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Abstract

The objective of this paper is to present exact analytical solutions for the torsional vibration of rods with non-
uniform cross-section. Using appropriate transformations the equation of motion of torsional vibration of a rod
with varying cross-section is reduced to analytically solvable standard differential equations whose form
depends upon the specific area variation. Solutions are obtained for a rod with for a polynomial area variation.
The solutions are obtained in terms of special functions such as Bessel and Neumann functions. Smple formulas
to predict the natural frequencies of non-uniform rods with various end conditions are presented. The natural
frequencies of variable cross-section rods for these end conditions are calculated and their dependence on taper
is discussed.
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1. Introduction

The vibration of beams and rods has been studi¢ehsixely and is still receiving
attention in the literature. Non-uniform beams aodis may provide a better or more suitable
distribution of mass and strength than uniform beamnd therefore can meet special
functional requirements in architecture, roboticgeronautics and other innovative
engineering applications. Thus, it is necessametermine the natural frequencies and mode
shapes in the vertical direction for high-rise stanes at the design stage for certain cases.
When analyzing the free vibrations of high-riseustures, it is possible to regard such
structures as a cantilever rod with varying crassions. However, in general, it is not
possible or, at least, very difficult to get theaetxanalytical solutions of differential equations
for free vibrations of rods with variably distrimat mass and stiffness. These exact rod
solutions are available only for certain rod shagres boundary conditions. Nagaraj and Sahu
[1] studied the torsional vibrations of non-unifopre-twisted rotating blades by using finite
element methods based on both the Rayleigh-RitzGalérkin formulations. Rezeka [2]
presented several cases of variable cross-sedticular shaft with variable wall thickness.
Eisenberger [3] gives exact solutions for the toral vibration frequencies of symmetric
variable and open cross-section bars. He derivednatytical method to form the dynamic
stiffness matrix of the bar, including the effeftvearping. Li [4] investigated the torsional
vibration of multi-step non-uniform rods with van® concentrated elements. He obtained the
exact solutions for the free torsional vibratiomnoh-uniform rods whose variations of cross-
section were described by exponential functions@owler functions.

64



Previous studies clearly show that vibration chirstics of isotropic rods with
continuously changing cross-section have signifi¢@atures and are not yet fully addressed.
The present study investigates free torsional titima of isotropic rods with varying cross-
section. The object is to obtain analytical soluiaescribing the vibration behavior of the
rods under different boundary conditions and toedmsine the effects of continuously
variable cross-section on the natural frequenaiesnaode shapes.

2. Analysis

Consider an isotropic rod with a variable crosgieac Dimensionless variables are
defined according to
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wheret is the dimensional time is the dimensional coordinate measured from thetel

of the rod along its length is the dimensional polar moment of inertia of thess-section
of the rod respectivelyy* is the dimensional twist angleis the mass density per unit are of
the rod,E is the Young’s modulud, is the length of the bearw, is any reference twist angle
andJo is the polar moment of inertia of the cross-secbbthe rod at the left end of the rod
wherex = 0 that isD; = 03(0). Governing equation in the dimensionless form canvhtten
as follows:

By Iy g
dx? ' I(x)dx o8t
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Solution of the Eq(2) can be assumed in the following form:

wix, ) = #(x)¥(t) 3
Substitution of Eq(3) into Eq.(2) yields two ordinary differential equations.
¢"+%¢'+ﬂ=¢=n 4)
Y -0Y=0 (5)
Heren is a real constant and defined@s= 2°co/2 and T is circular frequency. Solution

of Eq.(5) is well known and can be written as
Y(t) = e sin{t) + cocos(1t) (6)

Equation (4) has variable coefficients. Therefaggact solutions of this equation for a
general polar moment of inertléx) cannot be obtained. However, for certain spedifiea
variations, exact solutions can be obtained. In fllowing sections, using appropriate
transformations, equation (4) will be reduced talgincally solvable differential equations
for 1(x) = (1 + =" (polynomial variation).
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2.1. Solution for polynomial area variations

In order to obtain an exact solution, equationig4gwritten withl(x) as the independent
variable [27, 28], yielding

(&) (&) +OD YD+ ro=o )

The above equation is solved for a rod with a polament of inertia variation that is given
by the following expression

Ix) =1+ %}“ (8)

Equation (7) can be re-written as

n

T ) wen-nGh+ () (Zm)e =0 (©)

To simplify equation (9) the following variablésand{ which replacep andJ respectively
are introduced

& ¢
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Transforming equation (9) from-I space t@ -{ spaceyields the Bessel equation
d_:i+(lJ(E]+(1_iJ:—[] 13
agz " \7/'ag )" (13)

wheren is given by

1-mn

v=—" (14)
£ =y, () + Vo () When v is an integer (15a)
£ =gy () + cof (T) When v is not an integer (15b)
Therefore the twist angle can be written as

® = 19[cy)y (v1°) + 2%, (y1°)] When v is an integer (16a)
% = 1%[ey (1) + caf_, (¥17)] When v is not an integer (16b)

2.2. Numerical results

The natural frequencies of a rod with its polar neatrof inertia varying according to the
equation

Ix) =(1+ %ﬁ (17)
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is discussed in this section.

