion models.

Density Gaussian Gamma Inverse Gaussian

f(y|µ, λ)
√

λ
2πe

−λ
2 (y−µ)2 λλy−1

Γ(λ) e
−λ
(
y
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) √
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µ

)
−(y − µ)2

2µ2y

I11(µ, λ) λ λµ−2 λ

µ3
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2λ2

d2

dλ2 log Γ(λ) − 1
λ

1
2λ2

h11(µ) 1 1
µ2

1
µ3

h12(λ) λ λ λ

h21(λ) 1
λ2

d2

dλ2 log Γ(λ) − 1
λ

1
λ2

h22(µ) 1 1 1

π(µ, λ) λ− 1
2 λαµ−1

(
d2

dλ2 log Γ(λ) − 1
λ

)β
λ− 1

2µ− 3
2

f(µ, λ|y) λ
n−1

2 e−λ
2
∑n

i=1(yi−µ)2
λnλ+α

(
d2

dλ2 log Γ(λ) − 1
λ

)β
Γ−n(λ)qλµ−(nλ+1)e

−λt
µ µ− 3

2

(
λ
n+1

2 −1e
λs

2µ2

)
f(λ|y) λ

n
2 −1e−λ

2
∑n

i=1(yi−µ)2
λα
(
d2

dλ2 log Γ(λ) − 1
λ

)β
Γ−n(λ)Γ(nλ)qλt−nλ µ− 3

2λ
n−1

2

(∏n
i=1 y

− 3
2

i

)
e
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2µ2

∗Note that q, t and s denote
N∏
i=1

yi,
N∑
i=1

yi,
n∑
i=1

(yi − µ)2

yi
, respectively.

• Case of Gamma distribution

Theorem 4.10. With the use of Stirling’s formula, we investigated the behaviour
of f(λ|y) for a large λ, and the results revealed that

f(λ|y) ∝ λα−2β+N+1
2 exp

[
−λ

(
N log

∣∣∣∣∣
N∑
i=1

yi

∣∣∣∣∣− log
∣∣∣∣∣
N∏
i=1

yi

∣∣∣∣∣−N logN
)]

,

which is proportional to a Gamma density and propriety is obtained when α−2β+
N+3

2 > 0. Hence, the estimator λ̂ of λ can be expressed as

λ̂ =
α− 2β + N+3

2

N log
(

N∑
i=1

yi

)
− log

(
N∏
i=1

yi

)
−N logN

. (4.7)

• Case of inverse Gaussian distribution

Theorem 4.11. The density f(λ|y) is a Gamma distribution i.e., λ can be defined

as λ ∼ Ga

(
N+1

2 ,
N∑
i=1

(yi − µ)2

2µ2yi

)
. Then,
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λ̂ = N + 1
N∑
i=1

(yi − µ)2

µ2yi

. (4.8)

Proof. The proofs of Theorem 4.9, Theorem 4.10, and Theorem 4.11 exhibit similarities
to the proof of Theorem 4.5. □

5. Numerical illustration
5.1. Simulation study

Within this section, a numerical investigation is carried out to facilitate a comparison of
our suggested estimation approach for λ. The assessment of various estimators is accom-
plished through the evaluation of the values derived from the Squared Error Loss Function,
Entropy Loss Function, and Precautionary Loss Function. The explicit definitions of these
loss functions are as follows:

• Squared Error loss function (SELF): The SELF is a commonly employed metric
defined as l(λ̂, λ) = c(λ̂ − λ)2. Its popularity stems from its computational sim-
plicity, as it does not require extensive numerical calculations. It is important to
note that the SELF is a symmetrical loss function, assigning equal penalties to
both overestimation and underestimation.

• Entropy Loss Function (ELF): The ELF is a widely employed asymmetric metric,
given by l(δp) ∝ [δp − p log(δ) − 1], where δ = λ̂

λ and p > 0. It can be observed
that the ELF corresponds to an entropy-based measure of distance between the
distributions represented by λ and λ̂. Moreover, this loss function achieves its
minimum value when λ̂ = λ

• Precautionary Loss Function (PLF): The PLF offers a robust and straightforward
alternative as an asymmetric precautionary loss function, belonging to a broad
category of such functions. It can be expressed as l(λ̂, λ) = (λ̂−λ)2

λ̂
. This loss

function gradually approaches the origin, thereby mitigating the possibility of un-
derestimation and yielding conservative estimators, particularly when evaluating
small failure levels.

