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Abstract 
 
Drawing of twisted square section rod from round bar has been studied in this paper. The drawing force was 
determined via an upper bound solution based on an equivalent axisymmetric curved die. By determining the 
profile of the equivalent curved die, a velocity field which considered the twist of material inside the die was 
presented. Then, internal, shearing and frictional powers were calculated and drawing force was estimated by 
equating the summation of these powers with required external power. For assuring of the results of analysis, 
various experiments were performed for St 33 bars in diameters of 10, 8 and 6 mm to twisted square section rods 
with sides of 8, 6 and 5 mm, respectively. Comparison of the experimental and theoretical drawing forces 
showed an acceptable agreement. 
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Nomenclature 
 

dF  drawing force 
*J  external power of deformation 

L    length of die 
m    friction factor )10( ≤≤ m  
R    instantaneous radius at outer-surface of the material inside equivalent die 

fR    equivalent radius of square rod 

oR    radius of circular bar 
zr ,,θ    cylindrical coordinates  

fr     radial position of the S3 surface of velocity discontinuity 

or     radial position of the S1 surface of velocity discontinuity 
S1   first surface of velocity discontinuity, separating the incoming bar from the   deformation 
zone 
S2   second surface of velocity discontinuity, separating the deformation zone from the final 
product 

rU , θU , φU    radial, angular and rotational components of velocity  

fu    velocity of the rod at the exit of the die 

ou    velocity of the bar at the entrance of the die 

iW     internal power of deformation  

1SW
•

 shear power losses along S1 surface of velocity discontinuity 

2SW
•

 shear power losses along S2 surface of velocity discontinuity 
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fW
•

  friction power losses along the die-material interface 
 
α    semi-die angle of equivalent die 
β      arbitrary angle 

1U∆  tangential velocity difference along the S1 surface of velocity discontinuity 

2U∆  tangential velocity difference along the S2 surface of velocity discontinuity 

fU∆  tangential velocity difference along the die surface 

rrε
•

    normal strain rate component in the radial direction    

θθ

•

ε    normal strain rate component in the angular direction  

φφε
•

   normal strain rate component in the rotational direction 

θε r
•

, φε r
•

, θφε
•

 shear strain rate components  

0σ     average of yield stress of the workpiece material 

dω     angular velocity of the die 
ψ      angular position of the equivalent die profile  
 
 
1. Introduction 
 
Twisted square section rods are used in lid of channels, at the bottom of workshops and 
metallic stairs in which personnel slippage on them is exist. Moreover, they are used in 
manufacturing twisted nails with square cross section. Drawing through the rotating dies is a 
simple method for manufacturing twisted rods. In this process, like another metal forming 
processes, notification of drawing force is very important. Estimating the required drawing 
force is essential for designing the die and selecting the machine with enough capacity. The 
process of wire drawing through smooth conical dies was first analyzed by Sachs [1], for rigid 
plastic materials. The basic assumption of his analysis is that the plane sections remain plane 
during the deformation. Later several authors extended Sachs' analysis to include the effects 
of other variables such as friction, work hardening and strain rate [2, 3]. Siebel [4] took into 
account both the die friction and the redundant deformation along with the homogeneous 
deformation. The experiments conducted by Wistreich [5], with split dies, established that for 
any drawing operation the drawing stress is minimum at a particular value of the die angle 
called the optimum angle. Subsequently Avitzur survived the characteristics of metal flow in 
drawing process through converging dies [6]. Then he verified the effects of work hardening 
in plastic flow [7]. Afterwards he analyzed the drawing process by assuming a spherical 
velocity field in the zone of plastic deformation [8]. Besides predicting the optimum die 
angle, his analysis shows a gradual transition from the drawing to the shaving process as the 
die angle is increased. All the theories developed so far concern the drawing of circular wires 
through semi conical dies. Upper bound approach for drawing of circular wires to square 
shape was first utilized by Basily [9]. He calculated drawing force by meshing the 
deformation zone and defining a spherical velocity field for each node and finally solved the 
whole geometry of deformation by use of a computer program. He also presented some 
techniques for the measurement of mean coefficient of friction in the direct drawing of section 
rod from round bar [10, 11]. Gunaserka and Hoshino [12] accomplished the upper bound 
solution for analyzing drawing and extrusion of circular rods to square section bars through 
converging dies which were formed by straight lines. Su [13], performed experiments for 
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measuring drawing load in drawing processes and surveyed final product. Wang [14], 
presented semi analytical finite element method. He also simulated and analyzed drawing 
process of round bar to section rod by means of finite element software [15]. Knap [16], 
described the process and the circumstance of deformation of material in process of drawing 
of circular wire to twisted square section rod.  He also surveyed the experimental affection of 
the semi die angle. Ma and Barnett [17, 18], analyzed the process of forward extrusion 
thorough rotating dies, theoretically and experimentally. They provided required torque for 
rotating the die from an external source, and they also supposed that the angular velocity of 
the material inside the die, changes with a power relation in relate to radius of each position in 
proportion to apex of virtual conic of the die. After that, they inspected the effect of slippage 
factor and semi die angle in extrusion pressure and finally determined the optimum die angle. 

