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Abstract 
 
The purpose of this paper is to report the effective application of a new symplectic approach for exact 
free vibration solutions of moderately thick rectangular plates. By way of a simple but rigorous 
derivation, the governing differential equations for free vibration of the plates are transferred into 
Hamilton canonical equations. The whole state variables are then separated. Using the method of 
eigenfunction expansion in the symplectic geometry, the free vibration analysis of moderately thick 
rectangular plates with two opposite edges simply supported is performed and exact vibration solutions 
are obtained. The method eliminates the need to pre-determine any trial functions hence more 
reasonable than other available methods. Comprehensive numerical results are presented to validate 
the approach proposed here by comparison with those established in the open literature. 
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1. Introduction 
 
The moderately thick rectangular plates are commonly used components encountered 
in various engineering structures and research on their vibration is significant for its 
practical importance. However, most previous investigations were focused on the 
vibration of thin plates, e.g. [1,2], while research on the problem of moderately thick 
rectangular plates was fewer on account of its complexity. A comprehensive survey of 
previous studies on the vibration of thick plates has been made by Liew et al. [3], 
which is helpful in locating relevant existing literature quickly. The conventional 
exact solutions for free vibration of moderately thick rectangular plates are based on 
the semi-inverse method with trial mode shape functions [4], which, however, do not 
always exist except in some special cases of support conditions such as fully simply 
supported plates. For the plates with other combinations of boundary conditions, some 
numerical and approximate methods have been widely employed by scientists and 
researchers in their valuable work.  

Representative approximate methods include the finite element method [5-8], 
finite difference method [9-11], Rayleigh-Ritz method [12-14], Galerkin method 
[15,16], finite strip method [17-20], spline strip method [21], collocation method [22], 
differential quadrature (DQ) method [23] and discrete singular convolution (DSC) 
method [24].  
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As mentioned above, the applications of various approximate methods for free 
vibration of moderately thick plates are due to the unavailability of exact analytical 
solutions up to the present. 

A new symplectic methodology developed for the theory of elasticity has shown 
considerable promise [25-27]. This systematic approach has been successfully applied 
to derive exact solutions to the problem of thin or thick plate bending [28-33]. The 
most powerful advantage of the approach lies in its rational and exactness in solution 
without any pre-selection of trial functions, which, however, can scarcely be avoided 
in the traditional semi-inverse approaches. 

The solution of the dynamical problem for plates has been explored in the 
symplectic space. Bao and Deng [34] made an investigation of free vibration for 
rectangular thin plates in Hamilton systems, which presents an interesting endeavor in 
the problem. Recently, Lim et al. [35] developed the symplectic elasticity approach 
based on the conservative energy principle and analyzed the examples for Lévy-type 
thin plates. Xing and Liu [36] employed the same solution method to solve 
Hamiltonian dual form of eigenvalue problem for transverse free vibrations of thin 
plates and performed the formulation of the natural mode in closed form for selected 
cases. As for vibration analysis of moderately thick plates, there was also an attempt 
made by Zou [37] for Reissner plates simply supported at one pair of parallel edges, 
but the trial mode functions were still predetermined which differs from the rational 
symplectic approach. 

In the present paper, a new symplectic approach is proposed to derive the exact 
free vibration solutions of moderately thick rectangular plates based on Reissner plate 
theory [38-40] in which we neglect the transverse contraction zε  for convenience 
[41]. Exact free vibration analysis of the plates with two opposite edges simply 
supported and the others arbitrarily supported is analytically performed by first 
transferring the basic vibration equations into Hamilton canonical equations in a 
simple but efficient manner before separation of variables. By eigenfunction 
expansion in the symplectic geometry, the exact solutions of free vibration are 
obtained accordingly.  

The solution procedure presented here goes beyond the usual limitations of the 
classical semi-inverse method and extends the scope of the analytical solutions for 
plate vibration problems. Numerical results are presented for an easy comparison with 
those from available literature to verify the accuracy and validity of the formulations 
derived. 
 

2. Hamilton canonical equations for free vibration of moderately thick 
rectangular plate 

 
The coordinate system of a moderately thick rectangular plate under consideration is 
illustrated in Fig. 1, where 0 x a≤ ≤  and 0 y b≤ ≤ . The directions of the vectors, taken as 
positive, are indicated. 
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Fig. 1. Coordinates, displacements, load and stress resultants of a moderately thick 
rectangular plate 

 
Based on the classical Reissner plate theory [38-40], the equations of motion for 

free vibration of a moderately thick rectangular plate expressed in the frequency 
domain are 

 
 2 0; 0; 0y xy y xyx x

x y

Q M M MQ MW Q Q
x y x y y x

ρω
∂ ∂ ∂ ∂∂ ∂

+ + = + − = + − =
∂ ∂ ∂ ∂ ∂ ∂

 (1a-c) 

 
where ρ  is the area density, ω  is the natural frequency, W  is the transverse 
displacement, xM , yM , xyM , xQ  and yQ  are the bending moments, torsional moment 
and shear forces, respectively. 
 

