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Abstract 

This work presents geometrically non-linear static analysis of a cantilever beam subjected to a non-follower 
transversal point load at the free end of the beam. The material of the beam is assumed as isotropic and 
hyperelastic. In this study, finite element model of the beam is constructed by using total Lagrangian finite 
element model of two dimensional continua for a twelve-node quadratic element. The considered highly non-
linear problem is solved by using incremental displacement-based finite element method in connection with 
Newton-Raphson iteration method. In the study, the effect of the large deflections and rotations on the 
displacements and the normal stress and the shear stress distributions through the thickness of the beam is 
investigated in detail. With the variation of the ratio of Lenght/height, the results of the total Lagrangian finite 
element model of two dimensional continua for a twelve-node quadratic element are compared with the results 
of  SAP2000 packet program.  Also, a few of the obtained results are compared with the previously published 
results. Numerical results indicate that with decrease the of ratio of lenght/height, using the total Lagrangian 
finite element model of two dimensional continua plays very important role in the static responses of the beam in 
geometrically non-linear static analysis. 
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1. Introduction 

In recent years, with the development of technology, increasing demands for optimum or 
minimum-weight designed structural components makes it necessary to use non-linear theory 
of beams. Especially, developments in aerospace engineering, robotics and manufacturing 
make it inevitable to excessively use non-linear models that must be solved numerically. 
Because, a closed-form solution is not possible and hence more general numerical processes 
play an important role. Some of these studies concerning closed-form solutions are given in 
the following paragraphs: Chucheepsakul et al. [1, 2] studied the large deflections of beams 
under moment gradients whose deformed arc lengths are not fixed by using the elliptic 
integral method, the shooting-optimization method and the finite element method. Wang et al. 
[3] considered the large deflection problem of variable deformed arc-length beams 
considering one end of the beam being hinged and the beam being allowed to slide freely on a 
frictionless support located at a specified distance away from this hinged end under a point 
load. A similar problem was solved by He et al. [4] in which only the frictionless support in 
the previous study was assumed as a friction support. Some of the numerical studies are given 
in the following paragraphs: Kapania and Li [5] formulated and implemented exact curved 
beam elements incorporating finite strains and finite rotations. Pulngern et al. [6]  investigated 
large static deflection due to uniformly distributed self weight and the critical or maximum 
applied uniform loading that a simply supported beam with variable-arc-length can resist by 
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using both finite-element method discretization of the span length based on variational 
formulation and shooting method based on an elastic theory formulation. Al Sadder and Al 
Rawi [7] developed a quasi-linearization finite differences scheme for large deflection 
analysis of prismatic and non-prismatic slender cantilever beams subjected to various types of 
continuous and discontinuous external variable distributed and concentrated loads in 
horizontal and vertical global directions. Li and Zhou [8] investigated the post-buckling 
behavior of a hinged-fixed beam under uniformly distributed follower forces by deriving an 
exact mathematical model and using the shooting method for numerical results. Al Sadder et 
al. [9] developed an improved finite element formulation with a scheme of solution for the 
large deflection analysis of inextensible prismatic and nonprismatic slender beams. The 
considered problem was investigated by Reddy [10] by using an eight-node quadratic 
element. Banerjee et. al [11] proposed non-linear shooting and Adomian decomposition 
methods in order to investigate the large deflection of a cantilever beam under arbitrary 
loading. Shvartsman [12] studied the large deflection problem of non-uniform cantilever 
beams under a tip-concentrated and intermediate follower forces by reducing the governing 
non-linear boundary-value problem to an initial-value problem by change of variables. Brojan 
at al. [13] investigated the large deflections of nonlinearly elastic cantilever beams made from 
materials obeying the generalized Ludwick constitutive law. Nallathambi at all [14] studied  a 
method to analyze for the large deflections of curved prismatic cantilever beams with uniform 
curvature subjected to a follower load at the tip.The quasi-static response and the stored and 
dissipated energies due to large deflections of a slender inextensible beam made of a linear 
viscoelastic material and subjected to a time-dependent inclined concentrated load at the free 
end are investigated by Vaz and Caire [15 ]. Akbaş [16] studied the geometrically non-linear 
static analysis of a cantilever beam under a non-follower uniformly distributed load using 
finite element model of the beam constructed by using total Lagrangian finite element model 
of two dimensional continuum for a twelve-node quadratic element. Large deflection static 
analysis of simple beams was investigated by Akbaş and Kocatürk [17]. In a recent study, 
geometrically non-linear static analysis of a simply supported beam made of hyperelastic 
material subjected to a non-follower transversal uniformly distributed load is analyzed by 
Kocatürk and Akbaş [18] using finite element model of the beam constructed by using total 
Lagrangian finite element model of two dimensional continuum for a twelve-node quadratic 
element.  
 