In this study, upper bound approach, based on equivalent die, was utilized for estimating 
the required force in drawing a circular bar to a twisted square section rod. Spherical velocity 
field which includes twisting the material in the region of plastic deformation was suggested. 
Some drawing experiments were performed and drawing forces were measured. Then, the 
results of upper bound approach were compared with experimental drawing forces.  

 
 

2. Description of the process 
 

The working surface of the die has a shape which allows the round bar deform into square 
rod and also twist it, simultaneously. In order to obtain gradual shaping of the cross section 
during the decrease of its area, the working surface of the die is inclined under a constant 
angle to the die axis. Due to the existence of the helix angle inside the die, die starts to rotate 
when the drawing process starts. Shaping the twisted rod starts at the corners of the cross 
section. As the metal flows through the die, the contribution of the straight lines increases and 
the contribution of the arcs decrease. This process is shown in Fig. 1. Because of the 
complexity of the metal flow inside the die, analysing the real process is complicated. In this 
study, the idea is to analyze the equivalent axisymmetric process instead of complicated real 
process. In equivalent process, in each position on the die axis, perpendicular cross sections 
on the actual die and the equivalent die have the same area. The profile of equivalent 
axisymmetric curved die is shown in Fig. 2. In this figure, circular bar with initial radius oR is 
drawn through the axisymmetric curved die with semi-die angleα and its radius is reduced 
to fR , whereα is the angle between the line that goes through the point where the die starts 
touching the bar, and the exit point of the die and the die axis of symmetry.  
 

 
 

Fig. 1. Drawing process of a circular round bar to a twisted square section rod 
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Fig. 2. Equivalent axisymmetric curved die, geometric parameters and its deformation zones 
 
 
3. Upper bound analysis based on the equivalent axisymmetric curved die 
 

The general equation to calculate the external power of deformation for a material with 
flow stress 0σ in an upper bound model is [19] 
 

                               ∫∫∫ ∆+∆+=
AfAsV

ijij dSUmdSUdVJ
332

1
3

2 00
0

* σσ
εεσ                   (1) 

 
where the first term of Eq. (1) is the internal power of deformation in the whole material 
volume, the second term is wasted shearing power, the third term is wasted frictional 
power, ijε are terms of strain rates, U∆ is velocity discontinuity, dS is surface element 
and m is shearing friction factor.  
 
The first step in modeling and analysing a metal forming process by use of upper bound 
approach is to select a suitable velocity field for the material which is deforming plastically. 
Fig. 2 shows a schematic diagram for the spherical coordinate system and the three velocity 
zones used in upper bound analysis. A spherical coordinate system is used to describe the 
position of the two surfaces of velocity discontinuity as well as the velocity in zones 1 to 3. 
The spherical coordinate system ),,( φθr is centered on the convergence point of the equivalent 
axisymmetric curved die. This point, as shown in Fig. 2, is defined by the intersection of the 
axis of symmetry with a line that goes through the point where the die starts touching the bar 
and the outlet point of the die. In zone 1, the incoming material is assumed to flow 
horizontally as a rigid body with a velocity ou . In zone 3, the drawn material is assumed to 
flow horizontally as a rigid body with a velocity fu . Zone 2 is the deformation region, where 
the velocity is fairly complex. Zone 1 is separated from zone 2 by a surface of velocity 
discontinuity, S1. Zone 3 is separated from zone 2 by a surface of velocity discontinuity, S2. 
The mathematical equations for radial positions of these two surfaces of velocity discontinuity 
are given by αsinff Rr = and αsinoo Rr =  for surfaces S1 and S2, respectively.  
Zone 1: In this zone, material enters the die as a rigid body and velocity components are 
 