The internal forces of the plate can be presented as 
 

( )1
; ;

2
y y yx x x

x y xy
D

M D M D M
x y y x y x

ψ ψ ψνψ ψ ψ
ν ν

∂ ∂ ∂−     ∂ ∂ ∂
= − + = − + = − +     ∂ ∂ ∂ ∂ ∂ ∂     

      (2a-c) 

 

 ;x x y y
W WQ C Q C
x y

ψ ψ
 ∂ ∂ = − = −  ∂ ∂   

 (3a,b) 

 
where D  is the flexural rigidity, C  is the shear stiffness, xψ  and yψ  are the angles 
of rotation, ν  is the Poisson’s ratio. There exist some mathematical relations: 

5
12(1 )

EhC
ν

=
+

, 
3

212(1 )
EhD

ν
=

−
, where E  is the modulus of elasticity and h  is the thickness 

of the plate. From Eq. (1b) and Eqs. (2a-c), we have  
 

 1
2

xy y yx x x
x

MMQ D
x y x x y y y x

ψ ψψ ψνν
∂  ∂ ∂    ∂ ∂ ∂∂ − ∂= + = − + + +    ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂    

 (4) 

 

 1
2

y xy y yx x
y

M M
Q D

y x y y x x y x
ψ ψψ ψνν

∂ ∂  ∂ ∂    ∂ ∂∂ − ∂= + = − + + +    ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂    
 (5) 

 
Summation of Eqs. (2a) and (2b) gives 
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 ( )1y y yx x x
x yM M D D

x x y y x y
ψ ψ ψψ ψ ψ

ν ν ν
∂ ∂ ∂   ∂ ∂ ∂

+ = − + + + = − + +   ∂ ∂ ∂ ∂ ∂ ∂   
 (6) 

Let 
 
 

( )1
x y yxM M

M
D x y

ψψ
ν

+ ∂∂
− = + =

+ ∂ ∂
 (7) 

 
From Eq. (4) we get 
 

 ( ) ( )2 22

2

1
2

111 )
2 2

1
2

y y y yx x
x

y y yx x

y yx x

Q D
x x y y y y y x

D
x x y x y y x y

D
x x y y x y

ψ ψ ψ ψψ ψνν

ψ ψ ψνψ ψνν

ψ ψψ ψν

 ∂ ∂ ∂ ∂    ∂ ∂∂ − ∂= − + − + + +    ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂    
 ∂ ∂ ∂− ∂ ∂∂ −= − + − − + +  ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂   
 ∂ ∂    ∂ ∂∂ − ∂= − + − −    ∂ ∂ ∂ ∂ ∂ ∂    

 (8) 

Let 
 
 y x

x y
ψ ψ∂ ∂

− = Ψ
∂ ∂

 (9) 

 
From Eqs. (7), (8) and (9), we have 
 
 1

2x
MQ D
x y

ν ∂ − ∂Ψ= − − ∂ ∂ 
 (10) 

 
Similarly, using Eq. (5), we obtain 
 
 1

2y
MQ D
y x

ν ∂ − ∂Ψ= − + ∂ ∂ 
 (11) 

 
Substituting Eqs. (10) and (11) into Eq. (1a) yields 
 
 

2 2
2 2 2 2

2 2 0yx QQ M MW D W D M W
x y x y

ρω ρω ρω
∂  ∂ ∂ ∂+ + = − + + = − ∇ + = ∂ ∂ ∂ ∂ 

 (12) 

or 
 

2
2M W

D
ρω∇ =  (13) 

 
From Eqs. (3a,b), (10) and (11),  
 
 1

2x
W MC D
x x y

νψ
 ∂ ∂ − ∂Ψ − = − −   ∂ ∂ ∂   

 (14) 

 

 1
2y

W MC D
y y x

νψ
   ∂ ∂ − ∂Ψ− = − +   ∂ ∂ ∂   

 (15) 

 
After differentiations of both sides of Eq. (14) with respect to x , Eq. (15) with respect 
to y , we get 
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2 2 2

2 2
1

2
xW MC D

x x x x y
ψ ν   ∂∂ ∂ − ∂ Ψ− = − −   ∂ ∂ ∂ ∂ ∂   

 (16) 

 
2 2 2

2 2
1

2
yW MC D

y y y x y
ψ ν∂   ∂ ∂ − ∂ Ψ− = − +   ∂ ∂ ∂ ∂ ∂  

 (17) 

