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Abstract 
 This paper is concerned with the theoretical analysis of static behavior of the two-directional functionally 
graded circular plate embedded on two parameter elastic foundation (Winkler- Pasternak type) under 
axisymmetric transverse and shear loads by using semi-analytical method. This method gives an analytical 
solution in the thickness and approximate solution in the radius directions by employing the state-space based 
differential quadrature method. The governing state equations are derived based on 3D theory of elasticity, and 
assuming the material properties of the plate except the Poisson’s ratio varies continuously throughout the 
thickness and radius directions in the form of an exponential function. The stresses and displacements 
distribution are obtained by expanding the state variables and solving these state equations. The effects of 
foundation stiffnesses, material heterogeneity indices, loads ratio and the plate geometric parameter on the 
deformations and stresses distribution of the FG circular plate are investigated in numerical examples. The 
main foundings are: i- the mechanical behavior of the plate with the softer (metal rich) surface supported by 
elastic foundation differ significantly from that of the plate with the harder (ceramic rich) surface subjected to 
the same foundation.ii- the effecte of shear interaction on in-plain stresses is much more than the other stress 
components.The results are reported for the first time and are discussed in detail. 
 
Key words: FG Circular Plate, Elastic Foundation, Elasticity, State - Space, DQ Method. 
 
1. Introduction 
 A new class of materials known as “two-directional functionally graded materials” (2D-FGMs) has 
found many applications in modern engineering fields such as aerospace,  mechanical, civil, nuclear 
and so on. These materials can be designed to achieve particular desired properties and the gradition 
in properties of the material and can be optimize stress distribution in various directions. There for, 
they are a convenient selection to use in structures and machine elements of modern industries such as 
spacecrafts, advanced combustion engines, power plants and high temprature turbines which usually 
subjected to multi-directional thermal and mechanical loads. 
 The analysis of static and dynamic behavior of uni and multi-directional FGMs circular plate under 
thermal and mechanical loads have gained more attension by the researchers in recent years. For 
instance, Nemat-Alla [1] introduced the concept of adding a third material constituent to the 
conventional FGMs material in order to significantly reduce the thermal stresses in machine elements 
that subjected to sever thermal loading, and his investigation on 2D-FGMs has shown that it is more 
capable of reducing thermal and residual stresses than one-directional FGMs. Nie and Zhong [2]  
investigated the axisymmetric bending of 2D-FGM circular and annular plates based on the three-
dimensional theory of elasticity using semi-analytical and ANSYS software. Lu et al. [3] presented a 
semi-analytical solution for the static analysis of multidirectional FG rectangular plate. 
Nie and Zhong [4] investigated the dynamic behavior of multi-directional FGM annular plates based 
on the three-dimensional theory of elasticity using the state- space method combined with the one 
dimensional differential quadrature rule (DQM). Alibeigloo [5] discussed bending behavior of FGM 
rectangular plate with integrated surface piezoelectric layers resting on elastic foundation.Shariyat and 
Alipour [6] analyzed the free vibration and modal stress of two-directional functionally graded 
circular plate embedded on two-parameter elastic foundations by employing the differential transform 
method. Yun et al. [7] investigated the axisymmetric bending of FG circular plates as analytically by 
using direct displacement method. Golmakani and Kadkhodayan [8] analyzed the axisymmetric 
nonlinear bending of an annular functionally graded plate under mechanical loading based on FSDT 
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and TSDT by using the dynamic relaxation (DR) method combined with the finite difference 
technique.Akgoz and Civalek [9] applied the discrete singular convolution method to investigate the 
nonlinear vibration behavior of geometrically nonlinear thin laminated plates resting on non-linear 
elastic foundation. Malekzadeh et al. [10] studied the free vibration of teperature-dependent 
functionally graded annular plates on elastic foundations by using DQ method. Yas and Tahouneh 
[11] investigated the free vibration of functionally graded annular plates on elastic foundation based 
on the three-dimensional theory of elasticity and using the differential quadrature method. Jodaei et al. 
[12] obtained the natural frequencies of FG annular plates by using semi-analytical approach and 
comparative behavior modeling with artificial neural network (ANN). Ponnusamy and Selvamani [13] 
studied the wave propagations in a thermoelastic homogeneous circular plate embedded in an elastic 
medium based on generalized two dimensional theory of thermoelasticity. Eftekhari and Jafari [14] 
employed the combined application of the finite element method (FEM) and the differential 
quadrature method (DQM) to analysis the vibration and buckling problems of rectangular plates. The 
non-linear free and forced vibration of moderately thick annular FGM plate was studied based on the 
first-order shear deformation plate theory and von Kármán-type equation by Amini et al. [15]. 
Golmakani and Kadkhodayan [16] investigated the axisymmetric bending and stretching of circular 
and annular functionally graded plates with variable thicknesses under combined thermal-mechanical 
loading based on the first-order shear deformation theory and employing the dynamic relaxation (DR) 
method to solve the governing equations. Recently author discussed the static behavior of 
unidirectional FG circular plate resting on elastic foundation under the effect of axisymmetric 
transverse load by using semi-analytical method [17]. 
 To the best of author knowledge, no work has been reported till date which concerns the static 
analysis of bi-directional functionally graded circular plate supported by elastic foundations and 
subjected to compound axisymmetric transverse and shear loads. In this work, the material properties 
of the plate except the Poisson’s ratio (ν ) are assumed to be graded in the thickness and radial 
directions according to the exponential distribution of the constituent. The formulations are based on 
the three-dimensional theory of elasticity and a semi-analytical approach, which makes use of the 
state space method and the one-dimensional differential quadrature rule is employed to extract the 
numerical results. Finally the effects of the gradient indices, thickness to radius ratio of the plate, 
loads ratio and foundation elastic coeficients on the displacement and stress fields are investigated.  
 
