International Journal of Engineering and Applied Sciences (IJEAS)
\ol.1, Issue 3(2009)13-28

ON NEW SYMPLECTIC APPROACH FOR EXACT FREE VIBRATION
SOLUTIONS OF MODERATELY THICK RECTANGULAR PLATESWITH
TWO OPPOSITE EDGES SIMPLY SUPPORTED

R.LiandY. Zhong
School of Civil and Hydraulic Engineering, Dalian University of Technology, Dalian 116024,
Liaoning Province, PR China

Accepted Date: 12 June 2009

Abstract

The purpose of this paper is to report the effective application of a new symplectic approach for exact
free vibration solutions of moderately thick rectangular plates. By way of a simple but rigorous
derivation, the governing differential equations for free vibration of the plates are transferred into
Hamilton canonical equations. The whole state variables are then separated. Using the method of
eigenfunction expansion in the symplectic geometry, the free vibration analysis of moderately thick
rectangular plates with two opposite edges simply supported is performed and exact vibration solutions
are obtained. The method eliminates the need to pre-determine any trial functions hence more
reasonable than other available methods. Comprehensive numerical results are presented to validate
the approach proposed here by comparison with those established in the open literature.
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1. Introduction

The moderately thick rectangular plates are commonly used components encountered
in various engineering structures and research on their vibration is significant for its
practical importance. However, most previous investigations were focused on the
vibration of thin plates, e.g. [1,2], while research on the problem of moderately thick
rectangular plates was fewer on account of its complexity. A comprehensive survey of
previous studies on the vibration of thick plates has been made by Liew et al. [3],
which is helpful in locating relevant existing literature quickly. The conventional
exact solutions for free vibration of moderately thick rectangular plates are based on
the semi-inverse method with trial mode shape functions [4], which, however, do not
always exist except in some specia cases of support conditions such as fully simply
supported plates. For the plates with other combinations of boundary conditions, some
numerical and approximate methods have been widely employed by scientists and
researchers in their valuable work.

Representative approximate methods include the finite element method [5-8],
finite difference method [9-11], Rayleigh-Ritz method [12-14], Gaerkin method
[15,16], finite strip method [17-20], spline strip method [21], collocation method [22],
differential quadrature (DQ) method [23] and discrete singular convolution (DSC)
method [24].
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As mentioned above, the applications of various approximate methods for free
vibration of moderately thick plates are due to the unavailability of exact analytical
solutions up to the present.

A new symplectic methodology developed for the theory of elasticity has shown
considerable promise [25-27]. This systematic approach has been successfully applied
to derive exact solutions to the problem of thin or thick plate bending [28-33]. The
most powerful advantage of the approach liesin its rational and exactness in solution
without any pre-selection of trial functions, which, however, can scarcely be avoided
in the traditional semi-inverse approaches.

The solution of the dynamical problem for plates has been explored in the
symplectic space. Bao and Deng [34] made an investigation of free vibration for
rectangular thin plates in Hamilton systems, which presents an interesting endeavor in
the problem. Recently, Lim et al. [35] developed the symplectic elasticity approach
based on the conservative energy principle and analyzed the examples for Lévy-type
thin plates. Xing and Liu [36] employed the same solution method to solve
Hamiltonian dua form of eigenvalue problem for transverse free vibrations of thin
plates and performed the formulation of the natural mode in closed form for selected
cases. As for vibration analysis of moderately thick plates, there was also an attempt
made by Zou [37] for Reissner plates ssimply supported at one pair of paralel edges,
but the trial mode functions were still predetermined which differs from the rational
symplectic approach.

In the present paper, a new symplectic approach is proposed to derive the exact
free vibration solutions of moderately thick rectangular plates based on Reissner plate
theory [38-40] in which we neglect the transverse contraction e, for convenience
[41]. Exact free vibration analysis of the plates with two opposite edges ssmply
supported and the others arbitrarily supported is analyticaly performed by first
transferring the basic vibration equations into Hamilton canonical equations in a
simple but efficient manner before separation of variables. By eigenfunction
expansion in the symplectic geometry, the exact solutions of free vibration are
obtained accordingly.

