
 43

 
 
 

NUMERICAL SOLUTION OF SEEPAGE PROBLEM USING QUAD-TREE BASED 
TRIANGULAR FINITE ELEMENTS 

 
 

B. Alyavuz, Ö. Koçyiğit, and T. Gültop 
Department of Civil Engineering, Gazi University, 06570 Ankara, Turkey 

Corresponding author. Tel.:+90 312 582 3231; Fax:+90 312-231-9223 
E-mail address: tgultop@gazi.edu.tr (T. Gültop) 

 
Accepted Date: 2 May 2009 

 
Abstract  
 
A triangular mesh based on the quad-tree grid is applied in the finite element solution of seepage flow under a 
sheet pile. After obtaining the quad-tree grid, cells are directly transformed into triangles by dividing a cell into 
four to eight triangles. Cells at the boundaries are turned into triangles using the Delaunay criterion for cell 
corner nodes and intersection nodes. Different mesh arrangements are considered in order to compare the flow 
characteristics with changing mesh size. Mesh patterns and results from finite element method are presented 
graphically for two test cases.  
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1. Introduction 
 
As the numerical methods in the field of engineering applications have been developed to a 
considerable level and the computational capacity of modern computers greatly improved, the 
number of numerical modeling studies has also significantly increased. Depending on the 
features of the case studied, one, two or three-dimensional numerical models have been 
developed. Primarily, these models should be computationally efficient, and easily 
implemented with a satisfactory level of accuracy for most practical applications. In the 
implementation, many factors may affect the results of numerical model due to engineering 
problem diversity.  One major factor is the mesh type which may be categorized mainly into 
two groups such as structured or unstructured meshes. 
 
Structured meshes offer a simple and efficient approach for the solution of engineering 
problems using finite element and finite difference schemes. It is easier to access neighboring 
cells when computing a finite difference stencil. However, numerical models based on 
structured meshes have certain shortcomings. They are often unable to resolve features of a 
complicated geometric domain resulting in poor accuracy in the model predictions. Similarly, 
they become inefficient in regions where high velocity or concentration gradients are present 
due to the lack of local adaptation as a smaller grid size has to be used throughout the whole 
flow domain. Moreover, numerical problems may arise at the boundaries because of the poor 
resolution, producing excessive diffusion. Thus grid generation algorithms are required with 
which a mesh modified to local features can be generated easily and local refinement can be 
controlled. To achieve a fine resolution at boundaries and in regions having complex 
geometric features, unstructured grid techniques have been developed [1-3] where the spatial 
geometry of the problem needs to be approximated with a greater accuracy than a regular 
rectangular structured grid. One of the unstructured mesh generation techniques is based on 
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the quad-tree grids which offer a simple and efficient approach including adaptive type of 
procedure for the solution of the water engineering problems using finite difference schemes 
[4-10]. 
The quad-tree algorithm has been increasingly applied in engineering problems after first 
developed by Finkel and Bentley [11] in 1974, including image analysis [12], set up quad-tree 
grid generation methods for general computational fluid dynamic applications [13, 14], 
adaptive quad-tree models to solve shallow water equations [6, 7], and finite element mesh 
generation [15]. Afterwards quad-tree algorithm has been used as a method for creation of 
triangular unstructured meshes in various researches [16, 17].  
 
Because of the importance of seepage and its influence in designing and building engineering 
works [18], triangular mesh based on quad-tree grid was considered in this paper to create 
flow region or flow net in which a graphical representation of the family of streamlines and 
their corresponding equipotential. Related details of the subject are given by Harr [19], and 
Wang and Anderson [20]. The seepage problem needs to use unstructured mesh since high 
potential gradients exist in the problem domain. 
 
Quad-tree generation method, the triangulation procedure, formulation of seepage problem 
with finite element method incorporated with the quad-tree and solution process described in 
detail in this paper. The results from regular finite difference solution are also illustrated by 
graphical representations. Two test cases have been chosen to validate present solution 
method. The first test case is the seepage flow under a sheet pile and the second one is 
seepage flow into a cofferdam. Boundaries have been employed as quad-tree seeds in both 
examples. Equipotential and flow lines obtained from the solution of governing differential 
equation under specified boundary conditions are presented herein.    
 
2. Quad-tree grids and triangulation 
 
Mesh generation dates back to the beginning of finite element method in which the problem 
domain is divided into a finite number of geometric shapes such as triangles and 
quadrilaterals in two dimensions, tetrahedra and hexahedra in three dimensions. Among the 
examples of mesh generation, triangulation forms structured or unstructured interconnected  
 

 
 
Figure 1. a) Representative quad-tree structure and b) quad-tree grid of test example 
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Figure 2. a) Level-one, b) level-two and c) level-three quadrants and their cell identity names 
 
triangles over the problem domain. Another example is the quad-tree grid which differs from 
triangular or quadrilateral meshes in that a quad-tree grid contains certain hanging nodes. 
These nodes are corners of smaller elements which are placed along the edge of an adjacent 
element instead of its corner.  
 
