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Abstract 

The objective of this paper is to present exact analytical solutions for the torsional vibration of rods with non-
uniform cross-section. Using appropriate transformations the equation of motion of torsional vibration of a rod 
with varying cross-section is reduced to analytically solvable standard differential equations whose form 
depends upon the specific area variation. Solutions are obtained for a rod with for a polynomial area variation. 
The solutions are obtained in terms of special functions such as Bessel and Neumann functions. Simple formulas 
to predict the natural frequencies of non-uniform rods with various end conditions are presented. The natural 
frequencies of variable cross-section rods for these end conditions are calculated and their dependence on taper 
is discussed.  
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1. Introduction 

The vibration of beams and rods has been studied extensively and is still receiving 
attention in the literature. Non-uniform beams and rods may provide a better or more suitable 
distribution of mass and strength than uniform beams and therefore can meet special 
functional requirements in architecture, robotics, aeronautics and other innovative 
engineering applications. Thus, it is necessary to determine the natural frequencies and mode 
shapes in the vertical direction for high-rise structures at the design stage for certain cases. 
When analyzing the free vibrations of high-rise structures, it is possible to regard such 
structures as a cantilever rod with varying cross-sections. However, in general, it is not 
possible or, at least, very difficult to get the exact analytical solutions of differential equations 
for free vibrations of rods with variably distributed mass and stiffness. These exact rod 
solutions are available only for certain rod shapes and boundary conditions. Nagaraj and Sahu 
[1] studied the torsional vibrations of non-uniform pre-twisted rotating blades by using finite 
element methods based on both the Rayleigh-Ritz and Galerkin formulations. Rezeka [2] 
presented several cases of variable cross-section circular shaft with variable wall thickness. 
Eisenberger [3] gives exact solutions for the torsional vibration frequencies of symmetric 
variable and open cross-section bars. He derived an analytical method to form the dynamic 
stiffness matrix of the bar, including the effect of warping. Li [4] investigated the torsional 
vibration of multi-step non-uniform rods with various concentrated elements. He obtained the 
exact solutions for the free torsional vibration of non-uniform rods whose variations of cross-
section were described by exponential functions and power functions. 
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Previous studies clearly show that vibration characteristics of isotropic rods with 
continuously changing cross-section have significant features and are not yet fully addressed. 
The present study investigates free torsional vibrations of isotropic rods with varying cross-
section. The object is to obtain analytical solutions describing the vibration behavior of the 
rods under different boundary conditions and to determine the effects of continuously 
variable cross-section on the natural frequencies and mode shapes. 

 

2. Analysis 

Consider an isotropic rod with a variable cross-section. Dimensionless variables are 
defined according to 

(1) 
    

where t* is the dimensional time, x* is the dimensional coordinate measured from the left end 
of the rod along its length, I* is the dimensional polar moment of inertia of the cross-section 
of the rod respectively, ψ* is the dimensional twist angle, ρ is the mass density per unit are of 
the rod, E is the Young’s modulus, L is the length of the beam,  is any reference twist angle 
and J0 is the polar moment of inertia of the cross-section of the rod at the left end of the rod 
where x = 0 that is (0). Governing equation in the dimensionless form can be written 
as follows: 

(2) 
 

Solution of the Eq. (2) can be assumed in the following form: 

(3)  

Substitution of Eq. (3) into Eq. (2) yields two ordinary differential equations. 

(4) 
 

(5)  

Here  is a real constant and defined as  and  is circular frequency. Solution 
of Eq. (5) is well known and can be written as 

(6)  

Equation (4) has variable coefficients. Therefore, exact solutions of this equation for a 
general polar moment of inertia I(x) cannot be obtained. However, for certain specific area 
variations, exact solutions can be obtained. In the following sections, using appropriate 
transformations, equation (4) will be reduced to analytically solvable differential equations 
for  (polynomial variation). 
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2.1. Solution for polynomial area variations 

In order to obtain an exact solution, equation (4) is rewritten with I(x) as the independent 
variable [27, 28], yielding 

(7) 
 

The above equation is solved for a rod with a polar moment of inertia variation that is given 
by the following expression 

 (8) 
 

Equation (7) can be re-written as 

(9) 
 

To simplify equation (9) the following variables ξ and ζ which replace Φ and J respectively 
are introduced 

(10,11) 
  

(12) 
   

Transforming equation (9) from Φ-I space to ξ -ζ space yields the Bessel equation 

(13) 
 

where n is given by 

(14) 
 

(15a) When υ is an integer  

(15b) When υ is not an integer  

Therefore the twist angle can be written as 

(16a) When υ is an integer  

(16b) When υ is not an integer  

 
2.2. Numerical results 
 
The natural frequencies of a rod with its polar moment of inertia varying according to the 
equation 

(17) 
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is discussed in this section. 

