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Abstract

This paper is concerned with the theoretical anialgg static behavior of the two-directional furetally
graded circular plate embedded on two parameterstelafoundation (Winkler- Pasternak type) under
axisymmetric transverse and shear loads by usimgi-s@alytical method. This method gives an anadytic
solution in the thickness and approximate solutiothe radius directions by employing the stateespbased
differential quadrature method. The governing sedeations are derived based on 3D theory of elgtiand
assuming the material properties of the plate ekd¢bp Poisson’s ratio varies continuously throughthe
thickness and radius directions in the form of afpamential function. The stresses and displacements
distribution are obtained by expanding the stateialdes and solving these state equations. Thectsffef
foundation stiffnesses, material heterogeneitydeslj loads ratio and the plate geometric parameterthe
deformations and stresses distribution of the F@utar plate are investigated in numerical exampléhe
main foundings are: i- the mechanical behaviorleé plate with the softer (metal rich) surface supgd by
elastic foundation differ significantly from that thhe plate with the harder (ceramic rich) surfamgbjected to
the same foundation.ii- the effecte of shear irdgoa on in-plain stresses is much more than tleeiostress
components.The results are reported for the finsetand are discussed in detail.
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1. Introduction

A new class of materials known as “two-directionedctionally graded materials” (2D-FGMs) has
found many applications in modern engineering feddch as aerospace, mechanical, civil, nuclear
and so on. These materials can be designed tovagbéeticular desired properties and the gradition
in properties of the material and can be optimizess distribution in various directions. There, for
they are a convenient selection to use in strustanel machine elements of modern industries such as
spacecraftsadvancedcombustion engines, power plants and high tempratubines which usually
subjected to multi-directional thermal and mechalnizads.

The analysis of static and dynamic behavior ofamd multi-directional FGMs circular plate under
thermal and mechanical loads have gained moresatterby the researchers in recent years. For
instance, Nemat-Alla [1] introduced the concept of adding tird material constituent to the
conventional FGMs material in order to significgméduce the thermal stresses in machine elements
that subjected to sever thermal loading, and hiestigation on 2D-FGMs has shown that it is more
capable of reducing thermal and residual stredsas tne-directional FGMs. Nie and Zhong [2]
investigated the axisymmetric bending of 2D-FGMcglar and annular plates based on the three-
dimensional theory of elasticity using semi-anaigtiand ANSYS softward.u et al. [3] presented a
semi-analytical solution for the static analysisvafitidirectional FG rectangular plate.

Nie and Zhong [4] investigated the dynamic behawefomulti-directional FGM annular plates based
on the three-dimensional theory of elasticity usihg state- space method combined with the one
dimensional differential quadrature rule (DQMYibeigloo [5] discussed bending behavior of FGM
rectangular plate with integrated surface piezagtelayers resting on elastic foundation.Shariad
Alipour [6] analyzed the free vibration and modaless of two-directional functionally graded
circular plate embedded on two-parameter elastindations by employing the differential transform
method. Yun et al. [7] investigated the axisymneeltrending of FG circular plates as analytically by
using direct displacement method. Golmakani andkKadayan [8] analyzed the axisymmetric
nonlinear bending of an annular functionally gragéstte under mechanical loading based on FSDT
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and TSDT by using the dynamic relaxation (DR) mdthammbined with the finite difference
technique.Akgoz and Civalek [9] applied the disergingular convolution method to investigate the
nonlinear vibration behavior of geometrically noelar thin laminated plates resting on non-linear
elastic foundation.Malekzadeh et al. [10] studied the free vibratioh teperature-dependent
functionally graded annular plates on elastic fatimhs by usinddQ method Yas and Tahouneh
[11] investigated the free vibration f©inctionally graded annular plates on elastic faiimh based
on the three-dimensional theory of elasticity anihg the differential quadrature methdddaei et al.
[12] obtained the natural frequencies of FG annplates by using semi-analytical approach and
comparative behavior modeling with artificial nduratwork (ANN). Ponnusamy and Selvamani [13]
studied the wave propagations in a thermoelastiedgeneous circular plate embedded in an elastic
medium based on generalized two dimensional thebithermoelasticity Eftekhari and Jafari [14]
employed the combined application of the finite ned@at method (FEM) and the differential
guadrature method (DQM) to analysis the vibratind buckling problems of rectangular plates. The
non-linear free and forced vibration mwibderately thick annular FGM plate was studied thasethe
first-order shear deformation plate theory and Wadérman-type equation by Amini et al. [15].
Golmakani and Kadkhodayan [16] investigated thesyarimetric bending and stretching of circular
and annular functionally graded plates with vaeathicknesses under combined thermal-mechanical
loading based on the first-order shear deformatienry and employing the dynamic relaxation (DR)
method to solve the governing equations. Recentlthax discussed the static behavior of
unidirectional FG circular plate resting on elastouindation under the effect of axisymmetric
transverse load by using semi-analytical methodl [17