The solution procedure presented here goes beyond the usua limitations of the
classical semi-inverse method and extends the scope of the analytical solutions for
plate vibration problems. Numerical results are presented for an easy comparison with
those from available literature to verify the accuracy and validity of the formulations
derived.

2. Hamilton canonical equationsfor freevibration of moderately thick
rectangular plate

The coordinate system of a moderately thick rectangular plate under consideration is

illustrated in Fig. 1, where osxza and ozyeb. Thedirections of the vectors, taken as
positive, are indicated.
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Fig. 1. Coordinates, displacements, load and stress resultants of a moderately thick
rectangular plate

Based on the classical Reissner plate theory [38-40], the equations of motion for
free vibration of a moderately thick rectangular plate expressed in the frequency
domain are
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where r is the area density, w is the natural frequency, w is the transverse
displacement, m,, m,, M,, @ and o, arethe bending moments, torsional moment
and shear forces, respectively.

The internal forces of the plate can be presented as
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where b isthe flexural rigidity, c isthe shear stiffness, y, and y, arethe angles

of rotation, n is the Poisson's ratio. There exist some mathematical relations:

c=—3E" - B _\where e isthe modulus of easticity and n is the thickness
12(1+n) 12(1-n”)

of the plate. From Eqg. (1b) and Egs. (2a-c), we have
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Summation of Egs. (2a) and (2b) gives
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From Egs. (7), (8) and (9), we have
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Similarly, using Eq. (5), we obtain
e‘ﬂM 1 n‘ﬂYu
- pé™ _1-nfY
V= Pegy 2wy

Substituting Egs. (10) and (11) into Eq. (1a) yields
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or

From Egs. (3ab), (10) and (11),
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(12)

(13)

(14)

(15)

After differentiations of both sides of Eq. (14) with respect to x, Eq. (15) with respect

to y,weget
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Summation of Egs. (16) and (17), using Eq. (7), yields
c(Nw- M) =-DR*m (18)
Using Eq. (13), we arrive at the expression
C(NZW— M):—I'WZ\N (19)
After differentiations of both sides of Eq. (14) with respectto vy, Eg. (15) with
respect to x, we get
W _ Ty, 0_ €M 1-nTYd
o s Py 2wl (20)
aw _fy,0_ érM  1-nfYu
“Goy ws Doy 2 ped (21)
Subtraction of Eq. (20) and Eq. (21), using Eq. (9), yields
Ry =— 2y (22)

By virtue of the above derivation, all physical quantities of moderately thick plates
can be represented by three functions: m, w and v.

For the angles of rotation, Egs. (14) and (15) give
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For the bending moments and torsional moment, from Egs. (2a-c), (23) and (24), we
obtain
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It can be seen that the problem of bending of moderately thick rectangular plates
reduces to solving the following equations:

N*M = 5 w
c(RAw- M) =-rwiw (28a,b,c)
. 2C
N D(1-n)
from which the problem can be led to Hamiltonian system.
Let
v _
‘ITy =q (29)
From Eq. (28c), observing that é?n) =%? where n isthethickness of the plate, we
obtain
fg _10 172y
EYRI AR~ (30)
Let
w _
5= (31)
™M _rw?
ﬂ—y—Tb (32

Egs. (28a,b) can be represent as

Ty IW vy, (33)
Ty Ix C

B DTV w (34)
v rw® T

Egs. (29), (30), (31), (32), (33) and (34) can be expressed in the matrix form as

iz _
Ty =He (35)

Where
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Itisobviousthat H™=sH3,inwhich 3= eO '83 is the symplectic metric matrix and 1,
3 u

IS 3 3 unit matrix. Therefore H |saHamHtonian operator matrix and Eq. (35) isthe
Hamiltonian dual equation for moderately thick rectangular plates.

