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Abstract 
 
In this paper, the static pull-in instability of beam-type micro-electromechanical systems (MEMS) is theoretically 
investigated. Two engineering cases including cantilever and double cantilever micro-beam are considered. 
Considering the mid-plane stretching as the source of the nonlinearity in the beam behavior, a nonlinear size-
dependent Euler-Bernoulli beam model is used based on a modified couple stress theory, capable of capturing the 
size effect. By selecting a range of geometric parameters such as beam lengths, width, thickness, gaps and size 
effect, we identify the static pull-in instability voltage. A MAPLE package is employed to solve the nonlinear 
differential governing equations to obtain the static pull-in instability voltage of microbeams. The results reveal 
significant influences of size effect and geometric parameters on the static pull-in instability voltage of MEMS.  
 
Keywords: Nonlinear microbeam, modified couple stress theory, static pull-in instability,       

size effects.  
 
 
1. Introduction 
 
Micro-electromechanical systems (MEMS) are widely being used in today’s technology. So 
investigating the problems referring to MEMS, owns a great importance. One of the significant 
fields of study is the stability analysis of the parametrically excited systems. Parametrically 
excited micro-electromechanical devices are ever increasingly being used in radio, computer and 
laser engineering [1]. Parametric excitation occur in a wide range of mechanics, due to time 
dependent excitations, especially periodic ones; some examples are columns made of nonlinear 
elastic material, beams with a harmonically variable length, parametrically excited pendulums 
and so forth. Investigating stability analysis on parametrically excited MEM systems is of great 
importance. In 1995 Gasparini et al. [2] studied on the transition between the stability and 
instability of a cantilevered beam exposed to a partially follower load. Applying voltage 
difference between an electrode and ground causes the electrode to deflect towards the ground. 
At a critical voltage, which is known as pull-in voltage, the electrode becomes unstable and 
pulls-in onto the substrate. The pull-in behavior of MEMS actuators has been studied for over 
two decades without considering the casimir force [3–5]. Osterberg et al. [3, 4] investigated the 
pull-in parameters of the beam-type and circular MEMS actuators using the distributed 
parameter models. Sadeghian et al. [5] applied the generalized differential quadrature method to 
investigate the pull-in phenomena of micro-switches. A comprehensive literature review on 
investigating MEMS actuators can be found in Ref. [6]. Further information about modeling 
pull-in instability of MEMS has been presented in Ref. [7, 8]. The classical continuum 
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mechanics theories are not capable of prediction and explanation of the size-dependent behaviors 
which occur in micron- and sub-micron-scale structures. However, some non-classical 
continuum theories such as higher-order gradient theories and the couple stress theory have been 
developed such that they are acceptably able to interpret the size-dependencies. 
In 1960s some researchers such as Koiter [9], Mindlin [10] and Toupin [11] introduced the 
couple stress elasticity theory as a nonclassic theory capable to predict the size effects with 
appearance of two higher-order material constants in the corresponding constitutive equations. In 
this theory, beside the classical stress components acting on elements of materials, the couple 
stress components, as higher-order stresses, are also available which tend to rotate the elements. 
Utilizing the couple stress theory, some researchers investigated the size effects in some 
problems [12].Employing the equilibrium equation of moments of couples beside the classical 
equilibrium equations of forces and moments of forces, a modified couple stress theory 
introduced by Yang, Chong, Lam, and Tong [13], with one higher-order material constant in the 
constitutive equations. Recently, size-dependent nonlinear Euler–Bernoulli and Timoshenko 
beams modeled on the basis of the modified couple stress theory have been developed by Xia et 
al. [14],   and Asghari et al. [15], respectively. Rong et al. [16] present an analytical method for 
pull-in analysis of clamped–clamped multilayer beam. Their method is Rayleigh-Ritz method 
and assumes one deflection shape function. They derive the two governing equations by 
enforcing the pull-in conditions that the first and second order derivatives of the system energy 
functional are zero. In their model, the pull-in voltage and displacement are coupled in the two 
governing equations. 
This paper investigates the pull-in instability of micro-beams with a curved ground electrode 
under action of electric field force within the framework of von-Karman nonlinearity and the 
Euler–Bernoulli beam theory. The static pull-in voltage instability of clamped-clamped and 
cantilever micro-beam are obtained by using MAPLE commercial software. The effects of 
geometric parameters such as beam lengths, width, thickness, gaps and size effect are discussed 
in detail through a numerical study. To the authors’ best knowledge, no previous studies which 
cover all these issues are available. 
 