To the best of author knowledge, no work has bregorted till date which concerns the static
analysis of bi-directional functionally graded cilar plate supported by elastic foundations and
subjected to compound axisymmetric transverse hedrdoadsln this work, the material properties
of the plate except the Poisson’s ratw)(are assumed to be graded in the thickness andl rad
directions according to the exponential distribataf the constituent. The formulations are based on
the three-dimensional theory of elasticity and mnisgnalytical approach, which makes use of the
state space method and the one-dimensional diffalequadrature rule is employed to extract the
numerical resultsFinally the effects of the gradient indices, thieka to radius ratio of the plate,

loads ratio and foundation elastic coeficientshandisplacement and stress fields are investigated.

2. Problem formulation
2.1 Geometry and properties of the plate

Consider a 2D-functionally graded circular platghwadius a and height h, subject to uniform
transverse (p) and shear (q) loads on the topeugad supported by an elastic medium in the bottom
surface, as shown in Figure 1.

a i P(r,z) =P

)
Lo i bbby bbb i,

q(r,z)=q

g >t

Winkler Ishear
X ayer
Springs
(Kw) (Kp)

Rigid substrate

Fig. 1 Geometry of 2D-FGMs circular plate resting on etaftundation

Since the plate geometry, distribution of material prajgsy;, applied loads, and boundary
conditions are independent from circumferentia¢chion, the problem is axisymmetric. The material
properties of the plate except the Poisson’s vatiaries continuously throughout the thickness and
radius directions in accordance with the exponédisdributionas follow:
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z r
Cin 2= 0.0 2L (1)
where Ci‘j’(o,O) are the elastic constants of the plate materitdercenter of bottom surfacg, and
)\, are the parameters indicating the trens of gradient

2.2 Basic equations of 3D elasticity theory
When referred to the cylindrical coordinatesB(r,z), the basic equations for the axisymmetric
problem of a transversely isotropic FGM body are

Or i+ T2t {0090 =0 + Tyt 0,71 T =0 (2)
€=U €T TULE,TW 2 Y, T Ut W 3)

0r=Crier* Ci£o* C1£ -

0= CrE* Cigo* Ci£ ;
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Tz~ C44yrz (4)
whereg, , gg, g, aNdy,, are the stress components; u and w are the dispiatts in r-direction
and z-direction, respectively. The comma denot#srdntiation with respect to the indicated
variable.

Substitution the eq. (1, 3, 4) in to eq. (2) carldads to the followingifferential equations
in terms of displacement components in the bottorfase of the plate

Cll( u, (1 )\_2) u r_r—2u) Clz)\ 2u A1, A1 C13)W C23 C13)1

Uzz=" B e TG o
,Z2Z C44 a y C34 ar h T ,Z c:(zl4 C:O44
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Ch @ W
__MCis u C44 W1 A2 Cis* Cls C44 LA _Clada M
W 2z~ h Cg3(u,r+ r) C —=(w rW,r"' a W,) C33 —=—(U ru2 C%S 2 Uz W (5)

3. The solution procedure

In this study, a semi-analytical approach is egioto solve the governing differentials equations
appeared in Eqg. (5). This method combines the sfee method (SSM) in the z- direction of cicular
plate to obtain an analytical solution and usesotie-dimentional differential quadrature rule ie th
radial direction to express the static behaviothef plate. By using this method a linear eigenvalue
system in terms of the displacements is establiahety solving the resulted eigenvalue system, the
stresses and displacements in variouse point®gdl#te are obtained.