3. Symplectic solution methodology for freevibration of plateswith two
opposite edges ssmply supported

Applying the method of separation of variablesto z yields
Z=X(x)Y(y) (36)

where x(x) =[Mx),w(x),Y (x,b(x),a(x.ax)] . Substituting Eq. (36) into Eq. (35) gives

O e y), HX (x) = mX () (37a,b)

where m is the eigenvalue and x(x is the corresponding eigenvector. Eq. (37b)
gives an eigenvalue problem. Its characteristic equation is

m 0 0 k 0 0
0 m 0 1 0

0 0 -m 0 0 1

2
'? 1 0 -m 0 0}=0 (38)
1 -1%-kd 0 0 -m O

0 0 % 12 0 0 -m

2
where k=", 4=2.
D c

Determinantal expansion yields the eigenvalue equation

{(I2+nf)2+kgi(lz+n12)—1f}a?2+m? LO; (39)

Accordingly, the eigenvalues of the characteristic equation can be obtained.

(12+nt) +kgi(12+n?)-10=0 gives
I, =%aj, |,,=%a, (40)

12 - 34 -

Where
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alz\/%/ (4+kd2)+%+rr?, azz\/%l (a+kd?)- % n?
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(41)

When mzz%o, 12+n7- V=0 gives 1 =0 (double roots); but in this way we get

inconsistent equations via Eqg. (37b) thus indicating invalidity of the case. When

10
e,

where

I2+mz—:rl1—?=0 gives

I 34 — 135,

10
a, = /F- nt

Thus the general solutions are represented in the following form:

M = A cos(a,x) + B sin(a,x
W = A, cos(a,x) + B, sin(a,x
Y = Assin(a,x) + B, cos(a,x
b = A, cos(a,x) + B, sin(a,x
a = Acos(a,x) +Bysin(a,x

q = A sin(a,x) + B, cos(a,x

+C, ch(a,x) + D, sh(a,x) + E ch(a,x) + F, sh(a,x)
+C,ch(a,x) + D, sh(a,x) + E, ch(a,x) + F,sh(a;x)
+C,sh(a,x) + D,ch(a,x) + E;sh(a,x) + Fych(a,x)
+C, ch(a,x)+ D, sh(a,x) +E, ch(a,x) + F,sh(a,x)
+Cych(a,x) + Dy sh(a,x) + E;ch(a,x) + F;sh(a,x)
+Cgsh(a,x) + Dy ch(a,x) + E;sh(a,x) + F, ch(a,x)

—_ = X
—_

e
e

a,X

(42)

(43)

(44)

in which the constants are not all independent. Substituting Eq. (44) back into Eq.
(37b) yields the relations between these constants as

where Rr=

1

4

28 \k

The boundary conditions of a plate with two opposite edges simply supported at
x=0 and x=a are

5

+d2$,

a2

s=§§d

Foy
8
O

W=0y,=0,M,=0 for x=o0 and x=a

(45)

(46)

Substituting Egs. (44) and (45) into Eq. (46) and then equating the determinant of the
coefficient matrix to zero yields the transcendental equation of eigenvalues for free

vibration of a plate ssmply supported on oppositeedgesat x=0 and x=a as

which gives the roots

a, =z

sin(a,a)sh(a,a)sh(a,a) =0

%,Or a,=+"™j or aazt%i for m=123L

a

(47)

(48)
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Substituting Eg. (48) into Egs. (41) and (43) leadsto

.2 .2 .2
)=+ [FPO s or nf=x[FPO R OF nf)=s FPO,10 (49)
8aﬂ 8aﬂ gaz h

The corresponding elgenvector of nf is

X% (x)=sin(a,x).sn(a,x)/R,0,nfIsin(a,x), n’ sin(a,x)/R, 0 (50)
where a, =% (m=123L). The corresponding eigenvector of nf? is

X® (x) = sin(a,x), in(a,x)/s, 0. nf?sin(a,x), nf? sin(a,x)/s, o (51)
The corresponding elgenvector of nf? is