Although the quad-tree grids and triangular meshes are of two different kinds of domain 
discretization methods, one can be used to construct the other. In the present work the 
triangular mesh employed in the solution of a seepage problem with the finite element method 
is generated from a quad-tree grid. We limited the number of hanging nodes to one in order to 
ensure a gradual change in cell size. It also helps to improve the quality of triangles. This 
restriction is called as 2:1 ratio rule or balancing condition.  
 
2.1. Quad-tree grid generation 
 
The basic idea behind the quad-tree grid generation is the recursive division of a square cell 
called root cell into four equal sized child cells until the maximum level of refinement is 
obtained. This repeating process can be shown by a tree of cell identity names shown in 
Fig. 4-a where the brunches represent the division. A child cell in this tree becomes a leaf cell, 
which is not subdivided further, or a parent cell which is going to be divided in the next layer. 
 
In general, the problem domain is enclosed within a square cell. If a cell contains any 
boundary segment, that cell should be divided into four sub-cells. Cells other than boundary 
segment containing cells, if necessary, should be divided in order to satisfy the 2:1 rule. 
According to this rule, a cell can only be adjacent to two smaller cells. The cell “2” in Fig. 2-b 
is a neighbor of cells “41” and “42”, and in Fig. 2-c it is neighbor to cells “411”, “412”, and 
“42” where the 2:1 rule is violated. In such a situation the cell “2” has to be divided. A 
complete quad-tree grid after six-level of refinements is shown in Fig. 1-b. 
 

 
 
Figure 3. Node numbering and triangular mesh generated from quad-tree grid 
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An essential step in mesh generation process is the numbering of cells and nodes which makes 
available the mesh to be used in the numerical method. In the present work, a cell identity 
name is assigned as the cell is created. These names are formed from n digit numbers where n 
is the level number of the cell. Leaf cells at each level are numbered from left to right as 
shown in Fig. 1-a. 
 
2.2. Triangulation based on quad-tree grid 
 
Generation of triangles can be carried out by a number techniques including advancing front 
method [21, 22], Delaunay triangulation [23-25], and quad-tree grids [16]. All of these 
methods give unstructured meshes having generally irregular orientation of triangles. They 
are flexible in fitting complicated domains and they offer smooth transitions from large to 
small elements under certain conditions.  
 
Dividing a quadrilateral into triangles is a common and well known approach. A similar way 
is the division of quad-tree cells into triangles. This can be summarized as follows; once the 
quad-tree grid is established over the problem domain, the triangulation is obtained from each 
cell by dividing the cell into four to eight triangles. If the cell is adjacent to a cell with the 
same size, then four triangles are generated in that cell. If it is neighbor to two smaller cells at 
one edge, a hanging node occurs at the mid edge of this cell. In such a case, one of the four 
triangles adjacent to smaller cells is also subdivided into two more triangles (Fig. 3). 
Generated triangles are stored with their node numbers ordered in counter clockwise 
direction. It should be noted that quad-tree grid obeys 2:1 dimension ratio between adjacent 
cells. This ratio limits the number of hanging nodes at the cell edge to one.  
 
Corners, mid edge, and center nodes are numbered for each leaf cell. The neighboring cells 
should be determined in order to avoid duplicated node numbering. Here, we used an 
indexing system, which helps to identify the neighbors of a cell, proposed by Cruz [5] where 
every cell is denoted by three integer numbers associated with row, column and level 
information. Whole domain is divided into m numbers of rows and columns, where m=2n and 
n is the level number. 
 
Boundaries of problem domain generally pass through the points other than nodes which are 
used to construct the triangles. Therefore, another triangulation scheme is needed for the cells 
near the boundaries. To handle the boundaries, we utilize the Delaunay criterion. First, cells 
containing boundary line segments are identified. Then, each members of this group of cells is 
treated individually. After determination of intersections of boundary lines and cell edges, 
nodes at the intersection points and corner nodes of the cell are triangulated according to a  
 

 
Figure 4. a) Triangulation which obeys empty circle criterion, b) triangulation which does not 
obey the criterion 
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Figure 5. Test example; a) boundary line containing cells , b) nodes and Delaunay triangles 
for a chosen cell 
 
rule called Delaunay rule or empty circle criterion. According to this rule, in a circumcircle of 
a triangle there must be no node other than corner nodes of the triangle as shown in Fig. 4. 
Nodes in the cell are scanned from first node to the last node selecting three candidate nodes 
which will obey empty circle criterion. 
 