 
Summation of Eqs. (16) and (17), using Eq. (7), yields 
 
 ( )2 2C W M D M∇ − = − ∇  (18) 
 
Using Eq. (13), we arrive at the expression 
 
 ( )2 2C W M Wρω∇ − = −  (19) 
 
After differentiations of both sides of Eq. (14) with respect to y , Eq. (15) with  
respect to x , we get 
 

2 2 2

2
1

2
xW MC D

x y y x y y
ψ ν   ∂∂ ∂ − ∂ Ψ− = − −   ∂ ∂ ∂ ∂ ∂ ∂   

 (20) 

 

 
2 2 2

2
1

2
yW MC D

x y x x y x
ψ ν∂   ∂ ∂ − ∂ Ψ− = − +   ∂ ∂ ∂ ∂ ∂ ∂  

 (21) 

 
Subtraction of Eq. (20) and Eq. (21), using Eq. (9), yields 
 
 

( )
2 2

1
C

D ν
∇ Ψ = Ψ

−
 (22) 

 
By virtue of the above derivation, all physical quantities of moderately thick plates 

can be represented by three functions: M , W  and Ψ . 
 
For the angles of rotation, Eqs. (14) and (15) give 
 

 1
2x

W D M
x C x y

νψ
 ∂ ∂ − ∂Ψ= + − ∂ ∂ ∂ 

 (23) 

 

 1
2y

W D M
y C y x

νψ
 ∂ ∂ − ∂Ψ= + + ∂ ∂ ∂ 

 (24) 

 
For the bending moments and torsional moment, from Eqs. (2a-c), (23) and (24), we 
obtain 
 

 

( ) ( )1
1

2

yx
xM D

x y

DW D MD M
y y C x C y

ψψ
ν

ν
ν

∂ ∂
= − + ∂ ∂ 

 − ∂ ∂ ∂Ψ ∂ = − − − + +  ∂ ∂ ∂ ∂   

 (25) 

 
( ) ( )1
1

2

y x
yM D

y x

DW D MD M
x x C y C x

ψ ψ
ν

ν
ν

∂ ∂
= − + ∂ ∂ 

 − ∂ ∂ ∂Ψ ∂ = − − − − +  ∂ ∂ ∂ ∂   

 (26) 
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( )

( ) ( )2 2 2 2

2 2

1
2

1 122
2 2

yx
xy

D
M

y x

D DW D M
x y C x y C x y

ψν ψ

ν ν

∂−  ∂
= − + ∂ ∂ 

 − −  ∂ ∂ ∂ Ψ ∂ Ψ= − + + −  ∂ ∂ ∂ ∂ ∂ ∂  

 (27) 

 
It can be seen that the problem of bending of moderately thick rectangular plates 

reduces to solving the following equations: 
 

 ( )

( )

2
2

2 2

2 2
1

M W
D

C W M W

C
D

ρω

ρω

ν

∇ =

∇ − = −

∇ Ψ = Ψ
−

 (28a,b,c) 

from which the problem can be led to Hamiltonian system. 
Let 
 

 
y

θ
∂Ψ

=
∂

 (29) 

 

From Eq. (28c), observing that 
( ) 2

2 10
1
C

D hν
=

−
 where h  is the thickness of the plate, we 

obtain 
 
 

2

2 2

10
y h x
θ∂ ∂ Ψ

= Ψ −
∂ ∂

 (30) 

Let 
 
 W

y
α

∂
=

∂
 (31) 

 

 
2M

y D
ρω

β
∂

=
∂

 (32) 

 
Eqs. (28a,b) can be represent as 
 
 

2 2

2

WM W
y x C
α ρω∂ ∂

= − −
∂ ∂

 (33) 

 

 
2

2 2

D M W
y x
β

ρω
∂ ∂

= − +
∂ ∂

 (34) 

 
Eqs. (29), (30), (31), (32), (33) and (34) can be expressed in the matrix form as  
 
 

y
∂

=
∂
Z HZ  (35) 

 
Where 
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 
=  

 

0 F
H

G 0
,

2 0 0
0 1 0
0 0 1

Dρω 
 =  
 
 

F ,

2

2 2

2 2

2

2

2 2

1 0

1 0

100 0

D
x

x C

h x

ρω

ρω

 ∂
− ∂ 

 ∂= − − 
∂ 

 ∂− 
∂  

G , [ ]T, , , , ,M W β α θ= ΨZ . 

 
It is obvious that T =H JHJ , in which 3

3

 
 
 

0 I
J =

-I 0
 is the symplectic metric matrix and 3I  

is 3 3×  unit matrix. Therefore H  is a Hamiltonian operator matrix and Eq. (35) is the 
Hamiltonian dual equation for moderately thick rectangular plates. 
 
