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Abstract 
 
A VEGA (Vector Evaluated Genetic Algorithm) based computer-aided method to derive a reduced order (rth-order) 
approximant for given (stable) multi-input multi-output (MIMO) linear continuous-time system is presented. In this 
method, stability and the first r time moments/Markov parameters are preserved as well as the errors between a set 
of subsequent time moments/Markov parameters of the system and those of the model are minimized. The method is 
useful as it guarantees improvement as well as alleviates the problems of deciding the values of number of error 
functions to be minimized and values of weights on the errors which were left unresolved in previous methods.  The 
search area for GA is very wide and it usually converges to a point near global optima. 
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1. Introduction 

Approximation of a given high-order (nth-order) linear system by a low-order (rth-order) one is 
desirable and sometimes necessary in the simulation and design of control systems. 
Consequently, a large number of time-domain and frequency-domain systems simplification 
techniques have been developed to suit different requirement. Reducing the order of 
multivariable systems in state space has been studied by several authors. Some of the reported 
methods require the computation of eigenvalues and some others use certain optimization 
procedures. However, this method is based on a large number of transformation while some 
others can be evaluated only through numerical procedures. A large number of time-domain and 
frequency-domain system simplification techniques have been developed to suit different 
requirement. Amongst them, a frequency domain method is Padé approximation in which 2r 
terms of the power series expansion (time moments) of the high-order (nth-order) transfer 
function )(sGn  are fully retained in low-order (rth-order) model )(sGr . The Padé approximation 
does not guarantee the stability of the reduced-order model. To overcome the problem of 
stability, several stable reduction methods such as Routh approximation methods [34] have been 
proposed. Thus, the basic problem is to match or near match a few terms in excess of r terms 
while preserving stability [2,3]. Other closely related problems have also received attention [1,6-
12,11-17,24-34,36,37]. 

 Recently, geometric programming based (computer-oriented) methods [29,30] for the solution 
of the Routh-Padé approximation problem are presented. In these methods  [40], Geometric 
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programming based computer-aided methods have been reported recently first r time 
moments/Markov parameters are fully retained and the sum of the weighted squares of errors 
between a set of subsequent time moments/Markov parameters of the system and those of the 
model are minimized while preserving stability. These methods [29,30] have the drawback that 
the question of finding some means  (free of hit and trial) of deciding the values  of the number 
of time moments/Markov parameters (say m) to be matched or near-matched and the  weights to  
correspond  to  assured   substantial   improvement   in system  approximation as well  as  the 
question of establishing  the  existence  of  such  values are left unresolved. 
[36] Proposes a method to construct a state-shared model for multiple-input multiple-output 
(MIMO) systems. A state-shared model is defined as a linear time invariant state-space structure 
that is driven by measurement signals-the plant outputs and the manipulated variables, but shared 
by different multiple input/output models. The genesis of the state-shared model is based on a 
particular reduced non-minimal realization. Any such realization necessarily fulfills the 
requirement that the output of the state-shared model is an asymptotically correct estimate of the 
output of the plant, if the process model is selected appropriately. The approach is demonstrated 
on a nonlinear MIMO system-a physiological model of calcium fluxes that controls muscle 
contraction in human cardiac myocytes 

 In this note, a nonlinear programming based (computer-oriented) method for the solution of 
Routh-Padé approximation problem is presented. The method is essentially a multi-objective 
optimization procedure in which not only stability is preserved and the first r terms of the power 
series expansion of )(sGn  are fully retained but also the errors between a set of subsequent time 
moments/Markov parameters of the system and those of the model are minimized. This alleviates 
the problem of finding m and weights.  The applicability of proposed method is shown by means 
of numerical example. The search area for GA is very wide and it usually converges to a point 
near global optima [11]. Though  Pareto-optimality, which is a key step in the present technique, 
is well known to the best of author’s knowledge, this is the first instance of explicitly showing its 
usefulness for obtaining reduced-order models for MIMO systems.    

This paper is organized as follows. In Sec. 2 we briefly review the results of [29,30]. The 
improvement is presented in Sec. 3 and numerical example is given in Sec. 4. Finally paper is 
concluded in Sec. 5. 

2. Brief Review of Existing Results 

Consider a single-input-single-output system described by the transfer function 
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The problem is to determine its stable reduced-order (rth-order) approximant 
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 A. Formulation of the objective function 

The formulation of the multiobjective optimization problem will be explained for r being even. 
Formulation for r being odd can be done in a similar way. It is easy to verify that for r even, the 
following equations hold true:  
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We seek a stable model for which r equations given by 
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There exist an infinite number of stable models for which (10) is satisfied. This arbitrariness in 
stability preservation is exploited by minimizing the sum of the weighted squares of errors. 
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  To find the improved model, VEGA [11] is used to generate Pareto-optimal solutions by 
minimizing objective functions  M

ir
t

ir ZZ
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,  given by  
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         Using (8) subject to (9), (11) can be expressed as 
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B. Formulation of the stability constraints                   

Now following [28], the denominator polynomial of (4) can be expressed as  
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which is constructed by taking the coefficients of the first two rows of the Routh array with the 
elements of its first column given [28] by 
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 (15) is matched with the denominator polynomial of the model in (4), namely, with  
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and the necessary and the sufficient condition that all the roots of (16) be strictly in the left half 
plane is [28] 
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                           $ , $ , ..., $d d d r1 20 0 0> > >                      (17a) 
which, of course, implies  

                                         $ , $ , ..., $b b br1 20 0 0> > > .                     (17b) 