X (x) = €,0, cos(a,x), 0,0, m? cos(a,x) BT (52)

The eigenvectors of nf),, nf2 and nf?, i.e. x%(x), x?(x) and x%(x), can be readily

obtained by replacing nf), n? and nf) in x%(x), x?(x) and x@(x) with -nf,
-n? and -nf respectively. According to Yao and Zhong [29], the state vectors
z,(xy and z,(x are symplectic adjoint orthogonal when they satisfy
QZ.(0"3z,(x)ax=0 . Any two eigenvectors of a Hamiltonian matrix satisfy the
symplectic adjoint orthogonality property, i.e. gx{(x)"ax")(xjax* 0(m=1231L;i=123)

while any other two eigenvectors are symplectic orthogonal to each other. From the
above property and expansion of eigenvectors, the state vector z can be expanded as

4 1) 1) 2) 2) 3) 3)
z=3 (f rf)e"*v)yx‘;) + f7<2errfz.yxg13“ +f rgZJenMngJ + 1 nwyxgzr)“ +f rf)e“*-)yx‘j) + fr(rsﬂ)enu.yxgsgﬂ ) (53)

m=1

where ¥, 1% (k=12,3) are constants to be determined by imposing the remaining
boundary conditionsat y=o0 and y=b which will result in the frequency equation.

4. Exact frequency equations

Assume that the edges x=o0 and x=a of the rectangular plate, shown in Fig. 2,
are simply supported and that the other two edges are S-S, S-C, S-F, C-C, C-F or F-F
(S denotes ssimply supported, C clamped and F free). For a fully ssimply supported
(SSSS) plate, in addition to the boundary conditions expressed in Eq. (46), the
boundary conditions at the remaining two edges are

w=o0y,=0M,=0 for y=o and y=b (54
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simply supported y
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Fig. 2. A moderately thick rectangular plate ssmply supported at x=o0,a

Combination of Egs. (53) and (54) leads to six linear simultaneous equations with
respect to unknown constants. Observing the condition for existence of nontrivial
solutions, the determinant of the coefficient matrix of the above equations must be
zero, which yields the transcendental frequency equation

1 1 p p 0 0
1 1 1 1 nf/a,, - /a,
am-n? aj-nt” aj - nf? amp- a,)(n-1  a,n)(1-n)
" oo e . 0 0 =0 (59)
ot ool o s et emnfa
et (aﬁn - nﬁ)z) gt (a,fn - rrﬁ)z) et (a,fn - rrff)z) gt (a,fn - rrff)z) ea nfd(n-1) e"Wa nfd(1-n)

where p- 2" kE ) o ka- Vavia ! . Accordingly the exact
2+kd2+d\/k(4+kd2) Jkd ++/4+kd? kd2+d\/k(4+kd2)

natural frequency parameter of vibration for SSSS plate is obtained via Eq. (55), after
simplification, as

(mzbz +n2)2

““1rq, (nPo?+7) (56)

2 4 2
where E:%b— 4,=PP  p=P mn=123L.

7 bC !

oo

The exact frequency solutions for other cases can be obtained similarly. The
boundary conditions at the remaining two edges (y=o0 and y=b) and frequency
equations for these cases are presented as follows:

SSSC:
w=o0y,=0M, =0 for y=o; w=oy,=oy, =0 for y=o (57)
1 1 p p 0

0
1 1 1 1 nd /a,, - fa,,
an-nf? an-nf? aip-nf? ap-nf? a (-1 a,nf(1-n)

P o bt s p o onf) p 0 0 =0 (58)
g gt ghnt? g b gt nf? /am gtk nf? /am
) Lem) @i gl gy eia
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SSSF:
w=0y,=0M,=0 for y=o; m,=0Q,=0m, =0 for y=b
0

p 0
1 1 1 1 nf/a, - /a,,
aj - nf” a - nf” ap - nf” aj - a,’(n-1)  a,nf)(1-n)