3. Symplectic solution methodology for free vibration of plates with two 

opposite edges simply supported 
 

Applying the method of separation of variables to Z  yields  
 

 ( ) ( )x Y y=Z X  (36) 
 
where [ ]T( ) ( ), ( ), ( ), ( ), ( ), ( )x M x W x x x x xβ α θ= ΨX . Substituting Eq. (36) into Eq. (35) gives 
 

 ( ) ( ) ( ) ( ),
dY y

Y y x x
dy

µ µ= =HX X  (37a,b) 

 
where µ  is the eigenvalue and ( )X x  is the corresponding eigenvector. Eq. (37b) 
gives an eigenvalue problem. Its characteristic equation is 
 

 2

2

2
2

0 0 0 0
0 0 0 1 0
0 0 0 0 1

01 0 0 0

1 0 0 0
100 0 0 0

k

k
k

h

µ
µ

µ

λ µ

λ δ µ

λ µ

−
−

−

=− −

− − −

− −

 (38) 

where 
2

k
D

ρω= , D
C

δ = . 

 
Determinantal expansion yields the eigenvalue equation 
 

 ( ) ( ){ }22 2 2 2 2 2
2

101 0k
h

λ µ δ λ µ λ µ  + + + − + − =    
 (39) 

 
Accordingly, the eigenvalues of the characteristic equation can be obtained.  
 
( ) ( )22 2 2 2 1 0kλ µ δ λ µ + + + − =   gives 

 1,2 1 3,4 2i,λ α λ α= ± = ±  (40) 
 
Where 
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 ( ) ( )2 2 2 2
1 2

1 14 , 4
2 2 2 2

k kk k k kδ δα δ µ α δ µ= + + + = + − −  (41) 

 

When 2
2

10
h

µ = , 2 2
2

10 0
h

λ µ+ − =  gives 0λ =  (double roots); but in this way we get 

inconsistent equations via Eq. (37b) thus indicating invalidity of the case. When 
2

2
10
h

µ ≠ , 2 2
2

10 0
h

λ µ+ − =  gives 

 
 3,4 3λ α= ± ,  (42) 

where 
 2

3 2
10
h

α µ= −  (43) 

 
Thus the general solutions are represented in the following form: 
 

 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

1 1 1 1 1 2 1 2 1 3 1 3

2 1 2 1 2 2 2 2 2 3 2 3

3 1 3 1 3 2 3 2 3 3 3 3

4 1 4 1 4 2 4 2 4 3 4

cos sin ch sh ch sh

cos sin ch sh ch sh

sin cos sh ch sh ch

cos sin ch sh ch s

M A x B x C x D x E x F x

W A x B x C x D x E x F x

A x B x C x D x E x F x

A x B x C x D x E x F

α α α α α α

α α α α α α

α α α α α α

β α α α α α

= + + + + +

= + + + + +

Ψ = + + + + +

= + + + + + ( )
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

3

5 1 5 1 5 2 5 2 5 3 5 3

6 1 6 1 6 2 6 2 6 3 6 3

h

cos sin ch sh ch sh

sin cos sh ch sh ch

x

A x B x C x D x E x F x

A x B x C x D x E x F x

α

α α α α α α α

θ α α α α α α

= + + + + +

= + + + + +

 (44) 

 
in which the constants are not all independent. Substituting Eq. (44) back into Eq. 
(37b) yields the relations between these constants as 
 

 

1 2 4 2 5 2 3 6

1 2 4 2 5 2 3 6

1 2 4 2 5 2 3 6

1 2 4 2 5 2 3 6

6 3 1 2 4 5

6 3 1 2 4 5

; ; ; 0
; ; ; 0
; ; ; 0
; ; ; 0

; 0
; 0

A kRA A R A A A A A
B kRB B R B B B B B
C kSC C S C C C C C
D kSD D S D D D D D
E E E E E E
F F F F F F

µ µ
µ µ
µ µ
µ µ

µ

µ

= = = = =
= = = = =
= = = = =
= = = = =
= = = = =

= = = = =

 (45) 

 

where 21 4
2

R
k

δ δ
 

= − +  
 

, 21 4
2

S
k

δ δ
 

= + +  
 

. 

