
7 
 

FREE VIBRATION ANALYSIS OF WALL-FRAME STRUCTURES BY 
DIFFERENTIAL QUADRATURE METHOD  

 
Kanat Burak Bozdogan                                 

Department of Civil Engineering 
Cumhuriyet University, 35540 

Sivas, Turkey 
kbbozdogan@yahoo.com.tr 

                               

 
Abstract- Differential Quadrature Method (DQM) has very wide applications in the 
field of structural vibration. The main advantages of the Differential Quadrature Method 
are its inherent conceptual simplicity and the fact that easily programmable. In this 
paper free vibration analysis of wall-frame structures were studied. A wall-frame 
structure was modeled as an cantilever beam in this study. The governing differential 
equation of wall-frame structures were solved using Differential Quadrature Method 
(DQM). At the end of the study, a sample taken from literature was solved and the 
results were evaluated in order to test the convenience of the method. 
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1.INTRODUCTION 
 
  
  A number of methods, such as finite element method, has been developed for analyses 
of buildings. The continuum model is a very simple and efficient method used in static 
and dynamic analysis of shear wall-frame buildings. There are numerous studies [1-44] 
in the literature regarding the continuum method. In continuum model a wall-frame 
structure was modeled as an cantilever beam. The governing differential equations of 
equivalent  shear flexure cantilever beam are formulated using the continuum approach. 
 
The Differential Quadrature Method (DQM) was initially presented by Bellman et al. 
[45-46] as an efficiently and accurate numerical method to solve differential equations. 
Afterwards many researchers demonstrated their successful applications of the method 
in mechanics [47-64].  In this study free vibration analysis of wall-frame structures were 
studied using Differential Quadrature Method (DQM). The following assumptions are 
made in this study; the behavior of the material is linear elastic, small displacement 
theory is valid, P-delta effects and axial deformation in columns and walls are 
negligible, the structures are regular (i.e their characteristics do not vary over the 
height), the floor slabs of the buildings have great in-plane and small out-of- plane  
stiffness, torsion effects are negligible.     
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2.1. Physical Model 
 

  The behavior of the wall-frame structures ignoring axial deformations of 

wall and columns may be presented by combination of flexural cantilever beam 

and shear cantilever beam deforming in bending and shear configurations (Fig. 

1.) [22-42].     

 

 

 

 

 

 

 

 

 

 

            In the Figure 1.  EI are the total bending rigidities of shear walls, (Ks) are 

the equivalent shear rigidity of the storey for framework. For frame elements 

which consists of n columns and n-1 beams , Ks can be calculated as follows [7, 

23] : 
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Figure 1. Physical model of equivalent sandwich beam 
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where ∑ hI c /   represents the sum of moments of inertia of the columns per 

unit height  of frame , and ∑ lI g /  represents the sum of moments of inertia of 

each beam per unit span across one floor of frame.     

 
2.2. Exact Solution of Governing Equation of Wall-Frame Structures  
 The  governing equation for free vibration of wall-frame structures can be 
written as [22-42]. 
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where ρ is the mass per unit length in the model, H is the total height of the building 
u(ξ, t)  is the lateral displacements at non-dimensional height ξ=z/H (varying between 
zero at the base of the building and one at roof level) at time t. 
If a sinusoidal variation of u with circular frequency ω is assumed then 
 

)sin()(),( tytu ωξξ =                                                                                               (3) 
 
Where y(ξ) is the amplitude of the sinusoidally varying displacement. 
 
Substituting Eq.( 3) in Eq. (2) results  
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The boundary conditions of a problem are; 
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Under the boundary conditions the exact solution of Equation (4), the circular 
frequencies are obtained as 
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 For the first three modes values for  frequency parameter (η) are given in Table 1, 
Table 2 and Table 3 as a function of parameter k [41]. 
 
 

Table 1   Frequency parameter (η)  for the first natural frequency 
 
 
 
 
 
 
  
  
 
 
 
 

 
 
 

 
Table 2   Frequency parameter (η)  for the second natural frequency 

 
 
 
 
 
 
 
 

k Η k η k η k η k η 

0 0.5596 4.5 1.465 9.5 2.680 14.5 3.913 20 5.278 

0.1 0.5606 5.0 1.586 10 2.803 15.0 4.036 30 7.769 

0.5 0.5851 5.5 1.706 10.5 2.926 15.5 4.160 40 10.26 

1.00 0.6542 6.0 1.827 11.0 3.049 16.0 4.284 50 12.76 

1.50 0.7511 6.5 1.949 11.5 3.172 16.5 4.408 60 15.26 

2.00 0.8628 7.0 2.070 12.0 3.295 17.0 4.532 70 17.76 

2.50 0.9809 7.5 2.192 12.5 3.418 17.5 4.656 80 20.26 

3.00 1.1014 8.0 2.313 13.0 3.542 18.0 4.781 90 22.76 

3.5 1.2226 8.5 2.435 13.5 3.665 18.5 4.905 100 25.26 

4.00 1.3437 9.0 2.558 14.0 3.789 19.0 5.029 >10000   k/4 

k η k η k η k η k η 

0 3.507 4.5 5.290 9.5 8.643 14.5 12.19 20 16.18 

0.1 3.508 5.0 5.606 10 8.992 15.0 12.55 30 23.54 

0.5 3.536 5.5 5.929 10.5 9.342 15.5 12.91 40 30.97 

1.00 3.622 6.0 6.257 11.0 9.694 16.0 13.27 50 38.43 

1.50 3.760 6.5 6.590 11.5 10.05 16.5 13.63 60 45.90 

2.00 3.943 7.0 6.926 12.0 10.40 17.0 13.99 70 53.38 

2.50 4.165 7.5 7.266 12.5 10.76 17.5 14.35 80 60.86 

3.00 4.416 8.0 7.607 13.0 11.11 18.0 14.72 90 68.35 

3.5 4.691 8.5 7.951 13.5 11.47 18.5 15.08 100 75.84 

4.00 4.984 9.0 8.296 14.0 11.83 19.0 15.45 >10000 3k/4 
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Table 3   Frequency parameter (η)  for the third natural frequency 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2.3. Solution  Governing Equation of Wall-Frame Structures via Differential 
Quadrature Method (DQM)  
 
 
As shown in Figure 2 we consider a one- dimensional problem. It is assumed that a 
function y(ξ) is smooth over the whole domain.  
 