2. Problem formulation  
2.1  Geometry and properties of the plate 
 
 Consider a 2D-functionally graded circular plate with radius a and height h, subject to uniform 
transverse (p) and shear (q) loads on the top surface and supported by an elastic medium in the bottom 
surface, as shown in Figure 1. 

 
Fig. 1 Geometry of 2D-FGMs circular plate resting on elastic foundation 

 
 Since the plate geometry, distribution of material properties, applied loads, and boundary 
conditions are independent from circumferential direction, the problem is axisymmetric. The material 
properties of the plate except the Poisson’s ratioν , varies continuously throughout the thickness and 
radius directions in accordance with the exponential distribution as follow:   
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z r
( ) ( )0 1 2h aij ij(r,z) (0,0)eC C

+λ λ=
 
    (1) 

where  0
ij(0,0)C  are the elastic constants of the plate material in the center of bottom surface, 1λ and 

2λ  are the parameters indicating the trens of gradient. 
 
2.2  Basic equations of 3D elasticity theory  
 When referred to the cylindrical coordinates (r,θ , z), the basic equations for the axisymmetric 
problem of a transversely isotropic FGM body are  

1
r, r rz, z r( ) 0r−

θ+ + − =σ τ σ σ     
,   1

rz, r z, z rz 0r−+ + =τ σ τ     
(2) 

  
1

r , r z , z , z , rrz
, u , ,u w u wr−

θ= = = = +γε ε ε  (3) 
 

r 11 r 12 13 zC C Cθ= + +σ ε ε ε  

12 r 11 13 zC C Cθ θ= + +σ ε ε ε                    

z 13 r 13 33 zC C Cθ= + +σ ε ε ε  
rz 44 rzC= γτ  (4) 

where rσ , θσ , zσ and rzτ  are the stress components; u and w are the displacements in r-direction 

and z-direction, respectively. The comma denotes differentiation with respect to the indicated 
variable.  
 Substitution the eq. (1, 3, 4) in to eq. (2) can be leads to the following differential equations 
in terms of displacement components in the bottom surface of the plate  

0 0 00 0
1 u 12 13 23 1311 2 12 2 1 1( ( ) u) ( 1 ) ( ),zz ,r ,z,rr ,r ,rz ,z0 0 0 0r a a r h h r

44 44 44 44
0
13 2

,z0 a
44

C C CC Cu w w wu u ur
C C C C

C w
C

−−= − + + − − − + − − +

−

λ λ λ λ−

λ

0 0 00 0
13 13 441 44 2 44 2 1

,zz ,r ,rr ,r ,r ,rz ,z ,z ,z0 0 0 0
33 33 33 33

u 1 1
( ) ( ) ( )

h r r a r a h
C C CC C

w u w w w u u u w
C C C C

+
= − + − + + − + − −λ λ λ λ  (5) 