2. Preliminaries 
 
In the modified couple stress theory, the strain energy density u  for a linear elastic isotropic 
material in infinitesimal deformation is written as [17]: 

)3,2,1,()(
2
1 =χ+εσ= jimu ijijijij                             (1) 

Where 
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In which ijσ , ijε , ijm and ijχ denote the components of the symmetric part of stress tensorσ , the 

strain tensor ε , the deviatoric part of the couple stress tensor m and the symmetric part of the 
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curvature tensorχ , respectively. Also, u andθ are the displacement vector and the rotation 
vector. The two Lame constants and the material length scale parameter are represented byλ , µ  
andl , respectively. The Lame constants are written in terms of the Young’s modulus E and the 
Poisson’s ratio ν  as )21)(1/( ν−ν+ν=λ E  and ).1(2/ ν+=µ E The components of the 

infinitesimal rotation vector iθ are related to the components of the displacement vector field iu  

as [18]: 

ii ucurl ))((
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1=θ                              (6) 

 
 For an Euler–Bernoulli beam, the displacement field can be expressed as: 
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Where u is the axial displacement of the centroid of sections, and w denotes the lateral deflection 
of the beam. The parameter xw ∂∂ / stands for the angle of rotation (about the y-axis) of the beam 
cross-sections. Assuming the above displacement field, after deformation, the cross sections 
remain plane and always perpendicular to the center line, without any change in their shapes. It is 
noted that parameter z represents the distance of a point on the section with respect the axis 
parallel to y-direction passing through the centroid. 
 
3. Governing Equation of Motion  
 
In this section, the governing equation and corresponding classical and non-classical boundary 
conditions of a nonlinear microbeam modeled on the basis of the couple stress theory are 
derived. The coordinate system and loading of an Euler–Bernoulli beam have been depicted in 
Fig. 1. In this figure, F(x,t) and G(x,t) refer to the intensity of the transverse distributed force and 
the axial body force, respectively, both as force per unit length. 
 

 

Fig. 1. An Euler–Bernoulli, loading and coordinate system. 
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By assuming small slopes in the beam after deformation, the axial strain, i.e. the ratio of the 
elongation of a material line element initially in the axial direction to its initial length, can be 
approximately expressed by the von-Karman strain as: 
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It is noted that finite deflection w is permissible and only it is needed that the slopes be very 
small. Hereafter, we use Eq. (8) for the axial strain, instead of the infinitesimal definition 
presented in Eq. (3). Substitution of Eqs. (7) and (8) into (3)–(5) yields the non-zero components. 
Also, combination of Eqs. (6) and (7) gives [19]: 

0, =θ=θ
∂
∂−=θ zxy x

w
                                                (9) 

Substitution of Eq. (9) into (5) yields the following expression for the only non-zero components 
of the symmetric curvature tensor: 
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It is assumed that the components of strains, rotations and their gradients are sufficiently small. 
By neglecting the Poisson’s effect, substitution of Eq. (8) into Eq. (2) gives the following 
expressions for the main components of the symmetric part of the stress tensor in terms of the 
kinematic parameters: 
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Where E denotes the elastic modulus. In order to write the non-zero components of the deviatoric 
part of the couple stress tensor in terms of the kinematic parameters, one can substitute Eq. (10) 
into Eq. (4) to get: 
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Whereµ  and l are shear modulus and the material length scale parameter, respectively. 
To obtain the governing equations, the kinetic energy of the beam T, the beam strain energy due 
to bending and the change of the stretch with respect to the initial configuration bsU , and the 

increase in the stored energy with respect to the initial configuration due to the existence of 
initially axial load isU and finally the total potential energy isbs UUU += are considered as 

follows: 
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Where 0N ,  I and ρ are the axial load, area moment of inertia of section about y– axis and the 

mass density, respectively. The work done by the external loads acting on the beam is also 
expressed as: 
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Where N̂ and V̂ represent the resultant axial and transverse forces in a section caused by the 
classical stress components acting on the section. The resultant axial and transverse forces are 

work conjugate to u and w, respectively. Also, hP̂ and hQ̂ are the higher-order resultants in a 
section, caused by higher-order stresses acting on the section. These two higher-order resultants 

are work conjugate to 2)/(2/1/ xwxuxx ∂∂+∂∂=ε and 22 / xw ∂∂ , respectively. The parameter M̂ is 
the resultant moment in a section caused by the classical and higher-order stress components. 
Now, the Hamilton principle can be applied to determine the governing equation:  
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Where δ denotes the variation symbol. By applying Eqs. 13 and 14, the governing equilibrium 
micro beam is derived as: 