                                           0,sin,cos 00 ==−= φθ θ UuUθuU r                                      (2) 
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where ou is the speed of the bar in the entrance of the die and it is 
 

                                                               f
o

f
o u

R
R

u
2









=                                                           (3) 

 
Zone 2: The base radial velocity within this zone rU can be obtained by assuming the volume 
flow balance. In Fig. 2, the volume flow of the material across the surface S1 at the 
point ),,( 0 φβr in the radial direction is  

 
                                                φβββ drdrudQ )sin)((cos 000−=                                            (4) 
 
The volume flow of the material in the radial direction at the point ),,( φθr in the deformation 
region (see Fig. 2) is 

 
                                                        φθθ drrdUdQ r )sin)((=                                                  (5) 
 
By equating Eqs. (4) and (5), the base radial velocity component in zone 2 is found to be 
 

                                                     
θ
ββ

θ
β

d
d

r
r

uU r cos
sin
sin)( 20

0−=                                             (6) 

 
If assuming the proportional distance in a cylindrical sense from the centreline [20], then it 
yields 

 

                                                                 
ψ
α

θ
β

sin
sin

sin
sin

=                                                           (7) 

 
whereψ is the angular position of a  point on the equivalent die curve at radial position r . By 
differentiating Eq. (7), it yields 
 

                                                         
ψ
θα

θ
ββ

sin
cossincos =

d
d                                                     (8) 

 
By Substituting Eq. (8) in Eq. (6), the radial velocity component is obtained as 
 

                                                       
ψ

θα
2

22

sin
cossin







−=

r
r

uU o
or                                              (9) 

 
The full velocity field for the metal flow in the deformation zone 2 is obtained by invoking 
the volume constancy. The volume constancy in spherical coordinates is defined as 

 
                                                                0=++ zzrr εεε θθ                                                     (10) 
 
where iiε is the normal strain rate component in the i -direction. The strain rates in spherical 
coordinates are defined as 
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where iiε  (with ji = ) is a shear strain rate component. With assumption of the rotational 
motion of the material in the deformation zone 2, the rotational component of velocity for a 
point in this zone can be given by  
 
 
                                                                    θωφ sindrU =                                                    (12) 
 
 
The angular component of velocity field is obtained by placing rU and φU , Eqs. (7) and (12) 
into Eq. (10) and solving for θU , and apply the boundary condition along the centerline, then 

 

                                                           
ψψ

θαψ

θ tansin

sinsin
2

2
2

r
r

r
uU o

o
∂
∂

−=                                       (13) 

 
where the angular velocity of the die dω depends on drawing speed fu and helix angle of dieλ , 
as 
 

                                                                    
λ

ω
tanf

f
d R

u
=                                                     (14) 

 
If the helix angle of the die is 90=λ , then angular velocity of the die will be equal to zero 
and consequently square section exits from the die without twisting.  
Zone 3: In this zone, material leaves the die as a rigid body and the velocity field is 
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                                         0,sin,cos ==−= φθ θ UuUθuU ffr                                   (15) 
 
 
The strain rate tensor for zone 2 can be obtained by using Eq. (11).  
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with the strain rate tensor and the velocity field, the standard upper bound method can be 
implemented. This method involves calculating the internal power of deformation over the 
deformation zone volume, the shear power losses over two surfaces of velocity discontinuity 
(shear surfaces), and the frictional power losses between the workpiece and the tooling. 
The equation for calculating the internal power of deformation in zone 2 that is surrounded by 
two velocity discontinuity surfaces of 1S  and 2S as well as the die surface, is calculated as 
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Equation for the power losses along the shear surface of velocity discontinuity 1S can be given 
by 
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The shear power losses along the surface of velocity discontinuity 2S are calculated as 
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With 
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Equation for the friction power losses along the die surface with a constant friction factor is 
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where the constant friction factor, m , can take on values from 0 to 1. The total externally 
supplied power ∗J is 
 