In our simulation study, we opted for sample sizes of n = 50, 100, and 1000 to en-
compass small, medium, and large datasets, respectively. We then proceeded to estimate
the dispersion parameter for various distributions (specifically Gaussian, Gamma, and
Inverse Gaussian) employing two distinct methodologies: the Pearson estimator and a
non-informative Bayesian approach utilizing unbounded uniform and Jeffrey’s priors.

In the case of the Gaussian distribution, we have set the mean and variance parameters
to fixed values of µ = 0.5 and σ2 = 2, respectively. Similarly, for the Gamma distribution,
the shape and rate parameters are fixed at α = 1 and β = 2. As for the inverse Gaussian
distribution, we have considered fixed values of µ = 1 for the mean parameter and γ = 0.2
for the shape parameter.

In the simulation analysis performed using the Matlab software, we conducted 10000
iterations to measure the dispersion parameter for each distribution under different ap-
proaches. We assessed the efficiency of the estimates for various sample sizes and compared
them across different values of the loss parameters: c = 0.5, 1.0, and 1.5, and p = 0.5 and
1.0. The results of the simulation analysis, specifically pertaining to the SELF, ELF,
and PLF, are presented in the form of tables and curves, allowing for a comprehensive
evaluation and comparison.
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Table 3. Bayes Estimates of λ under Pearson estimation.

Size Distribution SELF ELF PLF
c=0.5 c=1.0 c=1.5 p=0.5 p=1.0

N=50
Gaussian 8.19 × 10−5 3.55 × 10−4 4.43 × 10−4 2.15 × 10−4 8.56 × 10−4 5.44 × 10−4

Gamma 5.56 × 10−3 8.06 × 10−2 3.73 × 10−4 5 × 10−4 8.09 × 10−3 6.92 × 10−3

inverse Gaussian 1.47 × 10−2 8.64 × 10−2 2.49 × 10−2 3.20 × 10−2 2.37 × 10−1 6.59 × 10−2

N=100
Gaussian 7.35 × 10−5 8.96 × 10−5 2.05 × 10−4 5.18 × 10−5 2.06 × 10−4 2.50 × 10−4

Gamma 9.90 × 10−2 5.60 × 10−6 9.50 × 10−2 4.81 × 10−3 7.86 × 10−7 9.82 × 10−2

inverse Gaussian 2.73 × 10−2 1.24 × 10−2 7.80 × 10−2 5.40 × 10−2 5.04 × 10−2 2.35 × 10−1

N=1000
Gaussian 5.04 × 10−7 1.05 × 10−6 1.48 × 10−6 5.01 × 10−7 2.00 × 10−6 2.01 × 10−6

Gamma 1.67 × 10−3 1 × 10−4 1.25 × 10−3 9.67 × 10−3 1.17 × 10−3 1.66 × 10−3

inverse Gaussian 1.59 × 10−3 4.57 × 10−4 2.13 × 10−3 7.67 × 10−3 4.92 × 10−3 1.21 × 10−2

Table 4. Bayes Estimates of λ under unbounded uniform prior.

Size Distribution SELF ELF PLF
c=0.5 c=1.0 c=1.5 p=0.5 p=1.0

N=50
Gaussian 5.70 × 10−4 1.05 × 10−3 9.13 × 10−4 4.45 × 10−4 1.8 × 10−3 1.94 × 10−3

Gamma 2.45 × 10−4 1.02 × 10−3 2.63 × 10−3 1.18 × 10−5 2.57 × 10−4 2.14 × 10−4

inverse Gaussian 3.36 × 10−3 7.14 × 10−4 2.75 × 10−4 2.57 × 10−3 2.72 × 10−3 8.53 × 10−3

N=100
Gaussian 1.74 × 10−4 1.5 × 10−4 2.65 × 10−4 1.11 × 10−4 4.5 × 10−4 5.49 × 10−4

Gamma 1.31 × 10−4 3.67 × 10−4 1.24 × 10−4 1.29 × 10−5 8.60 × 10−5 1.63 × 10−4

inverse Gaussian 1.99 × 10−5 2.27 × 10−5 1.04 × 10−3 3.22 × 10−4 1.39 × 10−4 3.30 × 10−4

N=1000
Gaussian 1.24 × 10−6 2.63 × 10−6 3.20 × 10−6 1.12 × 10−6 4.5 × 10−6 4.71 × 10−6

Gamma 2.88 × 10−4 2.66 × 10−5 1.57 × 10−4 1.61 × 10−5 3.38 × 10−6 2.74 × 10−4

inverse Gaussian 1.52 × 10−4 6.73 × 10−5 5.61 × 10−4 1.33 × 10−3 4.29 × 10−4 1.69 × 10−3

Table 5. Bayes Estimates of λ under Jeffreys prior.

