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Abstract 

In the modern technology, the plates of variable thickness are widely used in engineering applications i.e. nuclear reactor, 
aeronautical field, naval structure, submarine, earth-quake resistors etc. In this paper thermal gradient effect on vibration of 
square plate having one -direction thickness variations is studied. The non-homogeneity is assumed to arise due to the 
variation in the density of the plate material. Rayleigh Ritz method is used to evaluate the fundamental frequencies. Both the 
modes of the frequency are calculated by the latest computational technique, MATLAB, for the various values of taper 
parameters and temperature gradient. All the results are presented in the graphs. 
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1. Introduction 
 

With the advancement of technology, the requirement to know the effect of temperature on 
visco-elastic plates of variable thickness has become vital due to their applications in various 
engineering branches such as nuclear power plants, engineering, industries etc. Further in 
mechanical system where certain parts of machine have to operate under elevated 
temperature, its effect is far from negligible and obviously cause non-homogeneity in the 
plate material i.e. elastic constants (young modulus etc.) of the materials becomes functions of 
space variables.  Many researchers [1-9] have analysed the free vibration of visco-elastic 
plates with variable thickness for many years. 
 
The aim of present investigation is to study the one dimensional thermal effect on the 
vibration of visco-elastic square plate whose thickness varies linearly in one directions. Due 
to temperature variation, we assume that non homogeneity occurs in Modulus of Elasticity 
(E)For various numerical values of thermal gradient and taper constants; frequency for the 
first two modes of vibration are calculated with the help of MATLAB. All the numerical 
calculations will be carried out using the material constants of alloy 'Duralium'.  
 
 2. Equqtion of Motion  And Analysis 

 
Differential equation of motion  for visco-elastic square plate of variable thickness in 
Cartesian coordinate is given by equation (2.1) respectively [1]: 
 

( ) ( ) ( )1 xxxx xxyy yyyy 1 x xxx xyy 1,y yyy yxx

2
1,xx xx yy 1,yy yy xx 1,xy xy

[D W, 2W, W,  2D, W, W,  2D W, W,

D (W, W, ) D (W, W, ) 2(1 )D W, ] hpW  0   ν ν ν ρ

+ + + + + + +

+ + + + − − =
     (2.1) 
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which is a differential equation of transverse motion for non-homogeneous plate of variable 
thickness. Here, D1 is the flexural rigidity of plate i.e. 
  

  
3 2

1 / 12(1 )D Eh v= −     (2.2) 

 
and corresponding two-term deflection function is taken as [7] 
 

2
1 2[( / )( / )(1 / )(1 / )] [ ( / )( / )(1 / )(1 / )]W x a y a x a y a A A x a y a x a y a= − − + − −                                        (2.3) 

 
Assuming that the square plate of engineering material has a steady one dimensional 
temperature distribution i.e 
 

 0(1 / )x aτ τ= −                    (2.4) 

 
where, τ  denotes the temperature excess above the reference temperature at any point on the 
plate and 0τ  denotes the temperature at any point on the boundary of plate and “a” is the 

length of a side of square plate. The temperature dependence of the modulus of elasticity for 
most of engineering materials can be expressed in this form, 
 

   ( )γτ-10EE =                (2.5) 

 
where, E0 is the value of the Young's modulus at reference temperature i.e. 0τ =  and γ  is 
the slope of the variation of E withτ . The modulus variation (2.6) become 
 

0[1 (1 / )]E E x aα= − −                            (2.6) 

 
where, 0 (0 1)α γτ α= ≤ <   thermal gradient. It is assumed that thickness also varies linearly 

in one direction as shown below: 
 

0 1(1 / )h h x aβ= +                           (2.7) 

 
where, β1  are taper parameters in x direction respectively and h=h0 at x=0.Put the value of E 
& h from equation (2.6) & (2.7) in the equation (2.2), one obtain 
 

 
3 3 2

1 0 0 1[ [1 (1 / )] (1 / ) ]/12(1 )D E x a h x a vα β= − − + −         (2.8) 

 
Rayleigh-Ritz technique is applied to solve the frequency equation. In this method, one 
requires maximum strain energy must be equal to the maximum kinetic energy. So it is 
necessary for the problem under consideration that 
 

 
* *( ) 0V Tδ − =                       (2.9) 

 
for arbitrary variations of W satisfying relevant geometrical boundary conditions.  
Since the plate is assumed as clamped at all the four edges, so the boundary conditions are  
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, 0xW W= =   , 0 ,x a=  

              , 0yW W= =      ,
0,y a=              (2.10) 

 
Now assuming the non-dimensional variables as 
 

/ , / , /X x a W W a h h a= = =              (2.11)   
                              