 
                                                                fd uFJ =∗                                                               (25) 
 
By the upper bound theorem, this power is less than or equal to the sum of the power terms in 
Eqs. (17), (18), (20) and (22). If one assumes equality then 
 

 
                                                      fSSi WWWWJ  +++=∗

21
                                                 (26) 

 
Finally, drawing force was calculated through dividing ∗J by drawing speed fu . In the present 
investigation, the integrals that are presented in the power terms are evaluated by numerical 
integration. 
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4. Experiments and discussion 
 
4.1 Experimental conditions and geometry of the drawing die 
 

In order to verify the theoretical results, experiments using three real rods used as 
industrial rods have been performed. The material for the experiments was St 33 and the same 
as material used for theoretical study. The chemical compositions of St 33 are shown in Table 
1. The stress–strain curve of the material was obtained using tensile test and it is shown in 
Fig. 3. The apparatus for the experiments is shown in Fig. 4. First, the drawing die is inserted 
and fixed in upper tool set. Then, the material is inserted in the drawing die and the given 
material is drawn by the lower jaw. The drawing speed was 1 mm/s. The initial round bars 
were 6 mm (Case I), 8 mm (Case II) and 10 mm (Case III) in diameters. They are drawn to 
twisted square section rods with sides of 5, 6 and 8 mm, respectively. The material of drawing 
dies were tungsten carbide with the helix angles of 83°, 80° and 77° and their lengths were 7, 
7 and 10 mm, respectively. Drawing process was operated without lubricant. Fig. 5 shows 
produced rods in the experiments. 

 

 
Fig. 3. Stress–strain curve of St 33 

 

 
Fig. 4. Experimental apparatus for the shaped drawing process 
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Fig. 5. Drawn rods 
 
 
4.2 Results and discussion 
 

The results of the experiments, measured drawing forces, for these three cases are shown in 
Fig 6. The results of theoretical and experimental data for drawing forces are compared in 
Table 1. This table shows that the error percentage for Cases I, II and III are 15%, 17% and 
20%, respectively. 

 
 

 
 

Fig. 6. Experimental drawing forces for three cases (a. Case I ) 
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Fig. 6. Experimental drawing forces for three cases (b. Case II) 
 

 
 
 

Fig. 6. Experimental drawing forces for three cases (c. Case III) 
 
 

Table 1. Analytical and theoretical drawing forces for three cases. 

Experimental drawing force  
(KN) 

Analytical drawing force  
(KN)  

Case 
No.   

9.5 10.96 I 
15.5 17.60 II 
24 30.19 III 

 
 
There are two reasons for this matter. The first one is because of using the equivalent die and 
the second is due to the nature of upper bound method in which the force is over 
estimated.The relation of drawing force and semi-die angleα for different helix angles is 
illustrated in Fig. 7. As it is shown, the optimum die angle decreases when helix angle 
increases.  
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The effect of semi-die angleα on drawing force is shown in Fig. 8 for different values of m. 
As it is expected, for a given value of m, there is an optimum die angle in which the power is 
minimized. It is also observed that the optimum die angle increases when shearing friction 
factor increases.  
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Fig. 7. Effect of helix angle of the die on the optimum semi-die angle 
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Fig. 8. Effect of friction factor on the optimum semi-die angle 
 

5. Conclusions 
 

In the process of drawing of twisted square section rod from circular bar, the drawing force 
was estimated based on an equivalent axisymmetric curved die by utilizing the upper bound 
approach. An admissible velocity field which considered the twist of material inside the die 
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was assumed. In order to verify the possibility of the application of theoretical results by 
using the upper bound method, experiments of the shaped drawing for three real industrial 
products were performed and the results were in acceptable agreement with theoretical results. 
By increasing the helix angle of die, the optimum semi-die angle decreases. Optimum die 
angle increases when shear friction factor increases. 
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