The aim of this paper is to compute the displacements of the considered cantilever beam made 
of hyperelastic material. The development of the formulations of general solution procedure 
of nonlinear problems follows the general outline of the derivation given by Zienkiewichz 
[19]. The geometrically non-linear responses of a cantilevered beam subjected to a point load 
at the free end of the beam are obtained by using total Lagrangian finite element model of a 
two-dimensional solid continua. The TL finite element equations of two dimensional continua 
for a twelve-node quadratic element are used. These TL twelve-node quadratic element  
formulations were given Kocatürk and Akbaş [18]. 
 
2. Theory and Formulations 
 
A cantilever beam made of isotropic, hyperelastic material, with material or Lagrangian 

coordinate system  0 0 0
1 2 3, ,x x x  and with spatial or Euler coordinate system 

 2 2 2
1 2 3, ,x x x having the origin O is shown in Fig. 1. One of the supports of the beam is 

assumed to be fixed and the other free. The beam is subjected to a non-follower transversal 
point load in the transverse direction as seen from Fig. 1.  
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Figure 1. Cantilever beam subjected to a point load. 

 
While the derivation of the governing equations for most problems is not unduly difficult, 
their solution by exact methods of analysis is a formidable task. In such cases, numerical 
methods of analysis provide an alternative means of finding solutions. Numerical methods 
typically transform differential equations to algebraic equations that are to be solved using 
computers. The considered problem is a nonlinear one. Even linear problems may not admit 
exact solutions due to geometric and material complexities, but it is relatively easy to obtain 
approximate solutions using numerical methods (Reddy [10]). There are some solutions for 
the special cases of boundary and loading conditions for large displacements of beams in the 
framework of Euler-Bernoulli beam theory. However, as far as the authors know, exact 
solution of a nonlinear problem in the framework of two or three-dimensional continua 
approach is not possible. For the analysis of the cantilever beam, the beam problem is 
considered as a two-dimensional continua problem: The total Lagrangian Finite element 
model of two dimensional continua based on the total Lagrangian formulation for a twelve-
node quadratic element is used in the study. For the solution of the total Lagrangian 
formulations of TL two dimensional continua problem, small-step incremental approaches 
from known solutions are used. As it is known, it is possible to obtain solutions in a single 
increment of the external force only in the case of mild nonlinearity (and no path 
dependence). 
 
In this study, small-step incremental approaches from known solutions with Newton-Raphson 
iteration method are used in which the solution for 1n  th load increment and i  th  iteration is 
obtained in the following form: 
 

                                       

  1
i i i
n T nd 

-1
u K R

                                   (1)

      

Where 

K i
T

 is the stiffness matrix corresponding to a tangent direction at the 

i

th iteration, 
i
ndu

 is the solution increment vector at the 

i

th iteration and 

1n 

th load increment, 

1Ri
n

 is 
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the residual vector at the 

i

th iteration and 

1n 

th load increment. This iteration procedure is 

continued until the difference between two successive solution vectors is less than a selected 

tolerance criterion in Euclidean norm given by 
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A series of successive approximations gives 
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Fig. 2. A twelve-node quadratic plane element. 

 

Total displacement fields and incremental displacement fields are expressed in terms of nodal 

displacements as follows: 



 5

                                       

 
 

12

1 21

12

1 21

,
u

,

o o
j jj

o o
j jj

u x xu

v v x x









        
    


                                                (5) 

 

                                      

 
 

12

1 21

12

1 21

,
u

,

o o
j jj

o o
j jj

u x xu

v v x x









        
    









                                               (6) 

 

where 

 j x

 are interpolation functions for a twelve-node quadratic element and can be 

found in Kocatürk and Akbaş [18], 

ju

 and 

jv

 are the components of vectors of nodal 

displacements in the 

0
1x

 and 

0
2x

 directions respectively. The tangent stiffness matrix 

i
TK

 

and the residual vector 

1
i
nR

 which are to be used in Eq. (1) at the 

i

th iteration for the total 

Lagrangian finite element model of two dimensional continuum for an twelve-node quadratic 

element are given below: 
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The explicit expressions of 11LK , 11NLK , 12LK , 21LK , 22LK , 22NLK , 1 1
0F  and 1 2

0F are  

given in Reddy [10] and Kocatürk and Akbaş [18]. 
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where 0 0
1 1

2 2
0 0,

x x
f f  are the body forces, 0 0

1 2

2 2
0 0,

x x
t t  are the surface forces in the  0

1x  and 0
2x  

directions respectively. 
 