),(2

2

2

2

4

4

txF
t

w
A

x

w
N

x

w
S =

∂
∂ρ+

∂
∂−

∂
∂

                                 (15) 

Where 

∫ ∂
∂+=

L

dx
x

w

L

EA
NN

0

2
0 )(

2
                                                       (16) 

2AlEIS µ+=                                                                             (17) 

If in Eq. (15) , N=0, then the model of beam is called the linear equation without the effect of 
geometric nonlinearity. The cross sectional area and length of beam are A and L respectively. 
F(x,t) is the electrostatic force per unit length of the beam. The electrostatic force enhanced with 
first order fringing correction can be presented in the following equation [20]: 
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Where 21212
0 10854.8 −−−×=ε mNC is the permittivity of vacuum, V is the applied voltage, g is the 

initial gap between the movable and the ground electrode and B is width of beam. For clamped-
clamped beam, the boundary conditions at the ends are: 
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For cantilever beam, the boundary conditions at the ends are: 
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Table 1. Geometrical parameters and material properties of micro-beam. 
Material properties Geometrical dimensions 
E(GPa) ν  )( mL µ  )( mB µ  )( mh µ  )( mg µ  

77 0.33 100-500 0.5-50 0.5-4 0-30 
 

In the static case, we have 0=
τ∂

∂
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dx
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A uniform microbeam has a rectangular cross section with height h and width B, subjected to a 
given electrostatic force per unit length. Let us consider the following dimensionless parameters: 
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In the above equations, the non-dimensional parameter,δ  is defined the size effect parameter. 
Also,β  is non-dimensional voltage parameter. The normalized nonlinear governing equation of 
motion of the beam can be written as [21]: 
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4. Results and Discussion  
 
