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Abstract

Nonlinear free and forced oscillation of microscalienply supported beams is investigated in this pajmroducing a
material length scale parameter, the nonlinear masleonducted within the context of non-classi@ittiuum mechanics.
By using a combination of the modified couple strbgory and Hamilton’s principle the nonlinear atjon of motion is
derived. The nonlinear frequencies of a beam wittiainateral displacement are discussed. Equatitvave been solved
using an exact method for free vibration and midtifimes scales (MTS) method for forced vibratiod aome analytical
relations have been obtained for natural frequeatpscillations. The results have been compared prigivious work and
good agreement has been obtained. Also forced tidimig of system in primary resonance have beeriestuahd the effects
of different parameters on the frequency-resporese libeen investigated. It is shown that the siBetef significant when
the ratio of characteristic thickness to internahterial length scale parameter is approximately a&qto one, but is
diminishing with the increase of the ratio. Our ritswalso indicate that the nonlinearity has a greffiect on the vibration
behavior of microscale beams.
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1. INTRODUCTION

Thin beams have been widely used in micro- and 4s@afe devices and systems such as
sensors, actuators, microscopes, MEMS and NEMS][fe#d applications ranging from
sensing and communications to energy harvestingdainental studies of quantum
mechanical systems, etc. Across these applicatibas;haracteristic thicknesses of the beams
are typically on the order of microns or even subrams. As reported in many papers (e.g.,
[5-8]), the microscale beams may be made of mefamer, traditional silicon-based
materials or functionally graded materials (FGM&)e design of microbeams is dominated
by several basic requirements. One of these baguirements is to attain mechanical and
vibration properties to match the required funaiidy of interest. It is not surprising,
therefore, that the literature on this topic is stantly expandingThe classical continuum
mechanics theories are not capable of predictioth explanation of the size-dependent
behaviors which occur in micron- and sub-micronecsructures. However, nonclassical
continuum theories such as higher-order gradiesbrtes and the couple stress theory are
acceptably able to interpret the size-dependenbiethe current work, however, theoretical
analysis will not be conducted within the contektlassical continuum mechanics. Though
the classical continuum models are relevant to sextent, the length scales associated with
material’s microstructure (such as lattice spacbejween individual atoms) are often
sufficiently small to call the applicability of daical continuum models into question [10].
Indeed, the size dependence of material deformabemavior in micronscale has been
observed experimentally in the last two decadesat& work on this topic appears to have
started in the 1990s. Some of the key contributioribis area were made by Fleck et al. [11],
Ma and Clarke [12], Stolken and Evans [13], Chondg &am [14], Lam et al. [15], and
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McFarland and Colton [16]. The size dependence @nenon has been observed in the
materials of either metals or polymers. In thegseexental works, the microscale structures
studied may be copper wires, silver single crystadkel beams, or epoxy polymeric beams.
These experimental results certainly demonstraét tihe size dependence is intrinsic to
certain materials with microstructurés.1960s some researchers introduced the couggsstr
elasticity theoryf17—19] In the constitutive equation of this theory, thigher-order material
length scale parameters appear in addition to we dlassical Lame constants. As recent
applications of the couple stress theory, here waoks are described. Zhou and [27]
employed this theory to investigate the static @yramic behavior of a micro-bar in torsional
loading. Kang and X[28] studied the resonant frequencies of a micro-beaghirashicated
that these frequencies are size-dependent.

Recently, Yang et al. [20] proposed a modified deugiress theory, in which the
constitutive equations contain only one single twldal internal material length scale
parameter besides two classical material const@wsng its advantageous expression, the
modified couple stress (non-classical) theory haa@ed many researchers in the past years.
As an example, Park and Gao [7] have studied th&cally mechanical properties of
Bernoulli-Euler cantilever beams by using this mtassical elasticity theory. The
corresponding results were applied to explain bendiest of epoxy polymeric beams
successfully. This modified couple stress theory ABo been used to study the dynamic
properties (e.g., natural frequencies) of EuleraBalli microbeams by Kong et al. [21]. In
their study, two boundary value problems (one fampdy supported beam and another for
cantilevered beam) were solved and size effechematural frequencies for these two kinds
of boundary conditions were evaluated. It was founat the natural frequencies of the
mircobeams predicted by the modified couple stthesry are generally higher than those
predicted by the classical Euler—Bernoulli beanotieThe objective of the present paper is
to establish a nonlinear non-classical Euler—-Bdinbeam model for microscale beams by
using the modified couple stress theory. The beatenal is assumed to obey the modified
couple stress theory, as developed by Yang e2@]. [This new nonlinear model contains a
material length scale parameter and can capturesiigeeffect. The nonlinear equation of
motion will be derived by using the Hamilton’s priple. The nonlinear term added, assumed
supported between two axially immobile supportsségbon the equation of motion derived,
the free vibration of pinned—pinned microbeams Wwal studied. It will be shown that the
effect of material length scale parameter and neality on the vibration frequencies are
significant. The difference between the nonlinean-olassical results and the linear results
(both classical and non-classical) will be quatititdy shown and analyzed.