Note that, for a given r, $bi , i r= 1,..., , can easily be expressed in terms of $d i , i r= 1,..., , by 
constructing an inverse Routh array (i.e., with the element of its first column given by (14)) in a 
manner analogous to [28].Thus, pertaining to r=4, (15) becomes  

$ $b d1 1= , $ $ $ $b d d d2 3 3 4= + + , $ $ ( $ $ )b d d d3 1 3 4= + , $ $ $b d d4 2 4= .              (18)                  

         3.  Application of VEGA   

         Now, the problem is to minimize (12), satisfying (17a). The vector evaluated genetic 
algorithm (VEGA) [11] is proposed herein for solving the above stated problem. VEGA is 
the simplest possible multi-objective GA [11] and is straightforward extension of a single-
objective extension of multi-objective optimization. Since a number of objectives (say Q) 
have to be handled, GA population is divided at every generation into Q equal 
subpopulations randomly. Each subpopulation is assigned a fitness value based on different 
objective function. 

     After each solution is assigned a fitness value, the selection operator restricted among 
solutions of each subpopulation, is applied until the complete subpopulation is filled [11]. 
The following VEGA procedure is used [11]. 

        Step 1: Set, for population size N, an objective function counter i = 1 and define  QNx /=  
        Step 2: For all solution, xijxij ∗=∗−+=   to)1(1 , assign fitness as:   )ˆ()ˆ( )()( j

i
j zZ bb = . 

        Step 3: Perform proportionate selection on all x  solutions to create a mating pool  iP . 
        Step 4: If Qi = , go to Step 5. Otherwise, increment i by one and go to Step 2. 
           Step 5: Combine all mating pools together: i

Q
i PP 1== U . Perform crossover and mutation on 

P to create a new population [11]. 
In this VEGA, linear crossover operator is used. It creates three solutions, )ˆˆ(5.0 ),2(),1( t
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ib at generation 
t, with the best two solutions being chosen as offspring. For performing mutation, random 
mutation is used. Instead of creating a solution from the entire search space, a solution in the 
vicinity of parent solution with a uniform probability distribution is chosen: 

ii
t

i
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i rby ∆−+=+ )5.0(ˆ ),1()1,1(  where ir  is a random number in [0,1]. 

 The Routh-Padé approximants by Pareto-Optimality and V.E.G.A. can be extended to reduce a 
class of (common denominator type) multi-input multi-output (M.I.M.O.) system. In this case the 
method is successively applied to each of the scalar transfer functions  )(sGij   of transfer matrix  

lxmsGsG )]([)( =   to form reduced-order matrix. The steps to be followed are: 
Step 1:  Compute the time-moments and Markov-parameters of each scalar transfer 

function . )(sGij  
Step 2:  Reduce the common denominator of MIMO system by the proposed method 

for which the objective function is formulated pertaining to individual )(ˆ sGij  . 
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Step 3:  Compute numerator coefficients of each individual )(ˆ sGij   by retaining r   
terms of each scalar transfer function. 
 

4. Example  

 Consider the MIMO system reported by Shamash [37], 
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Second-order model be represented by:  
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Fully retaining of first Time-moment and first Markov-parameter of each )(sGij , we 
obtain: 

(19) 

(20) 
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Following VEGA [11] parameters has been used to obtain the optimal values of 21 b̂ and b̂ .  
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Table 1. The population after crossover and mutation operators 

 
Applying Pareto-Optimality and V.E.G.A., algorithm converges to the following optimal 
solution: 
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           The reduced -order model derived by the technique of [25,27] is:  
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Sl. No. Initial Population 

 

b1                      b2 

Population  after 

Selection Operator 

 

b1                      b2 

Population after 
Crossover & Mutation 
Operator 
      

b1                       b2 

Assigned 

Fitness Value 

1. 8.293            7.2343 8.3231             7.3323 8.291056   7.293356 0.000000 

2.    8.2893        7.3123 8.2893             7.3123 8.240355   7.263356 0.000010 

3. 8.3231         7.3323 8.3231             7.3323 8.319006   7.271307 0.000043 

4.    8.233          7.5668 8.2334             7.3564     8.184456   7.307456 0.015129 

5. 8.2334         7.3564 8.2334             7.3564 8.185506   7.308506 0.015129 

6. 8.2313       7.3543 8.2313             7.3543 8.182356   7.305356 0.015129 

(23) 

(25) 

(26) 
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The input responses of the high order system (19) and various reduced-order models 
(24), (25) and (26) to unit step and impulse applied to the two inputs are compared. Step and 
impulse responses of (24) show an improvement over (25) and (26). 

 
5. Conclusions 

In this note, the problem of finding Routh-Padé approximants has been viewed as a multi-
objective optimization problem for Multi-input multi-output systems. It is shown that using 
VEGA [ ], the denominator of the model can be chosen so as to minimize errors between the 
(r+1)th, (r+2)th,…,2rth time moments and Markov parameters of the model and the 
corresponding time moments and Markov-parameters of the system while preserving stability. 
Having obtained the denominator in this manner, the numerator can be determined by retaining 
first r time-moments/Markov-parameters of the system. VEGA [11] is used to generate multiple 
Pareto-optimal solutions and the final solution is chosen based on best fitness value. This 
eliminates the use of weights (w) in the objective functions paving way for greater degree of 
freedom in optimization. The present approach, therefore, leads to an improved approximant. 
Further, approximant is obtained by matching or near-matching of 2r time moments/Markov 
parameters i.e. within the ambit of standard Padé approximation. 
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