3. 1 State —space method

By taking the state variables asw,u, ,w, the state space notation of equations (5) can be

written as
501=| Baf[® ©)

i T
whered is the state vector anid:[u W ou gz W,z} .
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For the sake of transform from physical domainat;ormalized computational domain the
elements of the matrix2must normalized, for this purposke following dimensionless quantities

are introduced:

z r u w —o Ci
= — = — = — = — ~ :_”
Ty R VT W Gt )
By considering these quantities the eq. (6) carebeitten as
_[ D1
[8] = ot [2] ®)

where the elements of mattit are constant and the elements of maiXare functions from
variable R.

In order to solve the eq. (8), the special devesatare discretized by applying the one dimensional
differential quadrature method as an efficient aocurate numerical tool.

3.2 Differential —quadrature method and its applicdion

The differential quadrature method is a numersmution technique for initial and/or boundary
problems. The DQ method approximates the derivadfve function at any discrete point by a
weighted linear summation of the functional valireshe whole domain. According to this rule, the
nth derivative of a functiom (r) at discretized poing; can be approximated as [18]

Mo (r N
OO0 S AP a(r) ©
or L
|
where N denotes the total number of discrete pgbnt) includs u, w anda( rj) is the function

value at any discrete point. The weighting coeéfits for the frist-order derivative in the radius
direction can be determined as follow [18].

N
[T ri—ro N
Al(lil-): k—l,k¢|N , I(Il):_ Z A”(l) , |¢J , i,j:l,2,3,"' N (10)
(ri-r,-) |_| (I‘j ~Ik) J=L A
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The weighting coefficients of the nth-order dernves can be obtained from the following
relationships

(n-1)
1 Aj

N
L A== 2 AW n=2,3 N-1,0%),0,) =123 N (11)
T

j=L j#

Ai(jn) -n Aii(n—lzb\ij(

In the present study, the grid points are taken nagioumly spaced and are given by the following
equation named Richard-Shu criterion.

=811 cos@ UMy 21,23,
r‘_z[l cosm)}J 1,2,3;--,N 12)

By implementation the one dimensional DQ rule ®dlerivatives of unknown functions u, w the
following relations can be obtained.

N N N N
- 1 = €] = (2) = (2)
U, A U; W,R\R_—J%Aij W, ,U,RR‘Ri—EAH U, ,W,RR\Ri—EA” W,
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4. The boundary and edges conditions
The edges and boundary conditions for solid cacplate with clamped and simply supported

edge are defined as follow:
The regularity conditions of the plate on the eealtpoint are

r:O,u=0,W’r=0 (14)

Clamped:

r=a,u=0,w=0 (14-a)

Simply supported:

r=a,g,=0,w=0 (14-b)
The boundary conditions in the bottom surfacenefyilate are

120 . 0,=f 2,1 atz=0 (15)

where f 2o is the interaction between the plate and foundatiorthe referred coordinate system
this interaction can be expressed as follow

f 205K wWo K oW 1 Wi ) (16)
where f ,, denotes the foundation reaction per unit area japdk,, are the Winkler and Pasternak

coeficients, respectively.
The boundary conditions in the top surface ofpitag¢e are
z="9,0,="P atz=h (17)
The discretized form of equations appeared in E4<l7 can be written as