The considered material is hyperelastic. In this case, the constitutive relation between the 

second Piola-Kirchhoff stress tensor and the Green-Lagrange strain tensor can be assumed as 

follows: 
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where 

1
0 11S

, 

1
0 22S

, 

1
0 12S

 are the components of the second Piola-Kirchhoff stress tensor 

components in the 

1C

 configuration of the body, 

0 ijC

 are the components of the reduced 

constitutive tensor in the 

0C

 configuration of the body, 

1

 and 

2

 are coefficients of thermal 

expansion in the 

0
1x

 and 

0
2x

 directions respectively.. The components of the reduced 

constitutive tensor can be written in terms of Young modulus 

E

 and Poisson’s ratio 



 as 

follows: 
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The Green-Lagrange strain tensor’s expression in terms of displacements in the case of two- 
dimensional solid continuum is given by Reddy [10] . Numerical calculations of the integrals 
in the rigidity matrices will be calculated by using five-point Gauss rule. The strains are 
assumed as small. 
 
The true stress, namely stress in the deformed configuration is defined to be the current force 
per unit deformed area. The relation between the Cauchy stress tensor components 2

i j  and 

the second Piola-Kirchhoff stress tensor components 2
0 i jS  can be written as follows; 
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Where 0  and 2  represent the mass densities of the material in configurations 0C  and 2C  

respectively. The relation between the 0  and 2  is as follows; 
 

                                                                      0 2 2
0 J                                          (12) 

 

Where 2
0 J  is the determinant of the deformation gradient tensor 2

0F (or the Jacobian of the 

transformation) and defined as follows: 
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The following transformation rule hold between the components of the elasticity tensors in 
different configurations:  
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It is assumed in the study that the components of the reduced constitutive tensor remain 
constant during the deformation. Namely, it is assumed that 0 2   and therefore 

0 2i j i jC C . The error introduced by this assumption can be negligible if the strains are 

relatively small but the difference can be significant in large deformation problems. 
 
The total displacements of a particle in the two configurations 0C  and 2C  can be written as 

 
                                                                 2 2 0

0 i i iu x x                    (15) 
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From Eq. (32), the relation between 2
ix  and 0

ix  can be written as follows: 

 
                                                                 2 0 2

0i i ix x u                                                     (16) 

 
A material line dL before deformation deforms to the line d l (consisting of the same material 
as dL ) after deformation as follows 
 
                                                               2

0d dl F L                                                    (17) 

 
where 
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or more explicitly 
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    

      (19) 

 
The formulations given by Equations (5) to (19) are adopted from Reddy [10]. 
 
3. Solution of the system of equilibrium equations and numerical results 
 
By use of usual assembly process, the system tangent stiffness matrix given in Eq. (1) is 
obtained by using the element stiffness matrixes given above for the total Lagrangian Finite 
element model of two dimensional continuum based on the total Lagrangian formulation for a 
twelve-node quadratic element. In the numerical integrations, five-point Gauss integration 
rule is used. The material of the beam is linear elastic and isotropic. An eight-node quadratic 
element was used by Reddy [10] to solve a similar problem: It was noted by Reddy [10] that 
the stresses could not be obtained truly apart from the Gauss points. Also, it is found by us 
that the boundary conditions at the free surfaces of the beam can not be satisfied in the eight-
node quadratic element. Therefore, a twelve-node quadratic element is used in this study 
instead of eight-node quadratic element and the boundary conditions at the free surfaces are 
satisfied perfectly. Convergence analysis is performed for point load for various numbers of 
finite elements in 0

1x  and 0
2x  directions. When the number of finite elements in 0

1x  direction 

is 35m   and when the number of elements in 0
2x  direction is 8n   for the total Lagrangian 

finite element model of two dimensional continuum for an twelve-node quadratic element, the 
considered stresses and displacements converge perfectly. 
 
In order to establish the accuracy of the present formulation and the computer program 
developed by the authors, results obtained from the present study are compared with the 
available results in the literature. For this purpose, the non-linear static deflections of an 
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isotropic cantilever beam ( 1000 in. (25.40 m)L  , 3 2 2180 10 kip - in (516541 Nm )EI   ) 
under a non-follower point load P  at the free end of the beam are compared with data 
presented in Fertis [21]. The horizontal deflections of  the free end is found  4,68mu   and 
Fertis [21] found the horizontal deflections 181.67 inch  (4,61 m)u    and comparison of the 
results shows that the present results are comparatively near-by the results of Fertis [21] . 
 