 
The boundary conditions of a plate with two opposite edges simply supported at 

0x =  and x a=  are 
  
 0, 0, 0y xW Mψ= = =  for 0x =  and x a=  (46) 
 
Substituting Eqs. (44) and (45) into Eq. (46) and then equating the determinant of the 
coefficient matrix to zero yields the transcendental equation of eigenvalues for free 
vibration of a plate simply supported on opposite edges at 0x =  and x a=  as 
 
 ( ) ( ) ( )1 2 3sin sh sh 0a a aα α α =  (47) 
which gives the roots 
 

 1
m
a
π

α = ± , or 2 im
a
π

α = ± , or 3 im
a
π

α = ±  for 1,2,3,m = L  (48) 

 



 21 

Substituting Eq. (48) into Eqs. (41) and (43) leads to 
 

 ( )
2

1
m

m kS
a
πµ±

 = ± − 
 

 or ( )
2

2
m

m kR
a
πµ±

 = ± − 
 

 or ( )
2

3
2

10
m

m
a h
πµ±

 = ± + 
 

 (49) 

 
The corresponding eigenvector of ( )1

mµ  is 
 
 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

T1 1 1sin , sin , 0, sin , sin , 0m m m m m m mx k x x R x x Rα α µ α µ α =  X  (50) 
 

where m
m
a
π

α = ( )1, 2,3,m = L . The corresponding eigenvector of ( )2
mµ  is 

 
 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

T2 2 2sin , sin , 0, sin , sin , 0m m m m m m mx k x x S x x Sα α µ α µ α =  X  (51) 
 
The corresponding eigenvector of ( )3

mµ  is 
 

 ( ) ( ) ( ) ( ) ( )
T3 30, 0, cos , 0, 0, cosm m m mx x xα µ α =  X  (52) 

 
The eigenvectors of ( )1

mµ− , ( )2
mµ−  and ( )3

mµ− , i.e. ( ) ( )1
m x−X , ( ) ( )2

m x−X  and ( ) ( )3
m x−X , can be readily 

obtained by replacing ( )1
mµ , ( )2

mµ  and ( )3
mµ  in ( ) ( )1

m xX , ( ) ( )2
m xX  and ( ) ( )3

m xX  with ( )1
mµ− , 

( )2
mµ−  and ( )3

mµ−  respectively.  According to Yao and Zhong [29], the state vectors 
( )1 xZ  and ( )2 xZ  are symplectic adjoint orthogonal when they satisfy 

( ) ( )T
1 20

d 0
a

x x x =∫ Z JZ . Any two eigenvectors of a Hamiltonian matrix satisfy the 
symplectic adjoint orthogonality property, i.e. ( ) ( ) ( ) ( ) ( )T

0
d 0 1, 2,3, ; 1, 2,3

a i i
m mx x x m i− ≠ = =∫ X JX L  

while any other two eigenvectors are symplectic orthogonal to each other. From the 
above property and expansion of eigenvectors, the state vector Z  can be expanded as 

 
 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )1 1 2 2 3 31 1 1 1 2 2 2 2 3 3 3 3

1
e e e e e em m m m m my y y y y y

m m m m m m m m m m m m
m

f f f f f fµ µ µ µ µ µ− −

∞
−

− − − − − −
=

= + + + + +∑Z X X X X X X  (53) 

 
where ( ) ( ) ( ), 1, 2,3k k

m mf f k− =  are constants to be determined by imposing the remaining 
boundary conditions at 0y =  and y b=  which will result in the frequency equation. 
 
4. Exact frequency equations 
 

Assume that the edges 0x =  and x a=  of the rectangular plate, shown in Fig. 2, 
are simply supported and that the other two edges are S-S, S-C, S-F, C-C, C-F or F-F 
(S denotes simply supported, C clamped and F free). For a fully simply supported 
(SSSS) plate, in addition to the boundary conditions expressed in Eq. (46), the 
boundary conditions at the remaining two edges are 

 
 0, 0, 0x yW Mψ= = =  for 0y =  and y b=  (54) 
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Fig. 2. A moderately thick rectangular plate simply supported at 0,x a=  

 
Combination of Eqs. (53) and (54) leads to six linear simultaneous equations with 
respect to unknown constants. Observing the condition for existence of nontrivial 
solutions, the determinant of the coefficient matrix of the above equations must be 
zero, which yields the transcendental frequency equation 
 

( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
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p p

p pµ µ µ µ

µ µ µ µ µ µ

µ µ µ µ

µ α µ α

α ν µ α ν µ α ν µ α ν µ α µ ν α µ ν

µ α µ α

α ν µ α ν µ α ν µ α ν µ

− −

− − −

− −

−

− − − − − −

−

− − − −( ) ( ) ( ) ( ) ( ) ( ) ( )
3 33 32

0

e 1 e 1m mb b
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µ µα µ ν α µ ν−

=

− −

 (55) 

 

where ( )
( )

2 2

2 2

2 4

2 4

k k k
p

k k k

δ δ δ

δ δ δ

+ − +
=

+ + +
, 

2

2

4
4

k kq
k k
δ δ

δ δ

− +=
+ +

, 
( )2 2

1

4
r

k k kδ δ δ
=

+ +
. Accordingly the exact 

natural frequency parameter of vibration for SSSS plate is obtained via Eq. (55), after 
simplification, as 

 

 
( )

( )

22 2 2

2 2 21 b

m n

m
k

n

β

δ β

+
=

+ +  (56) 

where 
2 4

4k
D

bρω
π

= , 
2

2b
D

b C
πδ = , b

a
β = , , 1, 2,3,m n = L . 