2. FORMULATION

The system under consideration is a microscale lgisypported beam of length, mass
densityp, cross-section heiglit and cross-section widtthn The cross-section of the beam is
symmetric (either rectangular or circular). We wabnsider the nonlinear vibrations of
microbeams with transverse dimensions ranging feawveral micro-meters to hundreds of
micro-meters.

The linear equation of motion based on a modifieapte stress elasticity theory is given by
[21]
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whereE is the Young's modulus of elasticityjs the moment of inertia of the cross-section,
A is the cross-sectional ardga,is a Lame’s constant3(= E/[2(1 + p)] is also known as the
shear modulus, wheng is Poisson’s ratio)! is a material length scale parametgkt) is a
transverse loading, and(x, t) is the lateral deflection of the beam;andt are the axial
coordinate and time, respectively. Since the déaweof Eq. (1) is based on a refined Euler—
Bernoulli beam theory, the corresponding theorétiwadel described is called “non-classical
Euler—Bernoulli beam model”. It is immediately falthat the above equation has introduced
a material length scale parametewhich represents the microstructure-dependeateff

As reported by Sadeghian et al. [22], the choicappiropriate structural analysis model of the
microscale beam depends on the magnitude of telateflection compared to the thickness
of the beam. The theoretical model described in(Egmay be an adequate representation for
the case that the deflection is considerably srfeali., the deflection is smaller than the
thickness of the microbeam). For the case thatdéftection is relatively large (e.g., the
deflection is approximately equal to or larger thia@ thickness of the microbeam), bending-
stretching coupling terms need to be taken int@aet; since the effects of nonlinearity on
the mechanical and vibration properties becomerghbt. The nonlinear equation of motion
of a microbeam with immovable ends will be formathtoy using the Hamilton’s principle.
According to the modified couple stress theory [3#e bending strain enerdyy, of the
microbeam is a function of both the strain (confedawith stress) and the curvature
(conjugated with couple stress). Then the bendiragnsenergy in a deformed microbeam is
given by [7]

_ 1., 0w, 1; d°w
Um —_EJ‘O Mxydx_—zjo y (2)

where the resultant momei and the couple momel, are defined, respectively, by

MX = '[UXXZdA (3)

ny = { me dA (4)

In the above two equations, andm,y are, respectively, defined by

0, = —EZ?;T\Q/ (5)

m,=-ar ®

ThenUnmay be rewritten as

umzijL(EHGM)(az—‘;ijdx 7)
270 0X

By neglecting the body force and body couple, tleekndone by the externally transverse
loadingq(x, t) may be written as
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w=["o(x vy o (8)

The kinetic energy of the microbeam is given by

ow _m L dw)’
K_—j A(GJ _Ejo(ﬁj dx (9)

in whichm= pA is the beam mass of per unit length. AccordinthéoHamilton’s principle,
the dynamic equation of motion of this beam as aglall possible boundary conditions can
be derived by using the following variational eqoat

5[ (K -U,-W)dt=0 (10)

Substituting Egs. (7)—(9) into Eq. (10), one oldain

L

[ (1 vont) WM {( i+ Gaz)g;dvl d
—jﬂ(EHGAﬁ)‘; }dt j{ 5@ dx=0

In view of Eq. (11), the nonlinear equation of noatiof the beam in terms of(x, t) is given
by

(11)

N 2
(EI+GA€2)3X m%T‘;V: o x) (12)

and the boundary conditions are

o*w

= =0 orw= 0 atx= 0 an&k= L (13a)
a—V\I—Oora—W—OaIX 0 anck= L (13b)
x> 0X

It can be seen from Eq. (12) that the deflectiohshe beam are related to two types of
material parameters: one associated wAhEA andEl as in classical beam model and the
other associated witBA/%. Therefore, the current refined Euler—Bernoulkimemodel based
on the modified couple stress elasticity theorytams one additional internal material
constant besides three classical material paramedsr can be expected, the presencé of
enables us to analyze the size effect. Definingdhewing quantities
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EqQ. (12) may be written in the dimensionless form

4

9 iﬁ

Since Eq. (15) is represented in a dimensionless,ftre current non-classical beam model
may be used to analyze the dynamic responses ablmeiams, regardless of the beam
materials or length scales. It may be also mentiaimat the equation of motion, (15), is
essentially based on the Euler—Bernoulli beam assan#p Like all other analytical models,
therefore, the newly developed beam model hasdtiits, which are contingent upon the
applicability of the modified couple stress theoBpecifically, the microbeam must be
slender so that the Euler—Bernoulli beam assumpt@wasapplicable. For microbeam with
relatively large width (b), however, the current &uBernoulli beam theory may be
inadequate for predicting the response of microlseam