2efa,nf  -zetanf  2eVaf)  2eVanf) @ (aZenf) e (a2+nf?)
e (a- n?) e (an- ) & - ) e fan- ) -1 e"Fam(in)

- nf) e f) - nfdg e " nfdq 2¢"a, r 2¢Wa 1
SCSC:

W=0y ,=0y,=0 for y=0 and y=b

1 1 p p 0 0

1 1 1 1 n? /fa., -m?/a,,
e ) ) a, a,

e g ep  etp 0 0 =0

gl oot o) gorl @i /am - e nfd /am

i) etipf) @) et @iy ea

SCSF:
w=0y,=0y, =0 for y=o; m,=0Q,=0Mm, =0 for y=b
1 1 p p 0 0

1 1 1 1 nf/a, - /a,,
) nf) f? ) a a

2efa,nf  -zetanf  2eVaf)  2eVanf) @ (aZenf) e (a2+nf?)
o an- ) (o ) @ (a- o) oo (an- o) Hanflp-1) o mlien)

- nf) e prf! - nfdg e " nfdq 2¢a, r 2¢Wa 1
SFSF:

M,=0Q,=0M,=0 for y=o and y=b

A R
am - nf” ain- nf” aln- nf?? am - nj?” am’(n-1)  a,m)(-n)
-n) ) -nf’q g 22,0 28,0

2efa,nf  -zetanf  2etanf  2eVanf) @ (aZenf) e (a2+nf?)
ot {ain- o) € fa- ) o ain- i) o7 ain- ) anfio- ) 6t (i)
-enf) e nf! - nfdg e nfdq 2¢™a, r 2e"a 1

(59)

=0 (60)

(61)

(62)

(63)

=0(64)

(65)

=0 (66)
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It should be pointed out that the exact frequency transcendental equations for non
SSSS plates are so complicated in form that they are presented in the form of different
determinants as given above.

5. Numerical examples

In order to verify the validity of the results obtained in present study, the natural
frequencies of all cases in the present work are solved for comprehensive numerical
comparison. The Poisson’s ratio n is taken to be 0.3 throughout. For rectangular
SSSS and SCSC plates, comparisons with the results from Institute of Mechanics
(IMECH), Chinese Academy of Science [4], obtained by the semi-inverse method, are
tabulated in Tables 1-2 respectively, in which perfect agreement is observed. Tables
3-6 present the lowest natural frequency parameters for SSSC, SSSF, SCSF and SFSF
plates with different aspect ratios aw and thickness ratios hb. The results used for
comparison are obtained by Liew et a. [14] using the pb-2 Rayleigh-Ritz method.
Satisfactory accordance is observed. From all comparison studies presented in this
paper, the applicability and validity of the symplectic approach proposed and
expressions derived are demonstrated.

Table 1. The lowest three natural frequency parameters k of moderately thick SSSS
— rw?b* _p’D b
plateﬁ(k_TF, d, =\oc s b—g)
b 0.2 0.6 1 2
d IMECH IMECH IMECH IMECH
Mode (1977) Present (1977) Present (1977) Present (1977) Present
0 1 1.082 108160 1.850  1.84960 4.000  4.00000 2500  25.0000
2 1.346 134560 5.954 5095360 2500 250000 64.00  64.0000
3 1.850  1.84960 17.98  17.9776 6400  64.0000 169.0  169.000
005 1 1.028 102814 1732  1.73184 3.636  3.63636 20.00  20.0000
2 1.272 127183 5306 530624 20.00  20.0000 4571  45.7143
3 1.732 173184 14.83 148330 4571 457143 1024  102.424
010 1 0980 0979710 1.628 162817 3.333  3.33333 1667  16.6667
2 1.206 120573 4786  4.78585 16.67  16.6667 3556  35.5556
3 1.628 162817 1263 126247 3556 355556 7348  73.4783
020 1 0.895  0.895364 1454 145409 2857  2.85714 1250  12.5000
2 1.092  1.09221 4.001  4.00108 1250 125000 24.62  24.6154
3 1454 145409 9.728  9.72814 2462 246154 4694  46.9444
040 1 0.764  0.763842 1.198 119793 2222 222222 8333 833333
2 0919 0919126 3.013 301296 8333 833333 1524 152381
3 1.198 119793 6.668  6.66825 1524 152381 27.26  27.2581
060 1 0.666  0.666010 1.019 101850 1.818  1.81818 6.250  6.25000
2 0793 0793396 2416 241623 6250 625000 11.03  11.0345
3 1.019 101850 5073 507269 11.03  11.0345 1921  19.2045
080 1 0590 0590393 0.886  0.885824 1.538  1.53846 5.000  5.00000
2 0.698  0.697925 2017 201680 5000 5.00000 8.649  8.64865
3 0.886  0.885824 4.093  4.09326 8.649  8.64865 14.83  14.8246
1.00 1 0530 0530196 0.784  0.783729 1.333  1.33333 4167  4.16667
2 0623  0.622963 1.731 173070 4.167 416667 7.111  7.11111
3 0784  0.783729 3431 343084 7111 711111 1207  12.0714
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Table 2. The lowest natural frequency parameters k of moderately thick SCSC plates