The kinetic energy T* and strain energy V* are [2] 
 

1 1* 2 5 2
0 10 0

(1/ 2) [(1 ) ]T p h a X W dYdXρ β= +∫ ∫      
 (2.12)  

 
and 
 

  
1 1* 3 2 2

10 0

2

[1 (1 )](1 ) {( , ) ( , )

2 , , 2(1 )( , ) }

XX YY

XX YY XY

V Q X X W W

vW W v W dYdX

α β= − − + +

+ + −

∫ ∫        (2.13) 

 

where,   3 3 2
0 0 / 24(1 )Q E h a v= −  

 
Using equations (2.13) & (2.14) in equation (2.10), one get 
 

** 2 **( ) 0V Tλ− =                (2.14) 
where,   
      

1 1** 3 2 2
10 0

2

[1 (1 ))](1 ) {( , ) ( , )

2 , , 2(1 )( , ) }

XX YY

XX YY XY

V X X W W

vW W v W dYdX

α β= − − + +

+ + −

∫ ∫       (2.15)                                   

 
and  
 

 
1 1** 2

10 0
[ (1 ) ]T X W d Y d Xβ= +∫ ∫                    

(2.16) 

 
Here, 2 2 2 2

0 012 (1 ) /v a E hλ ρ= −  is a frequency parameter. Equation (2.16) consists two 

unknown constants i.e. A1 & A2 arising due to the substitution of W. These two constants are 
to be determined as follows 
 

 
** 2 **( ) / nV T Aλ∂ − ∂   , n=1, 2                  (2.17) 

 
On simplifying (2.17), one gets 
 

1 1 2 2 0b n A b n A+ =  , n =1, 2                                                      (2.18) 

 
where, bn1, bn2 (n=1,2) involve parametric constant and the frequency parameter. 



 

 

 

 

4 

 

For a non-trivial solution, the determinant of the coefficient of equation (2.18) must be zero. 
So one gets, the frequency equation as 
 

                  

11 12

21 22

0
b b

b b
=

                                                         
  (2.19) 

 
With the help of equation (2.19), one can obtains a quadratic equation in λ2 from which the 
two values of λ2 can found. These two values represent the two modes of vibration of 
frequency i.e. λ1(Mode1) & λ2(Mode2) for different values of taper constant and thermal 
gradient for a clamped plate. 

3. Result and Discussion 

All calculations are carried out with the help of Latest Matrix Laboratory computer software. 
Computation has been done for frequency of visco-elastic square plate for different values of 
taper constant β1 and thermal gradient α, at different points for first two modes of vibrations 
have been calculated numerically.  
 
In Fig 1, It is clearly seen that value of frequency decreases as value of thermal gradient 
increases from 0.0 to 1.0 for β1 = 0.0 for both modes of vibrations. In Fig 2, It is evident that 
frequency decreases continuously as thermal gradient increases, β1=0.4 respectively with the 
two modes of vibration.  
 
In Fig 3, Also it is obvious to understand the decrement in frequency for β1= 0.6 But it is also 
noticed that value of frequency is increased with the increment in β1. In Fig 4,  Increasing 
value of frequency for both of the modes of vibration is shown for increasing value of taper 
constant β1 from 0.0 to 1.0 and  α=0.4 respectively. Note that value of frequency increased. 
 
 
 
 
 

 

 

 

 

 
 
 
 
 
 

Fig 1. Frequency vs. thermal gradient at β1=0.0 
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Fig 2. Frequency vs. thermal gradient at β1=0.4 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig 3. Frequency vs. thermal gradient at β1=0.6 

 
 

 
 
 
 

 

 

 

 

 

 

Fig 4. Frequency Vs Taper constant at  α=0.4 
 

Frequency Vs Thermal gradient

0

30

60

90

120

150

180

0 0.2 0.4 0.6 0.8 1

α

 λ

Mode1

Mode2

   β1=0.4

Frequency Vs Taper constant

0

50

100

150

200

250

0 0.2 0.4 0.6 0.8 1

β1

 λ

Mode1

Mode2

   α =0.6

Frequency Vs Thermal gradient

0

30

60

90

120

150

180

210

0 0.2 0.4 0.6 0.8 1

α

 λ

Mode1

Mode2

    β1=0.6



 

 

 

 

6 

 

4.Conclusion 

Results of present paper are compared with paper [9]. It is interesting to note that value 
of frequency has greater value in this paper as compared to [9]. So, main aim for our 
research is to develop a theoretical mathematical model for scientists and design 
engineers so that they can make a use of it with a practical approach, for the welfare of 
the human beings as well as for the advancement of technology. 
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