 
3. The solution procedure 
  
 In this study, a semi-analytical approach is employed to solve the governing differentials equations 
appeared in Eq. (5). This method combines the state space method (SSM) in the z- direction of cicular 
plate to obtain an analytical solution and uses the one-dimentional differential quadrature rule in the 
radial direction to express the static behavior of the plate. By using this method a linear eigenvalue 
system in terms of the displacements is established and by solving the resulted eigenvalue system, the 
stresses and displacements in variouse points of the plate are obtained. 
 
3. 1 State –space method  
 
 By taking the state variables as ,z ,zu , w, ,u w  the state space notation of equations (5) can be 

written as 

z

∂ δ =  ∂
D1
D2
  δ    

 (6)
  

where δ is the state vector and 
T

u w u w,z ,zδ =  
 

.  
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 For the sake of transform from physical domain to a normalized computational domain the 

elements of the matrixD2must normalized, for this purpose the following dimensionless quantities 

are introduced: 

z
,

h
η =  r

R ,
a

=  u
U ,

h
= w

W ,
h

=  
0
ij0

ij 0
33

C
C

C
=  (7) 

By considering these quantities the eq. (6) can be rewritten as 

  ,η
=δ  

D1
D2(R)
  δ    

 (8) 

where the elements of matrixD1 are constant and the elements of matrix D2are functions from 
variable R. 

 In order to solve the eq. (8), the special derivatves are discretized by applying the one dimensional 

differential quadrature method as an efficient and accurate numerical tool.  
 
3.2 Differential –quadrature method and its application 
 
 The differential quadrature method is a numerical solution technique for initial and/or boundary 
problems. The DQ method approximates the derivative of a function at any discrete point by a 
weighted linear summation of the functional values in the whole domain. According to this rule, the 
nth derivative of a function ( )rΦ  at discretized point ir can be approximated as [18]   

N
(n)
ij j

j 1
i

( )
(n)

n
r

(r)
rA

r =
= Φ

Φ∂
∑

∂
  

(9) 

where  N denotes the total number of discrete points, ( )rΦ  includs u, w and 
j

( )rΦ  is the function 

value at any discrete point. The weighting coefficients for the frist-order derivative in the radius 
direction can be determined as follow [18].  
 

N

i k
k 1,k i(1)

ik N

i j j k
k 1,k j

( )

( ) ( )

r r
A

r r r r

= ≠

= ≠

−

=
− −

∏

∏
  ,  

N
(1) (1)
ii ij

j 1, j i
A A

= ≠
= − ∑

  
, i j≠ ,  i, j 1,2,3, ,N= L  (10) 

The weighting coefficients of the nth-order derivatives can be obtained from the following 
relationships 
 

(n 1)
ij(1)(n) (n 1)

ij ii ij
i j

n
A

A A A
r r

−
−

 
 = −
 −
    

,  
N

(n) (n)
ii ij

j 1, j i
A A

= ≠
= − ∑

  
, n 2,3, , N 1= −L  , i j , i, j 1,2,3, ,N≠ = L  (11) 

In the present study, the grid points are taken non-uniformly spaced and are given by the following 
equation named Richard-Shu criterion. 
 

i
a (i 1)

1 cos( )
2 N 1

r
− π = − − 

, i 1,2,3, , N= L  (12) 

By implementation the one dimensional DQ rule to the derivatives of unknown functions u, w the 
following relations can be obtained. 
 

