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Abstract 

In this study, the differential transformation method (DTM) has been used for thermal characteristics of straight 
rectangular fin for all type of heat transfer and numerical comparison between DTM and adomain decomposition 
method (ADM) and exact analytical solution method as well as problem is solved numerically with fourth order 
Rang- Kutta method using shooting method because one of the boundary conditions is boundary value. Local heat 
transfer coefficient is assumed to vary power-law function of temperature. The obtained differential transform 
approximate analytic solution is in the form of an infinite power series, so that with obtained explicit form of 
temperature profile, the fin tip temperature, fin base heat transfer rate, and fin efficiency can be calculated directly 
from temperature profile easily, but in the exact analytical method obtained implicit form of temperature profile. 
Results showed that present results have excellent agreement with ADM results and exact analytical method results. 
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1.Introduction 

 

Fins are one of the most problems in the heat transfer to increase rate of heat transfer on a solid 
surface. For the cases of constant heat transfer coefficient, the analytical solution of temperature 
profile and rate of heat transfer can be easily obtained [1]. However in some problem such as 
boiling liquid, the heat transfer coefficient of fin no constant and varies with temperature 
difference between surface and the adjacent fluid in a nonlinear manner. The dependence of heat 
transfer coefficient on the local temperature difference can be governed by a power–law type 
form. Numerous studies have devoted to the analysis of fin performance of this type of problems 
due to its important application in engineering. Chang [2] solved a decomposition solution for 
temperature dependent surface heat flux. ADM results used for compared with results of the 
present study. Joneidi and Ganji [3] solved differential transformation method to determined fin 
efficiency of convective straight fins with temperature dependent thermal conductivity.  Later 
Unal [4-7] made a series studies on an extended surface with nonuniform heat transfer coefficient 
and showed that the equation can be integrated analytically in a closed form for a limited number 
of cases. Liaw and Yeh [8] used the same model and further studies all possible type of heat 
transfer including the cases of film and transition boiling with and without heat transfer at fin tip. 
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They also conducted an analytical and experimental study for a fin with a various type of boiling 
occurring simultaneously at adjacent location on its surface [9]. 

Abbasbandy and shivanian [10] made exact analytical solution of a nonlinear equation 
arising in heat transfer that nonlinear equation same with equation that solved in this study with 
DTM. Of course, in the present study solution represented by an infinite series, but in the paper 
solved equation pure analytically. Sen Kou, Lee and Lai [11] made thermal analysis of a 
longitudinal fin with variable thermal properties by recursive formulation. Khani and abdul Aziz 
[12] made thermal analysis of a longitudinal trapezoidal fin with temperature dependent thermal 
conductivity and heat transfer coefficient, in this paper used of HAM for solved equation. In the 
present study for the comparison, problem solved numerically by Rang-Kutta fourth order 
method for N=1 and several assigned value of n. The concept of differential transformation 
method was first introduced by Zhou [13] in 1986 and it was used to solve both linear and 
nonlinear initial value problem in electric circuit analysis. One of most Advantages of this 
method reducing the size of computational work while the Taylor series method is 
computationally taken long time for large orders. Aziz and Hug [14] used the regular perturbation 
method and a numerical solution to compute a closed form solution for a straight convective fin 
with temperature-dependent thermal conductivity. The HAM was used by Domairry and Fazeli to 
solve rectangular purely convective fin with temperature dependent thermal conductivity [15]. 
Khani, ahmadzade Raji, and Hamidi Nejad [16] used HAM to evaluate the analytical 
approximate solution and efficiency of the nonlinear fin problem with temperature dependent 
thermal conductivity and heat transfer coefficient. Mustafa Inc [17] used HAM to evaluate the 
efficiency of straight fin with temperature dependent thermal conductivity and to determine 
temperature distribution within the fin. Arslanturk [18] and Rajabi [19] used the ADM and HPM 
to evaluate the efficiency of straight fins with temperature dependent thermal conductivity and to 
determine the temperature distribution within the fin. Lesnic and Heggs [20] applied the ADM to 
determine the temperature distribution within a single fin with a temperature dependent heat 
transfer coefficient. Ching-Huang and Chen [21] used to adomain decomposition method to 
evaluate fin efficiency and the optimal length of convective rectangular fin with variable thermal 
conductivity, and to determine the temperature distribution within the fin. Kundu and Das [22] 
made the thermal analysis and optimization of straight taper fins has been addressed. In this paper 
has been observed that the variable heat transfer coefficient has a strong influence over the fin 
efficiency. Mokheimer [23] investigated performance of annular fins of different subject to 
locally variable heat transfer coefficient, in this paper performance of fin expressed in terms of 
fin efficiency as a function of the ambient and fin geometry parameters. 