d, b 0.2 04 0.6 0.8 1.0 15 2.0
0 IMECH(1977) 5.240 5.562 6.162 7.132 8.604 15.19 30.76
Present 524005 556251 6.16210 7.13233 8.60445 15.6861 30.7651
0.01 IMECH(1977) 4.987 5.287 5.846 6.753 8.131 14.74 28.62
' Present 498720 528707 584618 6.75305 8.13065 14.7379 28.6244
0.05 IMECH(1977) 4.179 4.415 4.861 5.593 6.710 12.02 22.70
' Present 417854 441512 486143 559286 6.70985 12.0169 22.7048
0.10 IMECH(1977) 3.472 3.662 4.025 4.626 5.549 9.879 18.23
' Present 347220 3.66195 4.02492 4.62644 554927 9.87950 18.2344
0.20 IMECH(1977) 2.593 2.773 3.007 3.466 4172 7.390 13.21
' Present 259302 273318 3.00685 3.46635 4.17199 7.38997 13.2088
0.40 IMECH(1977) 1.721 1.819 2.013 2.341 2.839 4.991 8.585
' Present 172060 1.81852 2.01326 2.34143 2.83890 499132 8.58540
0.60 IMECH(1977) 1.288 1.366 1522 1.783 2.173 3.792 6.376
' Present 128769 1.36595 1.52212 1.78325 217255 3.79179 6.37605
0.80 IMECH(1977) 1.029 1.096 1.228 1.446 1.767 3.064 5.075
' Present 102913 1.09551 1.22762 144619 176706 3.06362 5.07494
1.00 IMECH(1977) 0.857 0.915 1.031 1.219 1.492 2.572 4.216
' Present 0.857241 0.91544 1.03064 1.21919 149238 257246 4.21612

Table 3. The lowest natural frequency parameters |"*" 2 of moderately thick SSSC

D p?
plates
h/b

ab  0.001 0.1 0.2

Liew et al. Liew et al. Liew et a.

(1993) Present (1993) Present (1993) Present
0.4  7.4408 7.4408 6.5903 6.7248 5.2319 5.4250
06  4.0543 4.0544 3.7546 3.8021 3.1829 3.2778
08 29074 2.9074 2.7340 2.7592 2.3783 2.4357
1.0  2.3958 2.3959 2.2684 2.2854 1.9964 2.0374
1.25  2.0805 2.0805 1.9785 1.9910 1.7538 1.7851
1.5  1.9150 1.9151 1.8256 1.8360 1.6247 1.6510
1.75  1.8177 1.8179 1.7356 1.7448 1.5485 1.5719
20  1.7561 1.7561 1.6782 1.6867 1.4998 1.5214
225 17143 1.7143 1.6395 1.6475 1.4669 1.4874
25  1.6847 1.6847 1.6121 1.6197 1.4436 1.4632
Table 4. The lowest natural frequency parameters %;L of moderately thick SSSF

plates
h/b

ab  0.001 0.1 0.2

Liew et al. Liew et al. Liew et a.