 
The exact frequency solutions for other cases can be obtained similarly. The 

boundary conditions at the remaining two edges ( 0y =  and y b= ) and frequency 
equations for these cases are presented as follows: 

 
SSSC: 
 

 0, 0, 0x yW Mψ= = =  for 0y = ; 0, 0, 0x yW ψ ψ= = =  for y b=  (57) 
 

 

( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
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µ α µ α

µ µ µ µ α α
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− − −

− − −

−

− − − − − −
=

−

− −

 (58) 
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SSSF: 
 

 0, 0, 0x yW Mψ= = =  for 0y = ; 0, 0, 0yy xyQM M= = =  for y b=  (59) 
 

( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
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 (60) 

 
SCSC: 

 0, 0, 0x yW ψ ψ= = =  for 0y =  and y b=  (61) 
 

 

( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1 1 2 2

1 1 2 2 3 3

1 1 2 2 3 3

3 3

1 1 2 2

3 3

1 1 2 2

1 1 0 0

1 1 1 1

0
e e e e 0 0

e e e e e e

e e e e e e

m m m m

m m m m m m

m m m m m m

m m m m

m m m m m m

b b b b

b b b b b b
m m m m

b b b b b b
m m m m m m

p p

p pµ µ µ µ

µ µ µ µ µ µ

µ µ µ µ µ µ

µ α µ α

µ µ µ µ α α

µ α µ α

µ µ µ µ α α

− −

− − −

− − −

−

− −
=

−

− −

 (62) 

 
SCSF: 
 

 0, 0, 0x yW ψ ψ= = =  for 0y = ; 0, 0, 0yy xyQM M= = =  for y b=  (63) 
 

( ) ( )

( ) ( ) ( ) ( )
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SFSF: 

  
 0, 0, 0yy xyQM M= = =  for 0y =  and y b=  (65) 
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It should be pointed out that the exact frequency transcendental equations for non 
SSSS plates are so complicated in form that they are presented in the form of different 
determinants as given above. 

 
5. Numerical examples 
 

In order to verify the validity of the results obtained in present study, the natural 
frequencies of all cases in the present work are solved for comprehensive numerical 
comparison. The Poisson’s ratio ν  is taken to be 0.3 throughout. For rectangular 
SSSS and SCSC plates, comparisons with the results from Institute of Mechanics 
(IMECH), Chinese Academy of Science [4], obtained by the semi-inverse method, are 
tabulated in Tables 1-2 respectively, in which perfect agreement is observed. Tables 
3-6 present the lowest natural frequency parameters for SSSC, SSSF, SCSF and SFSF 
plates with different aspect ratios a b  and thickness ratios h b . The results used for 
comparison are obtained by Liew et al. [14] using the pb-2 Rayleigh-Ritz method. 
Satisfactory accordance is observed. From all comparison studies presented in this 
paper, the applicability and validity of the symplectic approach proposed and 
expressions derived are demonstrated. 
 
 
Table 1. The lowest three natural frequency parameters k  of moderately thick SSSS 

plates (
2 4

4k
D

bρω
π

= , 
2

2b
D

b C
πδ = , b

a
β = ) 