Recently, differential transformation method has been used to solve a wide range of physical 
problem. This method provides a direct scheme for solving linear and nonlinear deterministic and 
stochastic equation without the need for linearization and yield rapidly convergent series solution. 
Rashidi and Erfani [24] used DTM for solved fin efficiency of convective straight fins with 
temperature dependent thermal conductivity and comparison results with HAM. Chiam [25] used 
of perturbation method for solve heat transfer in a fluid with variable thermal conductivity over a 
linearly stretching sheet.  Their results of this study showed that the differential transformation 
method has many merits including fast convergence and high accuracy. In this study is to apply 
differential transformation method to investigate a straight fin governed by power-law type 
temperature dependent heat transfer coefficient. Base of DTM, temperature on the fin surface can 
be expressed explicitly as a function of position along the fin. The effect of exponent value and 
fin parameter on temperature profile as well as fin tip temperature can also be obtained quickly. 
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In addition to, heat transfer rate and fin efficiency are presented in detail. In the present study 
results are compared with [2, 10].  
 

2. Fundamentals of differential transformation method  

   We suppose( )y t to be analytic function in a domain D and it t= represented any point in D. The 

function ( )y t is the represented by one power series whose center is located atit . The Taylor 

series expansion function of ( )y t is of the form 
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 The particular case of Eq. (1) when 0it =  is referred to as the Maclurin series of ( )y t and is 
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As expressed in that differential transformation method of the function ( )y t is defined as follow:  
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Where ( )y t is the original function and ( )Y j is the transformed function. The differential 
spectrum of the ( )Y j is confined within the interval [0, ]t H∈ , where H is a constant. The 
differential inverse transform of ( )Y j is defined as follow: 
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                        (4) 

Some of the original function and transformed function is shown in Table 1. It is clear that the 
concept of differential transformation is Taylor series expansion. For assigned solution with high 
accuracy may be calculated more number of series in Eq. (4). 

 

3. Problem formulation with differential transformation method 

Consider a straight fin of length L with a uniform cross-section area A. The fin surface is exposed 
to a convective environment at temperature T∞ and the local heat transfer coefficient h along the 
fin surface is assumed to exhibit a power-law-type dependence on the local temperature 
difference between the fin and ambient fluid as 

( )nh a T T∞= −                          (5) 
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Where a is dimensionless constant, T is the local temperature on the fin surface, and exponent n 
depends to heat transfer mode. In this paper the value of n varies between -3 and 5. For example, 
the exponent n may take the value -0.25, 0, 2 and 3, indicating the fin subject to laminar film 
boiling or condensation, convection, nucleate boiling, and radiation into to free space at zero 
absolute temperature, respectively. For one dimensional steady state heat conduction, the 
equation in term of dimensionless variables X=x/L and θ = (T-T∞ )/(Tb -T∞ ) can be written as 

2
2 1

2
0;nd

N
dX

θ θ +− =  
                          (6) 

 

Where axial distance X is measured from the fin tip, Tb is the fin base temperature, and N is the 
convective-conductive parameter of the fin defined as: 

1
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                         (7) 

 

In the above equation, hb, P, and K represent heat transfer coefficient at fin base, periphery of fin 
cross-section, and the conductivity of the fin, respectively. Boundary condition to Eq. (6) can be 
expressed as 

0 0
d

X
dX

θ= =  

1 1X θ= =  

                         (8) 

   

                         (9) 

In the transformation method power of variables should be integer and positive [24]. So that Eq. 
(6) solved with DTM for any value of n separately, for difference n taking the one-dimensional 
transform of Eq. (6) by using related definition that, is showed in Table 1, we have  
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In the Eqs. (18), (19) and (20),  can be expressed as 

 

( ) 1   for    0

0   otherwise
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Table 1 The fundamental operations of differential transform method. 

Original function Transformed function 
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Now, dimensionless temperature is given by 
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Furthermore, applying the DTM to Eqs. (8) and (9) the boundary condition is given as follow 
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By assuming 

( )0 ,F β=                          (24) 

So that, substituting Eqs. (23) and (24) in Eq. (10) to (20) and by recursive method we can 
calculating another values of ( )F j , in this paper for example we calculate another values of 

( )F j  for n=1, and some results are listed as 
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For another value of n assigned ( )F j  similarity, by applying Eq. (23), we can obtain β . Hence 
substituting all ( )F j in to (22) we have series solution as below 



 

 

7 

( )
2 2 4 3 6 4 8 5

2 4 6 8 ....
2 12 72 504

N N N N
X X X X X

β β β βθ β= + + + + +  
 
                         (26) 

 

4. Result and discussion 

   In this study has been used of 50 terms of Eq. (22) which is sufficient for assigned good 
accuracy. Relationship between N and (0) eθ θ= for 1 5n− ≤ ≤  is shown in Fig. 1, but 0 5n< ≤  is 
usually used in this paper. Fig. 1 shows that, while the value of N increases then the fin base 
temperature decreases and with increasing the exponent value n the fin base temperature at the 
same value of N increase. Comparison between the present results and other reported results is 
shown in Table 2. The results are depicted in Table 2 show that have an excellent agreement 
between present and other reported results.  Note that there is no solution for integer value of n 
less than -1 at N=1.  Present method has a fast convergence and good accuracy. The temperature 
profile for several assigned values of n for N=1, as shown in Fig. 2. For validation of present 
results, these results are compared with ADM results [2] that have been shown in Fig. 2. 
According to Eq. (22), the temperature along the fin is expressed function of position X, so that 
temperature profile for any value of n assigned easily.  