For the case of  the solution is 

(18) 
 

It can easily be shown that for the case of n=2 the solution given by equation (18) can be re-
written as 

 
The natural frequencies of a rod with its polar moment of inertia varying according to the 
equation 

 
is discussed in this section.  
 
Classical boundary conditions to the rod are considered here, as follows. 

(20)    Free-Free 

(21)    Fixed-Free 

(22)    Fixed-Fixed 

 
For a fixed-fixed rod, the boundary conditions yields the set of two homogeneous algebraic 
equations:  

 

(23) 

 

(24) 

 
 
Where 

(25)  

Since these equations are homogeneous, they are solvable only when their determinant 
vanishes, which yields the relationship for the non-dimensional eigenvalue β: 

(26) 
 

Table 1 shows the eigenvalues for uniform rods (a=0) and for tapered rods (fixed-fixed) with 

a=0,1,2, b=1 and L=1. The natural frequencies are presented in terms of β where  .For 

uniform rods , where j is an integer, the mode number. Table 1 indicates that the 

(19) 
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lowest natural frequencies are affected most by the taper. For higher modes, the natural 
frequencies are close to that of a uniform rod. The mode shape is given by 

(27) 

 

 
 
For Fixed-free rods, the boundary conditions results in the transcendental equation for the 
eigenfrequency. 
 
 

(28
) 

Table 1 shows the eigenvalues for uniform rods (a=0) and for tapered rods (fixed-free) with 
a=0,1,2, b=1 and L=1.For uniform rods  where j is an integer, the mode 

number. Table 1 indicates that, for fixed-free rods, the lowest natural frequencies are affected 
most by the taper, For higher modes, the natural frequencies are close to that of a uniform 
rod. It is also interesting to note that taper reduces the natural frequency, and the first mode 
disappears. (The first mode is present until a=0.97) 
 
For free-free rods, the boundary conditions results in the transcendental equation for 
eigenfrequency 
 

 

where 

(29) 

, 
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Table 1 shows the eigenvalues for uniform rods (a=0) and for tapered rods (free-free) with 
a=0,1,2, b=1 and L=1.For uniform rods  where j is an integer, the mode number. Table 
1 indicates that, like the cases of fixed-fixed and fixed-free rods, the lowest natural 
frequencies are affected most by the taper. For higher modes, the natural frequencies are 
close to that of a uniform rod. 
 

3. Discussion 
 
The authors have been able to obtain the solution to the problem for the case of a polynomial 
polar moment of inertia variation, by transforming the differential equation such that the 
inertia I  is the independent variable. The solutions are obtained as direct functions of inertia. 
It may be possible that other problems can be solved by using this approach.  
 
4. Conclusion 
 
Exact analytical solutions describing the torsional vibration of rods were obtained by 
transforming the equation of motion to standard differential equations which are analytically 
solvable in terms of special functions. Solutions are obtained for a rod with a polynomial 
polar moment of inertia variation. The solutions are obtained in terms of special functions 
such as Bessel and Neumann as well as trigonometric functions. Simple formulas to predict 
the natural frequencies of non-uniform beams with various end conditions are presented. It is 
shown that the lowest natural frequencies are affected most by the taper.  

 
For higher modes, the natural frequencies are close to that of a uniform rod. The expressions 
obtained in this analysis are in terms of Bessel and trigonometric functions and are easy to 
evaluate.  These closed form expressions presented herein can be used also as benchmarks for 
checking the results obtained from numerical or approximate methods.  

Table 1. Non-dimensional natural frequencies of rod with three different boundary conditions 
 

a Mode Number Non-dimensional natural frequencies 
  Free-Free Fixed-Fixed Fixed-Free 

 

0 
 
 

 

1 3.141593 3.141593 1.570796 
2 6.283185 6.283185 4.712389 
3 9.424778 9.424778 7.853982 
4 12.566371 12.566371 10.995574 
5 15.707963 15.707963 14.137167 

     
1 1 3.378458 3.133487 - 

2 6.425906 6.278921 4.487482 
3 9.524152 9.421905 7.721747 
4 12.642120 12.564210 10.901630 
5 15.769030 15.706230 14.064260 

     
2 1 3.286891 3.125646 - 

2 6.614998 6.272251 4.404069 
3 9.671519 9.417264 7.672932 
4 12.759890 12.560670 10.866970 
5 15.983120 15.703370 14.037360 
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