β  0.2 0.6 1 2 
bδ  

Mode IMECH 
(1977) Present IMECH 

(1977) Present IMECH 
(1977) Present IMECH 

(1977) Present 

0 1 1.082 1.08160 1.850 1.84960 4.000 4.00000 25.00 25.0000 
 2 1.346 1.34560 5.954 5.95360 25.00 25.0000 64.00 64.0000 
 3 1.850 1.84960 17.98 17.9776 64.00 64.0000 169.0 169.000 
0.05 1 1.028 1.02814 1.732 1.73184 3.636 3.63636 20.00 20.0000 
 2 1.272 1.27183 5.306 5.30624 20.00 20.0000 45.71 45.7143 
 3 1.732 1.73184 14.83 14.8330 45.71 45.7143 102.4 102.424 
0.10 1 0.980 0.979710 1.628 1.62817 3.333 3.33333 16.67 16.6667 
 2 1.206 1.20573 4.786 4.78585 16.67 16.6667 35.56 35.5556 
 3 1.628 1.62817 12.63 12.6247 35.56 35.5556 73.48 73.4783 
0.20 1 0.895 0.895364 1.454 1.45409 2.857 2.85714 12.50 12.5000 
 2 1.092 1.09221 4.001 4.00108 12.50 12.5000 24.62 24.6154 
 3 1.454 1.45409 9.728 9.72814 24.62 24.6154 46.94 46.9444 
0.40 1 0.764 0.763842 1.198 1.19793 2.222 2.22222 8.333 8.33333 
 2 0.919 0.919126 3.013 3.01296 8.333 8.33333 15.24 15.2381 
 3 1.198 1.19793 6.668 6.66825 15.24 15.2381 27.26 27.2581 
0.60 1 0.666 0.666010 1.019 1.01850 1.818 1.81818 6.250 6.25000 
 2 0.793 0.793396 2.416 2.41623 6.250 6.25000 11.03 11.0345 
 3 1.019 1.01850 5.073 5.07269 11.03 11.0345 19.21 19.2045 
0.80 1 0.590 0.590393 0.886 0.885824 1.538 1.53846 5.000 5.00000 
 2 0.698 0.697925 2.017 2.01680 5.000 5.00000 8.649 8.64865 
 3 0.886 0.885824 4.093 4.09326 8.649 8.64865 14.83 14.8246 
1.00 1 0.530 0.530196 0.784 0.783729 1.333 1.33333 4.167 4.16667 
 2 0.623 0.622963 1.731 1.73070 4.167 4.16667 7.111 7.11111 
 3 0.784 0.783729 3.431 3.43084 7.111 7.11111 12.07 12.0714 
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Table 2. The lowest natural frequency parameters k  of moderately thick SCSC plates 
bδ  β  0.2 0.4 0.6 0.8 1.0 1.5 2.0 

IMECH(1977) 0 Present 
5.240 
5.24005 

5.562 
5.56251 

6.162 
6.16210 

7.132 
7.13233 

8.604 
8.60445 

15.19 
15.6861 

30.76 
30.7651 

IMECH(1977) 0.01 Present 
4.987 
4.98720 

5.287 
5.28707 

5.846 
5.84618 

6.753 
6.75305 

8.131 
8.13065 

14.74 
14.7379 

28.62 
28.6244 

IMECH(1977) 0.05 Present 
4.179 
4.17854 

4.415 
4.41512 

4.861 
4.86143 

5.593 
5.59286 

6.710 
6.70985 

12.02 
12.0169 

22.70 
22.7048 

IMECH(1977) 0.10 Present 
3.472 
3.47220 

3.662 
3.66195 

4.025 
4.02492 

4.626 
4.62644 

5.549 
5.54927 

9.879 
9.87950 

18.23 
18.2344 

IMECH(1977) 0.20 Present 
2.593 
2.59302 

2.773 
2.73318 

3.007 
3.00685 

3.466 
3.46635 

4.172 
4.17199 

7.390 
7.38997 

13.21 
13.2088 

IMECH(1977) 0.40 Present 
1.721 
1.72060 

1.819 
1.81852 

2.013 
2.01326 

2.341 
2.34143 

2.839 
2.83890 

4.991 
4.99132 

8.585 
8.58540 

IMECH(1977) 0.60 Present 
1.288 
1.28769 

1.366 
1.36595 

1.522 
1.52212 

1.783 
1.78325 

2.173 
2.17255 

3.792 
3.79179 

6.376 
6.37605 

IMECH(1977) 0.80 Present 
1.029 
1.02913 

1.096 
1.09551 

1.228 
1.22762 

1.446 
1.44619 

1.767 
1.76706 

3.064 
3.06362 

5.075 
5.07494 

IMECH(1977) 1.00 Present 
0.857 
0.857241 

0.915 
0.91544 

1.031 
1.03064 

1.219 
1.21919 

1.492 
1.49238 

2.572 
2.57246 

4.216 
4.21612 

 
Table 3. The lowest natural frequency parameters 

2

2

2

D
bρω
π

 of moderately thick SSSC 

plates 
h b  

0.001 0.1 0.2 a b  
Liew et al. 
(1993) Present Liew et al. 