4.1. Static pull-in instability analysis 
 
When the applied voltage between the two electrodes increases beyond a critical value, the 
electric field force cannot be balanced by the elastic restoring force of the movable electrode and 
the system collapses onto the ground electrode. The voltage and deflection at this state are 
known as the pull-in voltage and pull-in deflection, which are of utmost importance in the design 
of MEMS devices. The pull-in voltage of cantilever and fixed-fixed beams is an important 
variable for analysis and design of micro-switches and other micro-devices. Typically, the pull-in 
voltage is a function of geometry variable such as length, width, and thickness of the beam and 
the gap between the beam and ground plane. To study the instability of the nano-actuator,        
Eq. (23) is solved numerically and simulated. To highlight the differences between linear and 
nonlinear geometry model results of Euler-Bernoulli microbeam, we first compare the pull-in 
voltage for a fixed-fixed and cantilever beams with a length of 100mµ , a width of 50 mµ , a 
thickness of 1mµ  and two gap lengths. For a small gap length of 0.5mµ  (shown in Fig. 2), we 
observe that linear and nonlinear geometry model give identical results. However, for a large gap 
length of 2 mµ  (shown in Fig. 3), we observe that pull-in voltage for fixed-fixed beam is 
significantly different. As shown in Fig. 4, the difference in the pull-in voltage is even larger 
when a gap length of 4.5mµ is considered. In figures 5, 6 and 7, pull-in voltage of fixed-free 
beams are shown. It is evident that pull-in voltage of fixed-fixed beam is larger than fixed-free 
beam. More extensive studies for the cantilever beam with lengths varying from 100 to 500mµ  
and thicknesses varying from 1 to 4mµ are shown in Figs. 8 and 9. The gap lengths used vary 
from 5 to 30 mµ . For gaps smaller than 15mµ  and lengths larger than 350mµ , we observe that the 
pull-in voltage obtained with linear and nonlinear geometry model are very close. However, for 
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large gaps (such as the 15mµ  case) and for short beams (such as the 100 mµ case), we observe 
that the difference in the pull-in voltage obtained with linear and nonlinear geometry model is 
not negligible. In Figs. 10-11, we investigate the fixed-fixed beam example with lengths varying 
from 100 to 500 mµ and thickness varying from 0.5 to 2mµ . We observe that, for all cases, the 
pull-in voltage obtained with linear model are in significant error (larger than 5.5%) compared to 
the pull-in voltages obtained with nonlinear geometry model. When the gap increase, the error in 
pull-in voltage with linear model increase significantly. Furthermore, contrary to the case of 
cantilever beams, the thickness has a significant effect on the error in pull-in voltages. The 
thinner the beam, the larger the error. Another observation is that the length of the beam has little 
effect on the error in pull-in voltage. This observation is also different from the case of cantilever 
beams. From the results, it is clear the linear model is generally not valid for the fixed-fixed 
beams case, except when the gap is very small, such as the 0.5 mµ case as shown in Fig. 2. Effect 
of the size effect on the pull-in voltage of fixed-fixed and fixed-free beam illustrated in Figs. 12 
and 13 respectively. These figures represent that the size effect increases the pull-in voltage of 
the nano-actuators. 
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Fig.2. Comparison of linear and nonlinear geometry model results for a fixed-fixed beam with a 
gap 0.5 mµ  
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Fig.3. Comparison of linear and nonlinear geometry model results for a fixed-fixed beam with a 
gap 2 mµ  
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Fig.4. Comparison of linear and nonlinear geometry model results for a fixed-fixed beam with a 
gap 4.5 mµ . 
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Fig.5. Comparison of linear and nonlinear geometry model results for a fixed-free beam with a 
gap 0.5 mµ  
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Fig.6. Comparison of linear and nonlinear geometry model results for a fixed-free beam with a 
gap 2 mµ . 
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Fig.7. Comparison of linear and nonlinear geometry model results for a fixed-free beam with a 
gap 4.5 mµ . 
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Fig.8. Gap vs. pull-in voltage for cantilever beams with a thickness of 1mµ . For length=100mµ , 
the difference in pull-in voltage between linear and nonlinear geometry model is significant 
when the gap is larger than 15mµ . For a length larger than 350mµ , the pull-in voltages obtained 
with linear and nonlinear geometry model are identical.  
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Fig.9. Gap vs. pull-in voltage for cantilever beams with a thickness of 4mµ . For length=100mµ , 
the difference in pull-in voltage between linear and nonlinear geometry model is significant 
when the gap is larger than 15mµ . For a length larger than 350mµ , the pull-in voltages obtained 
with linear and nonlinear geometry model are identical.  
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Fig.10. Gap vs. pull-in voltage for fixed-fixed beams with a thickness of 0.5mµ . Observe the 
large difference in pull-in voltage obtained from linear and nonlinear geometry model of beam. 
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Fig.11. Gap vs. pull-in voltage for fixed-fixed beams with a thickness of 2mµ .  
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Fig.12. Pull-in voltage vs. size effect for fixed-fixed beam with gap 2.5mµ , a thickness of 1mµ , 
length 300 mµ  and width 0.5mµ , for nonlinear geometry model.  
 

0

0.5

1

1.5

2

2.5

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

size effect

no
n-

di
m

en
si

on
al

 v
ol

ta
ge

linear

nonlinear

 
Fig.13. Pull-in voltage vs. size effect for cantilever beam with gap 2.5mµ , a thickness of 1mµ , 
length 300 mµ  and width 0.5mµ , for linear and nonlinear geometry model.  
 

5. Conclusions 
 
The primary contributions of the paper are summarized as follows. 
1. For cantilever beams, length has a significant effect on the error in pull-in voltages, while for 
fixed-fixed beams, the length has little effect on the error. On the other hand, for fixed-fixed 
beams, thickness has significant effect on the error in pull-in voltage, while for cantilever beams 
it has little effect.  
2. The static pull-in instability voltage of clamped–clamped and cantilever beam are compared. 
For both clamped–clamped and cantilever beams, the pull-in voltage in nonlinear geometry beam 
model is bigger than linear model.   
3. For both fixed-fixed and cantilever beams by increasing of gap length, the pull-in voltage is 
significantly increased. 
4. For both fixed-fixed and cantilever beams by increasing of thickness of beams, the pull-in 
voltage is significantly increased. 
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5. For both fixed-fixed and cantilever beams by increasing of length of beams, the pull-in voltage 
is significantly decreased. 
6. By using modified couple stress theory, it is found that the dimensionless pull-in voltage of 
MEMS increases linearly due to the size effect. This emphasizes the importance of size effect 
consideration in design and analysis of MEMS.  
The conclusion above indicates that the geometry of beam has significant influences on the 
electro-static characteristics of micro-beams that can be designed to tailor for the desired 
performance in different MEMS applications. 
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