A
R=0,U,=0W ,=- 5 Sy
j= 2A11 (18)
R=1,U ,=0,Wy=0 (18-a)
R=1, 0gxy=0.Wy=0 (18-b)
At n=0
aU| + (ZA(].)W A|1 ZAI(l)W):O
an NG ]
ALY =
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6nl 2 13(ZAI] U, R: eRI KwWi KP(ZA W, EJ%A Wy, 1=123;-.N (19)
whereKW:_kOWT) , P:_okpo 12 are dimensionless coeficients of foundation.
C3Css3 CsLlaz @
At n=1
(1)
Ui, b (ZA(l)W AL AL W) =0
on b Al =
oW (1) Ui, _ -P i=123:- N
n a Cl3(ZA Uit R.) C%, C2 eMrrRiA2 TRes (20)

By implement the boundary conditions in Eq. (1B¥ $olution to Eqg. (8) can be written as:
oi(n) =exp(M; n); (0) (21)
where

s =[UM W) U@ Winm] . 30=[U0) Wi© Uia© Win©)]
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i=2,3--,N-1

andy;=| Dl }
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5;(0) are the values of the state variables at an arpitplane n and the bottom plame-o,
respectively. The elements of matnjy; are

0 0 [&J(N—Z)x(N—Z)

In Eqg. (21), expvi; n)is the matrix exponential functiorg,(n) and

D1;= , & =06 %) =1 (21-a)
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The array of Eq. (21) in the bottom and top surdamiethe plate can be written as

6i(l) = exp(M i )6, (0) (22)
whereexp(M ;) .&; @) &; (0) are the global transfer matrix and the state vectorthe bottom and top

surfaces of the plate respectively.
By substitution the boundary conditions discuse#dn (19-20) in to Eq. (22) the following algebraic
equations can be obtained

GT=Q 03
where Gis a 4(N-2)x 4(N- 2)matrix, Q is a traction force vector and
T=[Ui0) Wi U@ W (1)]T, i=2,3,-,N-1 (24)

By solving Eq. (24) all displacementsnat0, n=1are obtained,and then all mechanical
guantities are obtained along the thickness oRi-GMs circular plate by using Egs. (21) and (4).

5. Numerical results and discussions
5.1 Code validation

A computer code has been developed to study titec sesponse of 2D-FGMs circular plate
embedded on elastic medium to axisymmetric traisgvand shear loads. Since there are no results
available in the open litrature for 2D- FGM ciraufaate with compound boundary conditions. The
results of the prepared code are compared withethdts for 2D- FGM circular plate without elastic
foundation deformed due to tansverse mechanicdl With those of Nie and Zhong [2]. A clamped
circular plate with Young's moduli 380 Gpa and Roigs ratiov =0.3at center point of the bottom
surface of the plate simlar as Ref. [2] is con®deNaluse of other parameters are:
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a=1.0m ,h=0.1a,A\;=)»=1,T,=0 ,g,=0atn=0 and 1,=0 ,g,=-1GPa atn=1

The results of present code and Ref. [2] are showrble 1. It can be observed from Table 1 that
the obtained results agree well.

Tablel. Dimensionless deflection of 2D functionghaded circular plate

R
0.000 0.125 0.250 0.375 0.500 0.625 0.750 0.875

Ref.[2] -1.513 -1451 -1.289 -1.052 -0.775 -0.495 -0.25-0.075

=0
d present -1.521 -1.460 -1.295 -1.054 -0.776 -0.493.248 -0.074

For numerical illustration a clamped 2D-FGM cirnuplate consisting of Titanium and Zirconium
studied earlier by Yun et al. [7] is considerede fnoperties of plate constituents are as table 2.

Table2. Mechanical properties of FGMs plate constits

Materials Titanum Zirconium
Young’'s modulus E(GPa) 110.25 278.41
Poisson’s ratiov 0.288 0.288

Valuse of other parameters are:
a=1.0m ,h=0.02a, E (0,0)=110.256Pa, E (3)=278.4GPa (25)

The boundary conditions are:
1,=0 .0,=f ,, an=0 and t,=-1GPa ,g,=-1GPa atn=1 (26)