N (1)
,R ij jRi j 1

UU A
=

= ∑

   
,   

N
(1)

,R ij jRi j 1
WW A

=
= ∑

   
,  

N
(2)

,RR ij jRi j 1
UU A

=
= ∑

   
,  

N
(2)

,RR ij jRi j 1
WW A

=
= ∑
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N
(1)

,RZ j,ZijRi j 1
U UA

=
= ∑

   
,  

N
(1)

,RZ j,ZijRi j 1
W WA

=
= ∑

 (13) 
 
4. The boundary and edges conditions

  The edges and boundary conditions for solid circular plate with clamped and simply supported 

edge are defined as follow: 
 

 The regularity conditions of the plate on the centeral point are 
r 0= , , r

u 0 , 0w= =  (14) 
Clamped: 
r a=  , 0 , 0u w= =    (14-a) 
Simply supported: 
r a=  , 0 , 0r w= =σ   (14-b) 
 The boundary conditions in the bottom surface of the plate are 

rz 0=τ   , zoz (r)f=σ  at z 0=  (15) 
where zo(r)f  is the interaction between the plate and foundation. In the referred coordinate system 
this interaction can be expressed as follow 

1
zo w po o,ro,rr

)(ww wf k k r −= − +  (16) 

where zof denotes the foundation reaction per unit area and w p,k k  are the Winkler and Pasternak 

coeficients, respectively. 
 The boundary conditions in the top surface of the plate are 

rz q=−τ  , = −σz p  at =z h  (17) 
 The discretized form of equations appeared in Eqs. 14-17 can be written as  

1
1 1

2 11
0 , 0 ,

N j
j

j
R

A
U W W

A=
= = = − ∑

 (18) 
1, 0 , 0NN

R U W= = =  (18-a) 
1, 0 , 0NRN

R W= = =σ  (18-b) 
 
At 0η =  

(1)N 1 N 1
(1) (1)i i1

jij ijj (1)
j 2 j 211

h
( ) 0

a
AU W WA A
A

− −

= =
+ − =

∂η
∂

∑ ∑
 

N N N0h 1 1(1) (2) (1)i i( ) ( ( ))W Pi jij ij ijj j13a ii i2j 1 j 1 j 1R
W UU WW WA K K A AC R Re

+ + = − +
∂η = = =λ

∂
∑ ∑ ∑

  

, i 1,2,3, , N= L  (19)

 where pW
W P0 0 20 0

33 3333 33

h h
,

kk
K K

aC CC C
= =  are dimensionless coeficients of foundation. 

At 1η =  
(1)N 1 N 1

(1) (1)i i1
ij ijj j(1)

j 2 j 211

h
( ) 0

a
AU W WA A
A

− −

= =
+ − =

∂η
∂

∑ ∑
 

N0 (1)i i
ij13 j 00 ( )i1 2j 1 i 33 33

h P
( )

a R
W UUAC R C eC

+=

−+ + =
∂η λ λ

∂
∑ , i 1,2,3, , N= L  (20) 

By implement the boundary conditions in Eq. (13), the solution to Eq. (8) can be written as: 

ii i( ) exp( . ) (0)Mη = ηδ δ  (21) 

where  
T

i i i, i,i( ) ( ) ( ) ( ) ( )U W U Wη ηη =  η η η ηδ   , 
T

i i i, i,(0) (0) (0) (0) (0)U W U Wη ηδ =  
   
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i 2,3, ,N 1= −L  

and i
i

i 4(N 2) 4(N 2)

D1
M D2( )R

=
− × −

 
  

. In Eq. (21), iexp( . )M η is the matrix exponential function, i( )ηδ and 

i(0)δ  are the values of the state variables at an arbitrary plane η  and the bottom plane 0η = , 

respectively. The elements of matrix iM are  

ij (N 2) (N 2)
i

ij (N 2) (N 2)
2(N 2) 4(N 2)

0 0 0
D1

0 0 0
=

− × −

− × − − × −

  δ  
  δ   

, 0( ); 1= ≠ =δ δij iii j   (21-a) 

 

D2 ( )

11 12 13 14
ij ij ij ij

(N 2) (N 2) (N 2) (N 2) (N 2) (N 2) (N 2) (N 2)
i 21 22 23 24

ij ij ij ij
(N 2) (N 2) (N 2) (N 2) (N 2) (N 2) (N 2) (N 2)

2(N 2) 4(N 2)

b b b b
R

b b b b
=

− × − − × − − × − − × −

− × − − × − − × − − × − − × −

        
        
        
         

  (21-b) 