In this paper, the microbeam under considerati@ssaimed to be pinned—pinned. For such a
beam system, the deflection and moment are zdvothtends. Then the boundary conditions
can be written in the dimensionless form

°’n
=0 and =
n &

0 (16)

Before closing this section, it should be mentiotieat, for analysis convenience, the beam
material is chosen to be epoxy. Thus, the mateoastants used here dte= 1.44 GPa and
(=176 m [7]. In the following analysis, for comparison pose, we will choosa = 30

and two different values of Poisson’s ratio (ite5 0 andu = 0.38).
3. FREE VIBRATION
In this section, the free vibration of a microsché&am with both ends immoveable will be

analyzed. It is assumed that the external transvlsce q(x,t) is absent. Based on this
assumption, Eq. (15) becomes
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As already mentioned in the foregoing, the nonlittgas caused by the immoveable ends
which are not allowed to move to any appreciablerxrelative to the initial coordinates of

the beam ends. Therefore, the axial inertia maylse neglected. The initial conditions
considered in the current work are:

ow(L/2,0) _

W( L/2’0)=W'nax’ at

C (18)

The dimensionless initial conditions given by EB)(become

,7(1/ 2’0) :Wmax ! W = ( (19)
Assume that
n(¢&.r)=¢(£)a(r) (20)

wherey/(¢) is the characteristic mode of a pinned—pinnearbaad
(&) =sin(n/d) n=123,. (21)

The substitution of Eq. (20) into Eq. (17) leads to

(Er +6A2) ()’ L EA(m)'

a+ mLle? a 4mlPw? T =0 (2)

where( ) =0( )/of andf = at

(Er+cA?) ()’ "
w= pry (23)
one obtains
g+q+yq =0 (24)

in which the dimensionless parametés given by

_ 312
/ h2{1+[6/(1+,u)]><(£ /h)2}

(25)
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It is worth noting that Eqg. (24) is a classical fng-type equation which represents a
nonlinear oscillator without damping. This equatioay be solved via various methods, such
as the method of harmonic balance, equivalent fin&@on, generalized averaging and
multiple scales method [24]. By multiplying (24) lopand integrating with respect to time,

the following energy balance equation is obtained
i 2 2 1 4
g-+q +Eyq = H = constant (26)

The constani is evaluated from initial conditions. By assumingial conditions (19), one
has

Ho=w? st @)
PuttingH into (26) leads to

0’ =(w2, -’ +%y(w;ﬁax- q’) (28)
By introducing new parameteys andy. in the following way

y
2x7

2 _

Xi=l+y, xi=

(29a,b)

Such that the differential equation has solutionterms of Jacobi elliptic function. Hence,
Eq. (28) can be rewritten as follows:

42 = - 2+Z —J_/
4* =W, —q Z\A(;ax Zq“

= (X = 2X0X)) Wi = G2+ X X H(Wiam O (30)
= (Waax = )OXT = 2X X 1+ X X (Wit 09)
= (Woa = A+ XX 5 (WE ot O))

and it reduces to

2
(:—2) = (Whoo— %) (X202 X 24 W2,). (31)

Then, assumingy=cosgp we can obtain Jacobi elliptic function [26] withet modulusk,
defined by Eq. (29b),

K= JWL 32
xS .
From the inversion of Eq. (31), the solution fozan be obtaion as follows:
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g=clK K (33)
The period of the function cK[kK] is 4K and is defined by using the complete elliptic gné,

2 d
4K =4 9 (34)

O J1-xising

Then, the corresponding frequency for this nonlingablem for each mode is defined by
using the following equation:

1+ W
g, = =" el (35)
2K
4. FORCED VIBRATIONS
In this section, forced vibrations of the systeri e considered. It is also considered that the

excitation appears as an inhomogeneous term iaghations of motion [24] .
Let the system is exerted an external harmonicdatian E(t) as:

E(t) = KcosQt (36)
Equation (24) in the forced vibration case can biéten as:

g+qg+yq = KcosQt (37)

Two types of excitations, primary resonances and-nesonant hard excitations will be
discussed here and the frequency response equatioinsffects of some parameters will be
investigated.