5.2 Covergence of the solution method

In order to extract the numerical results andhtovwsthe effect of number of discretized points on
the solution method, the convergence of DQ rulthéradius direction is investigated and is used as
an evaluation criterion. For a clamped circulat@lwith parameters explained in Egs. (25, 26) and
kp=kw =0.1, A1=A=1 the non-dimensional deflection of the plate vanbar of discrete points N at

a locationr = 0.5is plotted in Fig.2. It is seen from Fig. 2 thae tralue ofyy ,approaches to constant

value as N increases. This figure confirms thatabevergence of this method is high, relative to
other numerical methods in engineering and scieflve.number of grid points in the next sections is
nine (N=9).

x10°

-8|

-8.5

-9

o

2
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-10

-10.5]
0 5 10 15 20
N

Fig.2 Convergence of non-dimensional deflection of thedepht a locationy = 0.5)
5.3 Effect of material heterogeneity indices
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The effect of material heterogeneity indices oriation of mechanical quantities along the plate
thickness with parameters defined in Egs. (25,a8®) k ,=k,, =0.1at a pointr = 0.96is depicted in

Fig.3. It is observed from from Fig. 3 that thepiiEements in the plate thickness direction deereas
as heterogeneity indices increase. The value gilane stresses decrease gradually along the
thickness of the plate whetis less than 0.45 and then increase as gradieaingders increase. The
value ofg, and 1, decreases in the thickness direction wigterogeneity indiceiacreasing. Thén-plane

stresses take high values relative to other stesgponents due to shear force at top surface of the
plate.
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Fig.3 Effect of the material heterogeneity indices ongat®l quantities across the plate thickness
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5.4 Effect of thickness to radius ratio

Fig.4 shows the effect of thickness to radiusoran variation of mechanical quantities along the
thickness direction with parameters discussed is. E2b, 26)k p=kw =0.1, A1=Ap=Ln(ET/Ez)at

radius mid point. It is evident from Fig.4 that thisplacements, in-plane stresses decrease and the
transverse normal stress increase as the aspiecbfrétie plate increase. The plate aspect ratsmha
a considerable effect on transverse shear stresgioa through the thicknbess direction.
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Fig.4 Effect of the geometric parameter (thickness tiuscatio) on physical quantities across the
plate thickness
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5.5 Effect of loads ratio

The effect of loads ratio on variation of mechahiguantities through the thickness of the plate
with parameters discussed in Egs. (25, 26)|<aFndKW =0.1,\1=A»=Ln(ET/Ez) at a locationr = 0.5

is plotted in Fig. 5. It is seen from Fig. 5 th#ltdisplacements and stresses increase as lodds rat
increase. The radial displacement is affected hgitiathal compression due to shear intraction
therewith the in-plain stresses increases.
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Fig.5 Effect of the loads ratio on physical quantitiesoas the plate thickness

45



5.6 Effect of two parameter foundation

In order to illustrate the effect of two paramefimundation coefficients and soft/ hard surface of
the plate supported by elastic foundation the Vailhgy cases are considered in this study
Case 1: the hard (ceramic rich) surface restingelastic foundation with gradient parameters
A=A 2=Ln(ET/E2)
Case 2: the soft (metal rich) surface supportedelpstic foundation with gradient indices
A=A 2=Ln(EZ/ET)
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Fig.6 Effect of the foundation stiffnesses coefficientsphysical quantities across the plate thickness
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Fig. 6 illustrates the displacements and stressest@ compound loading for different values of
foundation coefficients by considering the paramseté Eq. (25, 26) ane =10, q=1Gpa. It can be

seen from Fig.6 that in both cases the displacesramd stresses dcreases with increasing foundation
stiffnesses. The pick of transverse shear stresseases asp kw increase. The variations of

mechanical quantities for a known case differ sigantly from the other case.
6. Conclusions

Based on the results and discussion presentédsipaper, the following main conclusions may be

drawn.

» The static behavior of the plate with the softerfah rich) surface supported by elastic
foundation differ significantly from that of thegté with the harder (ceramic rich) surface
subjected to the same foundation.

* The rigidity of the plate increases with the in&iag of elastic foundation stiffnesses

* The surface buckling increase as shear interattmease
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