 
Fig. 1. The variational relationships of N and θe for several assigned values of n. 

 
Table 2 Comparison of fin base temperature between present study, ADM, numerical solution, 

and exact analytical solution for N=1 and N=0.5 for several assigned values of n. 
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Fig. 2. Temperature profile for several assigned value of n at N=1 

 

Abbasbandy and Shivanian [10] assigned temperature profile for difference value of N and n, 
they presented analytic exact solution in implicit form from for each value of parameters of 
equation, but in this method assigned complicated formula implicitly that should be solve with 
one of the mathematics software. 

N=1 
             

 N=0.5 

n Present ADM [2] Numerical 
solution  

Exact 
solution 
[10] 

Present  ADM [2] Numerical 
solution 

Exact 
solution 
[10]  

-2 - - - - 0.858211 0.858168 0.85635 0.85878 
-1 0.5 0.5 0.495008 0.5 0.875 0.875 0.87375 0.875 
-0.5 0.594447 0.594458 0.59186 0.594446 0.881358 0.881358 0.880285 0.881358 
0 0.648054 0.648054 0.647887 0.648054 0.886819 0.886819 0.88588 0.886819 
0.5 0.684781 0.684779 0.68466 0.684781 0.891586 0.891586 0.89076 0.891586 
1 0.712258 0.712263 0.712166 0.712256 0.895804 0.895804 0.895061 0.895804 
2 0.751635 0.75166 0.751568 0.751622 0.902974 0.902974 0.90237 0.902974 
3 0.779177 0.779217 0.77911 0.779145 0.908889 0.90889 0.908385 0.908889 
4 0.799894 0.79994 0.79982 0.79984 0.913888 0.91389 0.91346 0.913887 
5 0.816226 0.816268 0.816135 0.816149 0.918191 0.918194 0.91782 0.91819 
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One of the most problems in the fins are heat transfer rate of fin base, and can be indicate by the 

dimensionless temperature gradient bQ with the definition (1)
b

d
Q

dX

θ= . Fig. 3 shows dependence of 

bQ  and N for several assigned values of n, in this study variation of bQ  with N for   

has been shown in Fig. 3. Fig. 3 illustrates that bQ  for negative value of n is more than positive 

value of n. The value of bQ  can be simply obtained via the direct differentiation of Eq. (22). It is 

found that the parameter bQ  increases with N for all the values n considered. 

One of the most characteristics in the fins is consisted fin efficiency and fin effectiveness that 
study in heat transfer problems in the engineering. In this study, the fin efficiency can be obtained 
easily, if we define the fin efficiency η the usual way as the ratio of total heat transfer to that of 
fin at the base temperature, with the above definition, the fin efficiency can be expressed as, 

 

( ) 1
10
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.
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L

n

b b

Ph T T dx
dX

PLh T T
η θ∞ +

∞

−
= =

−
∫

∫  

 
                         (27) 

 
 

 
Fig. 3. the variation of bQ  with N for several assigned values of n. 
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Fig. 4.  variation of fin efficiency with N for several assigned values of n 
 

Variation of efficiency with N for several assigned values of n is shown in Fig. 4. The efficiency 
of fin for n=-1 is equal 1, that this result is not physically in the real world. So that Eq. (27) is 
valid only for 1n ≥ −   as shown in Fig. 4, It is found that the fin efficiency decreases with N as 

1n > −  , and while the value of n increases, the value of η decreases in the same value of N. 

 

5. Conclusion 

The differential transformation method has been used to solution of the heat conduction problem 
for fin with temperature dependent heat transfer coefficient, in this paper heat transfer coefficient 
varying as a power-law   function of temperature. This method is not a exact analytical solution 
because final solution of this method is infinite power series function, but this method without 
any assumption and linearization similar ADM, this character is very important for system with 
strong nonlinearities which extremely sensitive to small changes parameters. One of the other 
advantages of this method is that fast convergence and good accuracy. In this paper were 
compared DTM, ADM [2], numerical and exact analytical solution [10] together. With 
comparison of four methods together conclude that present result are high accuracy relatively 
ADM and numerical with exact analytical solution method, but difference between DTM and 
ADM results are not sensibility.  The fin efficiency and heat transfer rate of fin base can be 
obtained from explicit form of temperature profile quickly, but in the exact analytical method 
[10] have a complicated implicit form for temperature profile related to position of X  that should 
be used of mathematics software. From DTM can be applied to nonlinear heat conduction 
problem and highly nonlinear problem in engineering. 
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