(1993) Present (1993) Present (1993) Present
04 64121 6.4119 5.7705 5.7628 4.6886 47865
0.6 2.9585 2.9580 2.8006 2.8312 2.4760 2.5160
08  1.7480 1.7472 1.6860 1.6978 1.5521 1.5866
1.0  1.1847 1.1838 1.1523 1.1582 1.0840 1.1026
1.25  0.8204 0.8193 0.8017 0.8047 0.7653 0.7755
1.5 06191 0.6174 0.6056 0.6075 0.5870 0.5894
1.75  0.4945 0.4924 0.4837 0.4849 0.4679 0.4723
20 04112 0.4087 0.4017 0.4026 0.3898 0.3931
225 0.3515 0.3491 0.3432 0.3439 0.3338 0.3364
2.5 0.3082 0.3048 0.2997 0.3003 0.2919 0.2941
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Table 5. The lowest natural frequency parameters @ r% of moderately thick SCSF

plates
h/b

a/b 0.001 0.1 0.2

Liew et al. Liew et al. Liew et al.

(1993) Present (1993) Present (1993) Present
04 6.4520 6.4517 5.7941 5.7628 4.6987 4.7865
0.6 3.0203 3.0202 2.8474 2.8789 2.5032 2.5786
0.8 1.8302 1.8301 1.7548 1.7675 1.5994 0.63%4
10 1.2853 1.2854 1.2411 1.2477 1.1512 11717
125 0.9416 0.9415 0.9126 0.9163 0.8559 0.8680
15 0.7577 0.7575 0.7358 0.7383 0.6944 0.7028
175 0.6480 0.6480 0.6305 0.6324 0.5977 0.6041
2.0 0.5779 0.5779 0.5632 0.5647 0.5356 0.5409
225 0.5302 0.5302 0.5175 0.5189 0.4937 0.4983
2.5 0.4965 0.4965 0.4853 0.4865 0.4641 0.4682

Table 6. The lowest natural frequency parameters .["*" 2 of moderately thick SFSF

D p?
plates
h/b

a/b 0.001 0.1 0.2

Liew et al. Liew et al. Liew et a.

(1993) Present (1993) Present (1993) Present
04 6.1807 6.1803 5.5840 5.6902 45595 4.7362
0.6 2.7342 2.7337 2.6011 2.6272 2.3178 2.3823
0.8 1.5318 1.5309 1.4860 1.4949 1.3817 1.4083
1.0 0.9768 0.9758 0.9565 0.9603 0.9102 0.9226
125 0.6235 0.6219 0.6136 0.6152 0.5934 0.5989
15 0.4330 0.4304 0.4262 0.4269 0.4162 0.4189
175 0.3185 0.3154 0.3130 0.3135 0.3075 0.3090
2.0 0.2437 0.2410 0.2395 0.2398 0.2362 0.2372
225 0.1945 0.1901 0.1892 0.1893 0.1871 0.1877
25 0.1596 0.1600 0.1532 0.1533 0.1518 0.1521

6. Conclusions

In this paper the new symplectic method is developed for free vibration analysis of
moderately thick rectangular plates. Exact frequency equations of the plates with two
opposite edges simply supported are derived anaytically. Unlike the traditiond
semi-inverse approaches in classical vibration analysis, where trial functions are
pre-selected inevitably, the present symplectic procedure is completely rational and
rigorous without any trial functions. The distinct advantage provides the approach an
excellent applicability to the vibration problems of moderately thick rectangular plates,
as described in the present work, thus it exhibits a breakthrough in solving the
problems exactly. The present analysis has provided a significant extension of the
symplectic approach while more studies interest the researchers will be explored in
future such as free and forced vibrations for plates based on various higher-order
theories with any other combinations of supported conditions.
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