Size Distribution SELF ELF PLF
c=0.5 c=1.0 c=1.5 p=0.5 p=1.0

N=50
Gaussian 4.38 × 10−5 6.63 × 10−5 2.24 × 10−4 5.11 × 10−5 2.05 × 10−4 1.87 × 10−4

Gamma 4.10 × 10−4 2.47 × 10−3 1.97 × 10−4 1.56 × 10−5 1.70 × 10−6 1.23 × 10−3

inverse Gaussian 6.67 × 10−5 3.37 × 10−3 3.28 × 10−4 4.12 × 10−4 9.77 × 10−4 6.42 × 10−4

N=100
Gaussian 9.62 × 10−6 2.55 × 10−5 6.56 × 10−5 1.26 × 10−5 5.06 × 10−5 4.38 × 10−5

Gamma 5.03 × 10−4 1.32 × 10−4 2.27 × 10−4 4.39 × 10−5 1.44 × 10−5 5.89 × 10−4

inverse Gaussian 3.62 × 10−7 6.43 × 10−5 2.81 × 10−4 2.88 × 10−6 5.92 × 10−5 4.10 × 10−6

N=1000
Gaussian 1.24 × 10−7 2.04 × 10−7 3.85 × 10−7 1.25 × 10−7 5 × 10−7 4.98 × 10−7

Gamma 1.46 × 10−4 5.33 × 10−4 1.27 × 10−4 1.17 × 10−5 8.86 × 10−5 1.66 × 10−4

inverse Gaussian 1.40 × 10−5 8.56 × 10−5 2.56 × 10−5 7.73 × 10−5 1.09 × 10−6 1.33 × 10−4

The results obtained from our analysis are presented in Tables 3–5, showcasing a range
of parameter selections. Our findings consistently demonstrate that the SELF method
tends to yield the smallest values across the majority of cases, particularly when the
loss parameter c = 0.5. This conclusion is derived from a comprehensive comparison
of the values obtained from the SELF method with those obtained from other methods,
considering various conditions and parameter settings. Our analysis indicates that, overall,
the SELF method consistently delivers the smallest values with a high degree of reliability,
particularly when c = 0.5.

Within this simulation study, we performed a comparison of the posterior dispersion
parameter λ under different loss functions using three distinct estimation methods: Pear-
son estimation, unbounded uniform prior, and Jeffrey’s prior. Our analysis revealed that,
within each loss function, Pearson estimation was the most suitable method for estimating
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the dispersion parameter of Gamma distributions. Conversely, for Gaussian distributions,
the unbounded uniform prior proved to be the most appropriate estimation method. It
is crucial to note that the choice of estimation method can significantly impact the ac-
curacy of the results. Our conclusion regarding the suitability of Pearson estimation for
Gamma distributions and the effectiveness of the unbounded uniform prior for Gaussian
distributions is based on a comprehensive analysis of the data, considering the strengths
and limitations of each method.
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Figure 1. Graphical representation of the SELF and ELF values as a function
of its parameters c and p, respectively.

Figure 1 displays the estimations of the dispersion parameter using the SELF and ELF
loss functions, employing the Pearson method and non-informative priors (unbounded
uniform prior and Jeffrey’s prior). Our findings demonstrate that, for both the Gaussian
distribution and the inverse Gaussian distribution, Bayes estimators with the unbounded
uniform prior exhibit superior performance compared to those derived through the Pearson
method and Jeffrey’s prior, irrespective of the chosen loss functions. However, when
considering the Gamma distribution, the Pearson estimator using the SELF and ELF loss
functions outperforms the estimators based on the non-informative prior.

Furthermore, it is worth noting that when an unbounded uniform prior is employed, the
resulting values tend to be the smallest. Additionally, we have observed that as the values
of the parameters c and p for the SELF and ELF loss functions, respectively, increase, the
values obtained from the unbounded uniform prior remain relatively small.