 
 
 
 
 
 
                   
                 
 
 
If it assumed that y is a polynomial of degree n-1, y function can be written as; 
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where ai-1 are the coefficients, n is the number of nodes.  
 
  
Using Equation (7), the first second, third and fourth derivatives of y function respect to 
ξ can be written as 
    

k η k Η k η k η k η 

0 9.819 4.5 11.65 9.5 16.27 14.5 21.72 20 28.06 

0.1 9.820 5.0 12.04 10 16.79 15.0 22.28 30 40.01 

0.5 9.844 5.5 12.44 10.5 17.32 15.5 22.85 40 52.21 

1.00 9.919 6.0 12.87 11.0 17.85 16.0 23.42 50 64.53 

1.50 10.04 6.5 13.32 11.5 18.39 16.5 23.99 60 76.90 

2.00 10.21 7.0 13.78 12.0 18.94 17.0 24.57 70 89.31 

2.50 10.42 7.5 14.26 12.5 19.49 17.5 25.15 80 101.74 

3.00 10.68 8.0 14.75 13.0 20.04 18.0 25.72 90 114.19 

3.5 10.97 8.5 15.25 13.5 20.59 18.5 26.30 100 126.65 

4.00 11.30 9.0 15.75 14.0 21.15 19.0 26.89 >10000 5k/4 

1 2 3 n 

y1=y(0) y2 y3 yn=y(1) 

Figure 2 Discretization of one Dimensional Problem  
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Functional values in the whole domain can be written as;   
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Where h is the  distance of two grid points and is equal to 1/(n-1).  
 
 
Equation (13) shows the matrix form of equations (12.1),(12.2)….. (12.n) 
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Using Equations (11), (9) and (7) Equation (4) can be written as 
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When consider the boundary conditions Equations (5a), (5b),(5c) and (5d) can be 
written as  
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Using Equations (14),(15),(16),(17) and (18) the matrix equation (19) can be written  
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The elements of B matrix can be written as follows; 
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When coefficients vector is solved out from Equation (19) and is substituted to the 
Equation (13), Equation (28) is obtained. 
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The values of ω which set the determinant of  C matrix to zero are the circular 
frequencies. 
 
 

3. A VALIDITY OF THE METHOD 
 

In this part of the study for a different values of k parameter, is obtained frequency 
parameter (η) using Differential Quadrature method  and compared with the exact 
values in Table 4, Table 5 and Table 6. A program for Differantial Quadrature Method 
was prepared in MATLAB.  
 

                Table 4   Comparison of Frequency parameter (η)  for the first natural frequency 
 
 
 
 
 
 
 
 
 

k Analytical   DQM 

(n=8) 

DQM 

(n=10) 

DQM 

 (n=12) 

0 0.5596 0.5598 0.5596 0.5596 

2 0.8628 0.8630 0.8627 0.8628 

5 1.5860 1.5836 1.5852 1.5856 

10 2.803 2.7940 2.7904 2.7992 

15 4.036 4.0721 4.0119 4.0151 

20 5.278 5.4038 5.2769 5.2418 

50 12.76 13.5890 13.2292 13.0107 

100 25.26 27.2447 26.5671 26.1624 
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Table 5   Comparison of frequency parameter (η)  for the second natural frequency 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Table 6   Comparison of frequency parameter (η)  for the third natural frequency 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
4. CONCLUSIONS 

 
In this paper free vibration analysis of wall-frame structures were studied. A wall-frame 
structure was modeled as an cantilever beam in this study. The governing differential 
equation of wall-frame structures were solved using Differential Quadrature Method 
(DQM). At the end of the study, it was observed from the literature that the presented 
method gave results sufficient. For n=12, in the first mode the error of the DQM is 
shown to be less than 4%. Because of the main advantages of the Differential 
Quadrature Method are its inherent conceptual simplicity and the fact that easily 
programmable it can be used  at the concept design stage. 

 
 
 
 

k Analytical   DQM 

(n=8) 

DQM 

(n=10) 

DQM  

(n=12) 

0 3.5070 3.5610 3.5062 3.5070 

2 3.9430 4.0228 3.9430 3.9434 

5 5.6060 5.8078 5.6175 5.6073 

10 8.9920 9.5460 9.1260 9.0219 

15 12.5500 13.5613 12.9505 12.6929 

20 16.1800 17.6965 16.9295 16.5389 

50 38.4300 43.1441 41.4873 40.5542 

100 75.8400 85.9639 82.7547 80.9567 

k Analytical   DQM 

(n=8) 

DQM 

(n=10) 

DQM  

(n=12) 

0 9.8190   8.327 10.3306 9.7589 

2 10.2100 8.715 10.7197 10.1496 

5 12.04 10.642 12.5208 11.9811 

10 16.79 16.1474 17.2422 16.7856 

15 22.28 22.6529 22.9011 22.3987 

20 28.06 29.3597 29.0266 28.3935 

50 64.53 70.3910 68.5277 67.1584 

100 126.65 139.7029 135.9768 133.4607 
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