 
2 20 0N 1 N 11 1(2) (1)11 11 12 2( ( ) )ij 2ij ij0 2 0

i ij 2 j 2 i55 55
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λ
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ij ij
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h

ab A
−

=
= −

λ
∑  

13
ij 0 (i j)b = ≠  , 13
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0 0 0 0N 1h h 1 h(1)14 13 23 13 13( )(1 ) ( )( ) ( )ij 2ij0 0 0a a aij 255 55 55

C C C C
b A RC C C

− −
= − + + −

=
∑ λ  

0 N 1
(1)21 131

ij ij0
ij 233

h 1
( )

a
C

b A
RC

−

=
= − +λ

∑  , 
20 N 1 N 1

(2) (1)22 55
ij 2ij ij0

ij 2 j 233

1
( ( ) )

hC ( )b A A
RaC

− −

= =
= − + +∑ ∑λ  

00 0N 113 (1)23 55 55
ij ij 20 0

ij 233 33

h 1 h
( )( )
a a

CC C
b A

RC C

−

=
= − + −

+
λ∑   , 24

ij 0 (i j)b = ≠ , 24
ii 1b = − λ       , i 2,3, ,N 1= −L  

 
 
The array of Eq. (21) in the bottom and top surfaces of the plate can be written as 
 

(1) exp( ) (0)ii iM=δ δ  (22) 
where i i iexp( ) , (1) , (0)M δ δ  are the global transfer matrix and the state vectors in the bottom and top 

surfaces of the plate respectively. 
By substitution the boundary conditions discused in Eq. (19-20) in to Eq. (22) the following algebraic 
equations can be obtained  
 
GT Q=  (23) 
where G is a 4(N 2) 4(N 2)− × − matrix, Q  is a traction force vector and  

T
T (0) (0) (1) (1)U W U Wi i i i =  , i 2,3, ,N 1= −L  (24) 

 By solving Eq. (24) all displacements at 0η = , 1η = are obtained, and then all mechanical 
quantities are obtained along the thickness of the 2D-FGMs circular plate by using Eqs. (21) and (4). 
 
5. Numerical results and discussions 
5.1 Code validation 
 A computer code has been developed to study the static response of 2D-FGMs circular plate 
embedded on elastic medium to axisymmetric transverse and shear loads. Since there are no results 
available in the open litrature for 2D- FGM circular plate with compound boundary conditions. The 
results of the prepared code are compared with the results for 2D- FGM circular plate without elastic 
foundation deformed due to tansverse mechanical load with those of Nie and Zhong [2]. A clamped 
circular plate with Young’s moduli 380 Gpa and Poisson’s ratio 0.3ν = at center point of the bottom 
surface of the plate simlar as Ref. [2] is considered. Valuse of other parameters are: 
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1.0a m=  , 0.1=h a , 1 2 1= =λ λ 0 , 0, = =τ σzrz  at 0η =  and  0 , 1= = −τ σrz z GPa  at 1η =  
 The results of present code and Ref. [2] are shown in Table 1. It can be observed from Table 1 that 
the obtained results agree well. 
 

Table1. Dimensionless deflection of 2D functionally graded circular plate   
 

 
 R  

0.000 0.125 0.250 0.375 0.500 0.625 0.750 0.875 

η=0 
Ref. [2] -1.513 -1.451 -1.289 -1.052 -0.775 -0.495 -0.250 -0.075 

present -1.521 -1.460 -1.295 -1.054 -0.776 -0.493 -0.248 -0.074 

 
 For numerical illustration a clamped 2D-FGM circular plate consisting of Titanium and Zirconium 
studied earlier by Yun et al. [7] is considered. The properties of plate constituents are as table 2.  
 

Table2. Mechanical properties of FGMs plate constituents  
 

Materials Titanum Zirconium 

Young’s modulus, E(GPa) 110.25 278.41 

Poisson’s ratio, ν  0.288 0.288 

 
Valuse of other parameters are: 

1.0a m=  , 0.02=h a , (0,0) 110.25= GPaE , ( , ) 278.41=a h GPaE  (25) 
The boundary conditions are: 
 

0 ,= =τ σ zorz z f  at 0η =    and  1 , 1= − = −τ σrz zGPa GPa  at 1η =  (26) 
 