5.2. Data analysis
In this section, we examine the performance of the proposed estimator for the EDD by

utilizing a real dataset and conducting an analysis using Matlab software. The dataset
in question comprises 100 observations pertaining to the breaking stress of carbon fibers
(measured in Gba) and is presented in Table 6. Previous studies conducted by [22] have
examined this dataset. Furthermore, Fatima and Ahmad [7] have analyzed the same
dataset using the transmuted exponentiated Pareto distribution and compared it with the
transmuted Pareto, exponentiated Pareto, and Pareto distributions. In order to analyse
this dataset, we assume an EDD with the density defined in Equation (2.1).
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Table 6. Breaking stress of carbon fibers data.

3.70 2.74 2.73 2.50 3.60 3.11 3.27 2.87 1.47 3.11
4.42 2.41 3.19 3.22 1.69 3.28 3.09 1.87 3.15 4.90
3.75 2.43 2.95 2.97 3.39 2.96 2.53 2.67 2.93 3.22
3.39 2.81 4.20 3.33 2.55 3.31 3.31 2.85 2.56 3.56
3.15 2.35 2.55 2.59 2.38 2.81 2.77 2.17 2.83 1.92
1.41 3.68 2.97 1.36 0.98 2.76 4.91 3.68 1.84 1.59
3.19 1.57 0.81 5.56 1.73 1.59 2.00 1.22 1.12 1.71
2.17 1.17 5.08 2.48 1.18 3.51 2.17 1.69 1.25 4.38
1.84 0.39 3.68 2.48 0.85 1.61 2.79 4.70 2.03 1.80
1.57 1.08 2.03 1.61 2.12 1.89 2.88 2.82 2.05 3.65

Table 7 presents the estimated posterior values of the dispersion parameter λ assuming
various prior distributions and utilizing the Pearson method. By incorporating different
prior distributions, the table provides a comprehensive view of the variability of the es-
timated posterior values of λ based on the choice of prior distribution. The results in
the table enable readers to make informed decisions regarding the selection of a suitable
prior distribution and to understand the impact of prior assumptions about the estimated
posterior values of λ.

Table 7. Parameter dispersion estimates of breaking stress data.

Estimate Pearson Unbounded Uniform prior Jeffreys prior
Gaussian Gamma Inverse Gaussian Gaussian Gamma Inverse Gaussian Gaussian Gamma Inverse Gaussian

λ̂ 0.9728 6.6848 17.5236 1.0023 6.8874 18.0546 0.9728 5.9647 2.2562

From Table 7, we have noted that when assuming different prior distributions for λ,
the inference results are comparable only in the case of the Inverse Gaussian distribution.
This suggests that the choice of prior has a significant impact on the inference results, but
only when a different distribution other than the Inverse Gaussian is used. This highlights
the importance of carefully considering the choice of prior in Bayesian analysis, especially
when working with exponential family models.

In order to choose the most suitable prion distribution for analysing the breaking stress
data performed by the EDD, it is important to assess several selection criteria. One
approach is to consider criteria based on information, such as the Akaike Information
Criterion (AIC), Bayesian Information Criterion (BIC), and the corrected AIC (AICc).
These criteria are widely employed in the field of statistics and offer a measure of how
well different models fit the data, considering both the accuracy of the fit and the number
of parameters used in the model. The results of these criteria are typically presented in
Table 8 for easy comparison, enabling the researcher to select the model that strikes the
best balance between fit and parsimony.

Table 8. Goodness of fit for various models fitted for breaking stress data.

Model Best estimator AIC BIC AICc
Gaussian Jeffreys prior −283.5457 −280.9405 −283.5049
Gamma Unbounded Uniform prior −284.4673 −281.8621 −284.4264
Inverse Gaussian Jeffreys prior −299.4561 −296.8509 −299.4153

In Figure 2, a comprehensive analysis is presented, comparing the actual histogram and
empirical cumulative distribution function (CDF) of the breaking stress data with their
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corresponding fitted probability density functions and cumulative distribution functions.
The left side showcases the breaking stress data’s histogram, accompanied by the fitted
probability density functions that estimate the underlying data distribution. Meanwhile,
the right side depicts the empirical CDF of the breaking stress data, overlaid with the
fitted cumulative distribution functions that accurately represent the distribution’s shape.
This graphical depiction serves as a valuable tool for comprehending the breaking stress
data’s distribution and drawing meaningful conclusions about its characteristics.
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Figure 2. Bayes estimates of pdf and cdf for the breaking stress data.