4.1. Primary resonances

In this case, it is supposed that the frequencexaitationQ and linear frequency of the

systemmg are near together &~ wo. S0 a detuning parameters used to show the nearness
of Q to wg as:

Q=w+eco (38)

Because there are no types of damping in the systelinear state it is expected that when
approaches to zero, system shows an unlimitedlatsai, but in nonlinear state oscillations
is limited by nonlinearities. As discussed latay, dbtain a uniformly valid approximate
solution the excitation must be in same order efribn-linear terms. So, in Eq. (36) it must
be considere® =¢k. An approximate solution of the problem can beawotgd by a number of
perturbation techniques. Here the method of ma@tiphe scales (MTS) is used. Accordingly
the solution in terms of different time scalesxpressed as

q(te) = (T T)+eq( T, T +... (39)
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whereTp=t andT,;=¢t. The excitation in terms df andT, is expressed as
E(t)=eKcos(wT,+0T,) (40)

Substituting Eqs(40) and (39) into Eq. (37) andatimg the coefficient of° and' on both
sides, we obtain

D50y *+ @Gy =0 (41)
Dng + wgql =-2 DOquO_ yq:zfi' kcos(ono+ o TJ) (42)

The general solution of Eq. (41) can be written as
0o = A(T) exp(icw,To) + A(T) exe(~ 0, Ty) (43)

whereA(T;) is an undetermined function at this point. Substig Eqgs. (43) in Eq. (42) and

extracting secular terms which are coefficients @f“"solvability equation will be
determined as:

2igA + 3yA25\—% kexp(ioT) = C (44)
Letting A in polar form

1 .
A= > aexp(iB) (45)

where a an@ are real. Separating real and imaginary parteafed equation, it yields

a :%%sin(o’r1 - ) (46a)
, 3 1k
ag :gé a ——ZZOCOS(U-E —,8) (46b)

Term T, can be eliminated by transforming EqQs. (46) to arionomous system [24]
considering:

6=0T,- (47)

and substituting Eq. (47) in Egs. (46) lead to:

1k .
== sin(@
5 sin(6) (48a)
3y 5 1Kk
ad =ga-=-3a +=-—cog(8
ga-o—-a o 0cos( ) (48h)
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The point whicha' =0and & =0corresponds to singular point of the system anevstibe
steady-state motion of system [38] . So, in stestd{e condition it can be written:

Ozéisin(ﬁ) (49a)
3 Y op-_1k
oa- 8% COS(H) (49b)

Squaring and adding these equations, one may dbiiinequency response equation

3 ) e
(U 8%aja 1 (50)

Substituting Eq. (45)nto Eq. (43) and substituting that result into E2P), one may obtain
the first approximation

q=acos(at+ B)+O(¢&) (51)

Substituting Eqgs. (47) and (38) into Eqg. (50), firet approximation to the steady state
solution is given by

q=acos(wt+eot-6)+0O(g) = acogQt-6)+ O¢) (52)
it can be found the detuning parameter is as follow

U:§LaZ+L

8w  2wa (52)

Fig. 5 shows the effects & on the amplitude of the system with respect taumiag
parametew. Fig. 6 demonstrates the effectsyain the amplitude of the system with respect
to detuning paramete:

5.NUMERICAL RESULTS

Figure 1 plot the nonlinear fundamental frequenatior versus dimensionless amplitude
curves for beam. Beam exhibit typical hardeningavédr, i.e., the nonlinear frequency ratio
increases as the vibration amplitude is increaségl. 2 shows how frequency ratiog,
predicted by the non-classical beam theory changetive beam thickness (br¢). Figure 3
displays the phase plane diagramsvérsus ) for beam. Figure 4 gives dimensionless

vibration amplitude as a function of dimensionlesee for beams
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Phase Plane Diagram
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Fig. 4. Time history of dimensionless amplitudesrfon-classical microscale beams

The results displayed in Fig. 2 are obtained fram B5), for non-classical beam model. To
illustrate the Poisson effect, two different valeé$oisson’s ratio, i.ey = 0 andu = 0.38 are
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used. It is worth noting that, whem?¢ is approximately equal to one, the size effect is
remarkably visible.
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6. CONCLUSIONS

A nonlinear non-classical Euler—Bernoulli beam maoslgh an energy formulation to study
the free and forced vibration behavior of microschEams on immovable ends has been
developed. In the present nonlinear model, the ineality associated with the internal
material length scale constant considered. Theysisais performed within the context of
non-classical continuum mechanics. For the freeatibn of a microscale beam, it is found
that the nonlinear frequencies are much higher thatinear ones. Therefore, compared with
the linear non-classical beam model, the nonlimear-classical model and its conclusions
regarding vibration properties may be more relialllbe results obtained in this paper
highlight the importance of considering nonlineaand size effects in the proper design of
microscale devices and systems such as biosergonsic force microscopes and MEMS. In
the next section, the forced vibrations of the eaystvere studied for the first time. First, the
primary resonances of the system by using the ME&gau were studied and the frequency-
response equation of the system was presentechareffects of different parameters on the
response of the system were investigated. Therregonant hard excitation case was studied
and the frequency of free oscillation of the systamd the effect of different parameters were
investigated. In addition, in the final sectiongeauharmonic and sub-harmonic resonances
were studied and in the both cases the frequersperse equations and the effect of different
parameters on the response of the system were shown
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