For the case afix) = (1 + = the solution is
1 nL _ aL -

# = (Dleddya (V) + eafess (VI (18)
T4

It can easily be shown that for the case= the solution given by equation (18) can be re-
written as

& = %J [cy5im (% *\-'T] + cic0s (% *-.I'TJ] (19)

The natural frequencies of a rod with its polar neatrof inertia varying according to the
equation

ox
)=+
is discussed in this section.

Classical boundary conditions to the rod are carsid here, as follows.

Free-Free 2'0) =0 (1) =0 (20)
Fixed-Free — #(0) =0 2(1) =0 (21)
Fixed-Fixed () =0 #(1) =0 (22)

For a fixed-fixed rod, the boundary conditions gigethe set of two homogeneous algebraic
equations:

(23)
<:l§) [cd‘é(E] IE%) t el (E]:é) —0
. | E (24)
(Ill%) [Ed'é(E] If) + ﬂ-Jé (E]If) —0
Where
I;=10) = (al + )* (25)

Since these equations are homogeneous, they asbbkobnly when their determinant
vanishes, which yields the relationship for the-doanensional eigenvalyg

F-g(E] fni)fg([gl fi%)—fg([glfé)f-g([ﬂf%) =0 (26)

Table 1 shows the eigenvalues for uniform rods Ya»n@ for tapered rods (fixed-fixed) with
a=0,1,2,b=1 andL=1. The natural frequencies are presented in tefifisvheref = mﬁ .For

uniform rodspL = jr, whergj is an integer, the mode number. Table 1 indicétasthe
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lowest natural frequencies are affected most byaper. For higher modes, the natural
frequencies are close to that of a uniform rod. foele shape is given by

1 _,f -2 E] I'-‘i i
e () ), o @

o ()

For Fixed-free rods, the boundary conditions raesumlthe transcendental equation for the
eigenfrequency.
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Table 1 shows the eigenvalues for uniform rods Ya@ for tapered rods (fixed-free) with
a=0,1,2, b=1 andL=1.For uniform rodspL ==(2j — 1)z wherej is an integer, the mode
number. Table 1 indicates that, for fixed-free rdtie lowest natural frequencies are affected
most by the taper, For higher modes, the natuegjuiencies are close to that of a uniform
rod. It is also interesting to note that taper psguthe natural frequency, and the first mode
disappears. (The first mode is present wast.97)

For free-free rods, the boundary conditions resuitsthe transcendental equation for
eigenfrequency

PS—QR =0

where

(29)
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Table 1 shows the eigenvalues for uniform rods Ya=@l for tapered rods (free-free) with
a=0,1,2,b=1 andL=1.For uniform rods. = j= wherej is an integer, the mode number. Table
1 indicates that, like the cases of fixed-fixed dinced-free rods, the lowest natural
frequencies are affected most by the taper. Fondnignodes, the natural frequencies are
close to that of a uniform rod.

3. Discussion

The authors have been able to obtain the solutidhe problem for the case of a polynomial
polar moment of inertia variation, by transformitige differential equation such that the
inertial is the independent variable. The solutions areiodtzas direct functions of inertia.
It may be possible that other problems can be ddbyeusing this approach.

4. Conclusion

Exact analytical solutions describing the torsiondration of rods were obtained by

transforming the equation of motion to standardedéntial equations which are analytically

solvable in terms of special functions. Solutioms abtained for a rod with a polynomial

polar moment of inertia variation. The solutiong abtained in terms of special functions
such as Bessel and Neumann as well as trigononfetrations. Simple formulas to predict

the natural frequencies of non-uniform beams wéhous end conditions are presented. It is
shown that the lowest natural frequencies are tflemost by the taper.

Table 1. Non-dimensional natural frequencies ofwittl three different boundary conditions

a Mode Number  Non-dimensional natural frequencies
Free-Free Fixed-Fixed Fixed-Free
0 1 3.141593 3.141593 1.570796
2 6.283185 6.283185 4.712389
3 9.424778 9.424778 7.853982
4 12.566371 12.566371 10.995574
5 15.707963 15.707963 14.137167
1 1 3.378458 3.133487 -
2 6.425906 6.278921 4.487482
3 9.524152 9.421905 7.721747
4 12.642120 12.564210 10.901630
5 15.769030 15.706230 14.064260
2 1 3.286891 3.125646 -
2 6.614998 6.272251 4.404069
3 9.671519 9.417264 7.672932
4 12.759890 12.560670 10.866970
5 15.983120 15.703370 14.037360

For higher modes, the natural frequencies are ¢tosieat of a uniform rod. The expressions
obtained in this analysis are in terms of Bessél taigonometric functions and are easy to
evaluate. These closed form expressions preséeteth can be used also as benchmarks for
checking the results obtained from numerical orapmate methods.
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