Fig. 5-a shows the cells which intersect the boundary lines. At certain locations, the distance 
between intersection-nodes is immoderate causing possibly bad shaped triangles adjacent to 
the boundaries of problem domain. In order to eliminate this issue, we define a line smoothing 
procedure which produces equally spaced boundary nodes. The nodes on a boundary line are 
repositioned after the triangulation of each boundary containing cell. A triangulation after the 
application line smoothing procedure can be seen in Fig. 6-a. Although nodes on the 
boundaries are repositioned, it can be seen that there still exists a requirement for the 
adjustment of free nodes, i.e. nodes other than boundary nodes, to get rid of needle shaped 
triangles. 
 
The triangular mesh obtained from quad-tree grid can be improved using some smoothing 
techniques which make certain relocations of adjustable triangle vertices. For example, 
Laplacian smoothing method [26, 27] adjusts each free node by moving the node to a position 
which is the arithmetic average of node locations adjacent to it. This technique is inexpensive 
in terms of computational time and very powerful for two dimensional problems. The 
displacement corresponding to the relocation of the node is,  
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Figure 6. Test triangulation a) before and b) after Laplacian smoothing 
 
Fig. 6-b shows the final triangulation based on the quad-tree grid of test example after line 
and Laplacian smoothing procedures. 
 
3. Formulation of Seepage Problem 
 
A number of phenomena including steady state heat flow, electrostatics, torsion of elastic 
rods, and flow of viscous liquids are governed by the Laplace equation with a single variable. 
For two dimensional flow, the assumption of homogeneous soil and laminar flow conditions 
let the governing equation be the Laplace equation. 
 
3.1. Governing differential equation  
 
The governing differential equation of seepage flow is given by following second order 
elliptic differential equation,  
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where h is total head, kx and ky are the coefficients of permeability along the x and y 
directions, respectively. The governing differential equation is also written in terms of 
velocity potential function as, 
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where φ (x,y) is a potential function from which two velocity components are derived as  
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for homogeneous, anisotropic soil. A water particle flows through the curve ψ(x,y)=Constant 
which defines a flow line perpendicular to the curves, i.e. equipotential lines, along which 
φ (x,y)=Constant. The stream function ψ(x,y) also satisfies the Laplace equation, that is, 
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The quantity of discharge, q, per unit width at the cross section between the flow lines ψi and 
ψj is given by, 
 
 jiq ψψ −= . (7) 
 
3.2. Finite Element Formulation 
 
In the solution of seepage problems using finite element method, we approximate the head 
function in a linear triangular element by, 
 
 ( ) Nh •= eyxh , ,  (8) 
 
where h  is the approximate function of h, he is the vector containing nodal values of head  
and N is the vector of interpolation functions of a linear triangular element, that is, 
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and components of interpolation function vector are defined by 
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where mnnmi yxyx −=α , nmi yy −=β , ( )nmi xx −−=γ , nmi ≠≠ , permute in natural order. 
By use of a weak formulation of Eq. 3 Three equations relation between the nodal values hj 
and can be calculated from,  
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and Ae is the area of the element at hand. Q is the boundary vector for the specified inflow or 
outflow at relevant nodes.  
 
 ∫= dsqNQ ni

e
i ,  (14) 

 
3.3. Implementation of boundary nodes 
 
If the boundary is an impervious layer, the specified flow perpendicular to this layer should be 
zero. Hence, QL is zero for the node L on this boundary. If the nodal head is specified at node 
L, the Lth equation is redundant and we need to remove the Lth equation from the global 
system of equations. For all interior nodes the components of boundary vector should be zero.  
 
3.4. Calculation of total flow 
 
The quantity of discharge under the sheet pile is determined as the summation of discrete 
discharge values between minimum (ψmin) and maximum (ψmax) stream-function values.  
 
Velocity components vx and vy at each triangular element are calculated from Eq. 5 and the 
derivatives of Eq. 8 with respect to x and y as, 
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The velocities in Eq. 15 and Eq. 16 are calculated at the center of each linear triangular 
element. The velocity at a given node is estimated from the velocities calculated at the 
surrounding triangles.  
 
4. Numerical Implementation 
 
In this section, we suppose two examples of seepage flow under a sheet pile wall. Both 
problems are symmetric about a vertical line. The horizontal distance to depth ratio is 
assumed as 2:1. The coefficient of permeability is considered as unity. The boundaries of the 
first problem lie along the edges of root cell where it is thought that further divisions of cells 
are only carried out for the cells adjacent to the sheet pile after three iterations. In the second 
example, four boundary segments of problem domain fall inside the root cell. The iterative 
divisions of cells are carried out for the cells adjacent the boundaries. 
 