 
 

Figure 3. The displaced configuration of the axis of beam for some given point loads. 
 
Fig. 3 shows the deflected shape of the axis of the beam for some given point loads and for 
L=20 cm, b=1 cm, h=1cm, 28300 /E N cm  . 
 

    
 
Figure 4. a) Loadvertical displacement (  v ,0L ) b)  Load  horizontal displacement 

(  u ,0L )  curves for geometrically linear and geometrically nonlinear cases, Lineer ( ) ; 

Nonlineer ( )   . 
 
Fig. 4  shows that increase in load causes increase in difference between the vertical and 
horizontal displacement values of the linear and the nonlinear solutions for L=20 cm, b=1 cm, 
h=1 cm and 28300 /E N cm . Increase in load is more effective in the vertical and horizontal 
displacements of the linear solution compared to the geometrically nonlinear case. This 
situation may be explained as follows: In the linear case, arm of the external forces or arm of 
the external resultant force do not change with the magnitude of the external forces, and 
therefore the displacements depend on the external forces linearly. However, in the case of 
nonlinear analysis, the arm of the external forces change with the magnitude of the external 
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force and, as the magnitude of the force increases the arm of these external forces decrease. 
However, as the forces increase the configuration of the beam become close to vertical 
direction and therefore the increase in the load does not cause a significant increase in the 
displacements after certain load level in which the configuration of the beam is close to the 
vertical direction. This situation is seen in Fig. 3 which shows the displaced configuration of 
the beam. After this load, it is expected that axial rigidity of the beam gains more importance 
than its flexural rigidity. 
 

 
                             a)                                             b)                                               c) 
Figure 5. Loadvertical displacement (  v ,0L ) curves for some given point loads and 

various ratios of lenght / height ( /L h ) for beam in the geometrically nonlinear case, a) 

/ 7L h  , b) / 10L h  , c) / 20L h  , 2-D Solid Continua ( ) ; Sap 2000 ( )   . 

 
In Fig. 5, very great values of loads are used for obtaining vertical displacements at the free 
end of the beam in the geometrically nonlinear case. It is seen from Fig. 5 that the difference 
between the results of two dimensional solid continuum and SAP2000 packet program which 
uses Timoshenko beam theory increases with decrease in the ratio of length/beam height in 
the geometrically nonlinear case. It can be said that with decrease in the ratio of /L h , finite 
element model of two dimensional solid continuum must be used instead of Timoshenko 
beam theory in the geometrically nonlinear cases. 
 

 
 
Fig. 6. Normal stresses of the cross section at the fixed end of the beam P=8 N. 
0 2 2

11 11 0 11( ) ; ( ); ( )S        . 
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Fig. 7. Shear stresses of the cross section at the fixed end of the beam for P=8 N. 
0 2 2

12 12 0 12( ) ; ( ) ; ( )S       . 

 
The stress diagrams at 0

1 0x   along the 0
2x  axis (namely for the cross section at the fixed 

support of the beam) are given in Figs. 6-7 for geometrically nonlinear and linear cases for 
L=20 cm, b=1 cm, h=1 cm, 28300 /E N cm  and P=8 N. In Figs. 6, 7, the stress distributions 

for geometrically linear case is denoted by 0 0
11 12,  , the Cauchy stress distributions is 

denoted by 2 2
11 12,   and the second Piola-Kirchhoff stress tensor is denoted by 2 2

0 11 0 12,S S .  

  
4. Conclusions 
 
The geometrically non-linear static responses of a cantilevered beam subjected to a non-
follower point load at the free end of the beam has been studied. In the study, the finite 
element model of the beam is constructed by using total Lagrangian finite element model of 
two dimensional solid continua for a twelve-node quadratic element. The considered highly 
non-linear problem is solved by using incremental displacement-based finite element method 
in connection with Newton-Raphson iteration method. There is no restriction on the 
displacements. The effects of the geometric non-linearity on the displacements and on the 
stresses are investigated. The comparison studies are performed. 
 
It is observed from the investigations that geometrical non-linearity plays very important role 
on the responses of the beam as the displacements increase. In fact, as it is known, after some 
values of displacements which can be determined according to the parameters of the problem, 
it is inevitable to analyze the problem as geometrically non-linear. Also, with decrease in the 
ratio of beam length/beam height in the geometrically nonlinear case, the difference between 
the results of two dimensional solid continuum and SAP2000 packet program which uses 
Timoshenko beam theory increases. Therefore, for small ratios of beam length/beam height, 
finite element model of two dimensional solid continuum must be used instead of SAP2000 
which uses Timoshenko beam theory. 
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