6. Conclusion and discussion
Our research introduces a groundbreaking Bayesian estimation technique for deter-

mining the value of the unknown dispersion parameter, λ. In contrast to conventional
informative methods, our approach employs a non-informative prior, enabling more ro-
bust estimations of this crucial parameter. By leveraging Bayesian inference and non-
informative priors, our method offers a powerful tool for accurately estimating λ across
diverse applications and environments.

Furthermore, we have provided different estimators for the dispersion parameter λ, by
employing both the Pearson estimator (method of moments) and non-informative Bayesian
estimation. We have demonstrated the existence of a non-informative Bayesian estimator
for λ using an unbounded uniform and Jeffrey’s priors. A comprehensive comparison of
these estimators was conducted through a thorough simulation study.

Our analysis revealed that the Bayesian estimator, utilizing the unbounded uniform
prior and Jeffrey’s prior, outperforms the Pearson method in accurately estimating λ.
The implementation of the non-informative Bayesian estimator takes into account both
prior knowledge and data information, resulting in more informed predictions. In contrast,
the Pearson approach relies solely on the data and disregards prior knowledge, leading to
less accurate estimations of λ.

These findings underscore the significance of incorporating prior information in sta-
tistical modelling, as demonstrated by the superior prediction accuracy achieved by the
Bayesian estimator.
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Appendix
Lemma 6.1. Let ν be a probability measure concentrated on R+, then

(1) ∃t0 ∈ Θ(ν) such that, (−∞, t0] ⊂ Θ(ν),
(2) limt→−∞K ′

ν(t) = 0,

(3) limt→−∞
Kν(t)
t

= 0.

Proof of Lemma 6.1

Proof. (1) Indeed, let t0 ∈ Θ(ν), if t ⩽ t0, then ty ⩽ t0y for all y ⩾ 0

Lν(t) =
∫ +∞

0
etyν(dy) ⩽

∫ +∞

0
et0yν(dy) = Lν(t0) < +∞.

This implies that for all t ∈ Θ(ν), (−∞, t0] ⊂ Θ(ν).
(2) In fact,

K ′
ν(t) = L

′
ν(t)

Lν(t)
=
∫+∞

0 xetxν(dx)∫+∞
0 etxν(dx)

,

upon setting t = t0 − s, for all s ⩾ 0, then

K ′
ν(t) =

∫+∞
0 xe(t0−s)xν(dx)∫+∞
0 e(t0−s)xν(dx)

⩽
∫ ε

0 xe
(t0−s)xν(dx) +

∫+∞
ε xe(t0−s)xν(dx)∫ ε

0 e
(t0−s)xν(dx)

⩽ ε+
∫+∞
ε xe(t0−s)xν(dx)∫ ε

0 e
(t0−s)xν(dx)

.

As x 7→ e(t0−s)x is a convex function, then
e(t0−s)x ⩾ (t0 − s)e(t0−s)ε(x− ε) + e(t0−s)ε ⩾ (t0 − s)e(t0−s)x(x− ε),∀x ∈ [0, ε] .

Implying that,∫ ε

0
e(t0−s)xν(dx) ⩾

∫ ε

0
(t0 − s)e(t0−s)ε(x− ε)ν(dx)

⩾ (t0 − s)e−sε
∫ ε

0
(x− ε)et0xν(dx).

Hence, ∫+∞
ε xe(t0−s)xν(dx)∫ ε

0 e
(t0−s)xν(dx)

⩽
∫+∞
ε xe(t0−s)xν(dx)

(t0 − s)e−sε ∫ ε
0 (x− ε)et0xν(dx)

⩽
∫+∞
ε xet0xν(dx)

(t0 − s)
∫ ε

0 (x− ε)et0xν(dx)
−→
s→+∞

0.

Therefore,
0 ⩽ lim

s→+∞
K ′
ν(t0 − s) ⩽ ε; ∀ε > 0.

Consequently,
lim

s→+∞
K ′
ν(t0 − s) = 0.
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(3) Note that

lim
t→−∞

Kν(t)
t

=
∫ 1

0
lim

t→−∞
K ′
ν(tu)du = 0.

□