4.1. Sample problem 1 
 
An impervious layer lying 10 m under the ground surface level exists in the seepage problem 
shown in Fig. 7. Half of the domain is considered in the solutions of differential equations 
given in Eq. 4 and Eq. 6, because of the symmetry around line CE. Boundary conditions for 
the head and stream functions are taken into account as indicated in the figure. In order to 
make a comparison between different mesh arrangements, three different triangular meshes 
are assumed. Type-I mesh is finer at the boundary line CE whereas and Type-II has finer  
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Figure 7. Problem geometry and boundary conditions 
 
triangular elements around point D. Type-III mesh is a structured mesh which is fine all over 
the problem domain. Type-I and Type-II meshes shown in Fig. 8 are based on quad-tree grid. 
 
We divide all cells in the first three refinement iterations. After eight refinement iterations in 
total, Type-I mesh is obtained with 1886 nodes and 3480 triangles whereas Type-II mesh has 
255 nodes and 461 triangles. Equipotential and flow lines obtained from the solution of 
governing differential equation under given boundary conditions are shown in Fig. 9. It is 
clear that potential function and stream function are conjugate harmonic functions and their 
constant valued lines intersect at right angles forming an orthogonal flow net as expected. 
 
Plots of flow velocity versus depth at a distance x=5 are shown in Fig. 10. The area under the 
velocity curve between lines y=0 and y=5 represents the total discharge of the seepage flow 
which is calculated as 2,41 and 2,40 (×k m3/s) for Type-I and Type-II meshes, respectively. A 
comparison between different mesh configurations and the variation of total discharge with 
minimum triangular element edge size are shown in Fig. 11. 
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Figure 8. a) Type-I and b) Type-II triangular mesh 
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Figure 9.  a) 3-D surface plot and b) 2-D contour plot of function φ and ψ 
 
4.2. Sample problem 2 
 
The second example is the seepage flow into a sheet pile cofferdam shown in Fig. 12. The 
problem is symmetric around a vertical line passing through EF. Total hydraulic head on ABΓ  
considered as 10m. All boundaries are considered in the process of quad-tree refinement. The 
quad-tree grid obtained after 6-level refinement is shown in Fig. 13-a. Triangles based on the 
quad-tree grid are smoothed and triangles and nodes out of the boundaries are cleared to 
obtain the final mesh shown in Fig. 13-c.  
 
 
 

 
 
Figure 10. Horizontal component of flow velocity under the sheet pile, a) Type I mesh and b) 
Type II mesh 
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Figure 11.  Change of total flow with size of element on CEΓ  boundary 
 
5. Conclusion 
 
Unstructured mesh usage is an inevitable tool to describe complex geometries. It is also 
achievable to get higher accuracy with this type of mesh in case of sharp gradients exist. In 
this paper, as an unstructured mesh creation technique, both developing the algorithm and 
formation of the quad-tree grid over the problem domain are found to be straightforward. 
However, it should be noted herein that if triangular mesh generation technique based on 
quad-tree grid is employed, 2:1 ratio must be kept between two adjacent cells. Otherwise a 
gradual transition from large to small triangular elements could not be obtained. This rule is 
also a requirement for the synchronization of finite difference method and quad-tree 
algorithm. 

 
 
Figure 12. Problem geometry and boundary conditions 
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Figure 13. a) Quad-tree grid, b) triangulation based on quad-tree, c) mesh after post 
processing 
 
One major difficulty in mesh generation from a quad-tree grid is the formation of triangles at 
the problem boundaries. In this sense, we have presented a method, which uses the Delaunay 
criterion, to triangulate a cell containing the boundary line. It is found fairly simple and an 
efficient way of getting the boundary triangles. 
 
Different mesh configurations show that it is acceptable to get a mesh which is finer only 
around the tip of the sheet pile, but total flow quantity values from meshes based on the quad-
tree grid produce little higher results compared to the structured fine mesh finite difference 
and finite element method. One major result of this study is that triangular mesh based on the 
quad-tree grid requires less run time and computer memory compared to the fine meshes over 
all domain.  
 
 

 
 
Figure 14. 2-D contour plot of function φ and ψ 
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In the second test case, it is aimed that the procedure used in this paper has been applied to a 
different geometry which is slightly complex than first test case. The flow and equipotential 
lines are shown in Fig. 14. The algorithm used herein is able to easily produce triangular mesh 
which is finer at the boundaries. 
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