5.2 Covergence of the solution method 
 In order to extract the numerical results and to show the effect of number of discretized points on 
the solution method, the convergence of DQ rule in the radius direction is investigated and is used as 
an evaluation criterion.  For a clamped circular plate with parameters explained in Eqs. (25, 26) and  

0.1= =p wk k  
, 1 2 1= =λ λ  the non-dimensional deflection of the plate vs. number of discrete points N at 

a location R 0.5= is plotted in Fig.2. It is seen from Fig. 2 that the value of oW approaches to constant 
value as N increases. This figure confirms that the convergence of this method is high, relative to 
other numerical methods in engineering and science. The number of grid points in the next sections is 
nine (N=9). 
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o

 
Fig.2 Convergence of non-dimensional deflection of the plate at a location (R 0.5= ) 

5.3 Effect of material heterogeneity indices 
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 The effect of material heterogeneity indices on variation of mechanical quantities along the plate 
thickness with parameters defined in Eqs. (25, 26) and 0.1= =p wk k at a point R 0.96= is depicted in 

Fig.3. It is observed from from Fig. 3 that the displacements in the plate thickness direction decrease 
as heterogeneity indices increase. The value of in-plane stresses decrease gradually along the 
thickness of the plate whenη is less than 0.45 and then increase as gradient parameters increase. The 
value ofσ z and rzτ decreases in the thickness direction with heterogeneity indices increasing. The in-plane 
stresses take high values relative to other stress components due to shear force at top surface of the 
plate. 
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  c) Radial stress d) Tangential stress        
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Fig.3 Effect of the material heterogeneity indices on physical quantities across the plate thickness 
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5.4 Effect of thickness to radius ratio 
  
 Fig.4 shows the effect of thickness to radius ratio on variation of mechanical quantities along the 
thickness direction with parameters discussed in Eqs. (25, 26), 0.1= =p wk k , 1 2 ( )= =λ λ T ZLn E E at 

radius mid point. It is evident from Fig.4 that the displacements, in-plane stresses decrease and the 
transverse normal stress increase as the aspect ratio of the plate increase. The plate aspect ratio hasn’t 
a considerable effect on transverse shear stress variation through the thicknbess direction. 
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Fig.4 Effect of the geometric parameter (thickness to radius ratio) on physical quantities across the 
plate thickness 
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5.5 Effect of loads ratio 
 
 The effect of loads ratio on variation of mechanical quantities through the thickness of the plate 
with parameters discussed in Eqs. (25, 26) and 0.1= =p wk k , 1 2 ( )= =λ λ T ZLn E E at a location R 0.5=  

is plotted in Fig. 5. It is seen from Fig. 5 that all displacements and stresses increase as loads ratio 
increase. The radial displacement is affected by additional compression due to shear intraction 
therewith the in-plain stresses increases. 
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Fig.5 Effect of the loads ratio on physical quantities across the plate thickness 
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5.6 Effect of two parameter foundation 
 In order to illustrate the effect of two parameter foundation coefficients and soft/ hard surface of 
the plate supported by elastic foundation the following cases are considered in this study 
Case 1: the hard (ceramic rich) surface resting on elastic foundation with gradient parameters 

T Z1 2 Ln( )E E= =λ λ  
Case 2: the soft (metal rich) surface supported by elastic foundation with gradient indices 

Z T1 2 Ln( )E E= =λ λ  
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Fig.6 Effect of the foundation stiffnesses coefficients on physical quantities across the plate thickness 
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 Fig. 6 illustrates the displacements and stresses due to compound loading for different values of 
foundation coefficients by considering the parameters of Eq. (25, 26) and 10 , 1P q= = Gpa. It can be 
seen from Fig.6 that in both cases the displacements and stresses dcreases with increasing foundation 
stiffnesses. The pick of transverse shear stress decreases as ,p wk k increase. The variations of 

mechanical quantities for a known case differ significantly from the other case. 
  
6. Conclusions  
 
 Based on the results and discussion presented in this paper, the following main conclusions may be 
drawn. 

• The static behavior of the plate with the softer (metal rich) surface supported by elastic 
foundation differ significantly from that of the plate with the harder (ceramic rich) surface 
subjected to the same foundation. 

• The rigidity of the plate increases with the increasing of elastic foundation stiffnesses 
• The surface buckling increase as shear interaction increase  
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