(1993) Present Liew et al. 
(1993) Present 

0.4 7.4408 7.4408 6.5903 6.7248 5.2319 5.4250 
0.6 4.0543 4.0544 3.7546 3.8021 3.1829 3.2778 
0.8 2.9074 2.9074 2.7340 2.7592 2.3783 2.4357 
1.0 2.3958 2.3959 2.2684 2.2854 1.9964 2.0374 
1.25 2.0805 2.0805 1.9785 1.9910 1.7538 1.7851 
1.5 1.9150 1.9151 1.8256 1.8360 1.6247 1.6510 
1.75 1.8177 1.8179 1.7356 1.7448 1.5485 1.5719 
2.0 1.7561 1.7561 1.6782 1.6867 1.4998 1.5214 
2.25 1.7143 1.7143 1.6395 1.6475 1.4669 1.4874 
2.5 1.6847 1.6847 1.6121 1.6197 1.4436 1.4632 

Table 4. The lowest natural frequency parameters 
2

2

2

D
bρω
π

 of moderately thick SSSF 

plates 
h b  

0.001 0.1 0.2 a b  
Liew et al. 
(1993) Present Liew et al. 

(1993) Present Liew et al. 
(1993) Present 

0.4 6.4121 6.4119 5.7705 5.7628 4.6886 4.7865 
0.6 2.9585 2.9580 2.8006 2.8312 2.4760 2.5160 
0.8 1.7480 1.7472 1.6860 1.6978 1.5521 1.5866 
1.0 1.1847 1.1838 1.1523 1.1582 1.0840 1.1026 
1.25 0.8204 0.8193 0.8017 0.8047 0.7653 0.7755 
1.5 0.6191 0.6174 0.6056 0.6075 0.5870 0.5894 
1.75 0.4945 0.4924 0.4837 0.4849 0.4679 0.4723 
2.0 0.4112 0.4087 0.4017 0.4026 0.3898 0.3931 
2.25 0.3515 0.3491 0.3432 0.3439 0.3338 0.3364 
2.5 0.3082 0.3048 0.2997 0.3003 0.2919 0.2941 
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Table 5. The lowest natural frequency parameters 
2

2

2

D
bρω
π

 of moderately thick SCSF 

plates 
h b  

0.001 0.1 0.2 a b  
Liew et al. 
(1993) Present Liew et al. 

(1993) Present Liew et al. 
(1993) Present 

0.4 6.4520 6.4517 5.7941 5.7628 4.6987 4.7865 
0.6 3.0203 3.0202 2.8474 2.8789 2.5032 2.5786 
0.8 1.8302 1.8301 1.7548 1.7675 1.5994 0.6354 
1.0 1.2853 1.2854 1.2411 1.2477 1.1512 1.1717 
1.25 0.9416 0.9415 0.9126 0.9163 0.8559 0.8680 
1.5 0.7577 0.7575 0.7358 0.7383 0.6944 0.7028 
1.75 0.6480 0.6480 0.6305 0.6324 0.5977 0.6041 
2.0 0.5779 0.5779 0.5632 0.5647 0.5356 0.5409 
2.25 0.5302 0.5302 0.5175 0.5189 0.4937 0.4983 
2.5 0.4965 0.4965 0.4853 0.4865 0.4641 0.4682 
 
Table 6. The lowest natural frequency parameters 

2

2

2

D
bρω
π

 of moderately thick SFSF 

plates 
h b  

0.001 0.1 0.2 a b  
Liew et al. 
(1993) Present Liew et al. 

(1993) Present Liew et al. 
(1993) Present 

0.4 6.1807 6.1803 5.5840 5.6902 4.5595 4.7362 
0.6 2.7342 2.7337 2.6011 2.6272 2.3178 2.3823 
0.8 1.5318 1.5309 1.4860 1.4949 1.3817 1.4083 
1.0 0.9768 0.9758 0.9565 0.9603 0.9102 0.9226 
1.25 0.6235 0.6219 0.6136 0.6152 0.5934 0.5989 
1.5 0.4330 0.4304 0.4262 0.4269 0.4162 0.4189 
1.75 0.3185 0.3154 0.3130 0.3135 0.3075 0.3090 
2.0 0.2437 0.2410 0.2395 0.2398 0.2362 0.2372 
2.25 0.1945 0.1901 0.1892 0.1893 0.1871 0.1877 
2.5 0.1596 0.1600 0.1532 0.1533 0.1518 0.1521 
 
 
6. Conclusions 
 
In this paper the new symplectic method is developed for free vibration analysis of 
moderately thick rectangular plates. Exact frequency equations of the plates with two 
opposite edges simply supported are derived analytically. Unlike the traditional 
semi-inverse approaches in classical vibration analysis, where trial functions are 
pre-selected inevitably, the present symplectic procedure is completely rational and 
rigorous without any trial functions. The distinct advantage provides the approach an 
excellent applicability to the vibration problems of moderately thick rectangular plates, 
as described in the present work, thus it exhibits a breakthrough in solving the 
problems exactly. The present analysis has provided a significant extension of the 
symplectic approach while more studies interest the researchers will be explored in 
future such as free and forced vibrations for plates based on various higher-order 
theories with any other combinations of supported conditions. 
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