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Abstract

In this paper, the effect of suspended particles on double-diffusive convection in couple-stress fluid saturating a
porous medium is considered. By applying linear stability theory and normal mode analysis method, a
mathematical theorem is derived which states that the onset of instability at marginal state, cannot manifest as
stationary convection if the thermal Rayleigh number R, the medium permeability parameter P, the couple-
strtess parameter F, the stable solute gradient Sand suspended particles parameter B, satisfy the inequality

AT'F B
R< +=
BR B

Thisresult clearly verifies the stabilizing character of cbupl e-stress parameter and stable solute gradient while
destabilizing character of suspended particles and medium permeability.
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1. Introduction

The problem of double-diffusive convection in pasomedia has attracted considerable
interest during the last few decades, becausesitvhdaous applications in geophysics, food
processing, soil sciences, ground water hydrology auclear reactors etc. The thermal
instability of a Newtonian fluid, under various asgtions of hydrodynamics and
hydromagnetics has been discussed in detail by d@Chsekhar [1]. Lapwood [2] has studied
the convective flow in a porous medium. Wooding idfk discussed the Rayleigh instability
of a thermal boundary layer saturating a porousinmeavhereas Scanlon asgel [4] have
considered the effect of suspended particles onriset ofBénard convection and found that
suspended particles destabilize the layer.

In all the above studies, the fluid is considered¢ NewtonianAlthough the problem of
double-diffusive convection has been extensivelyegtigated for Newtonian fluids,
relatively little attention has been devoted te throblem with non-Newtonian fluiddlon-
Newtonian fluids with suspended particles find mapylications in modern technology and
industries. One such type of non-Newtonian fluidtasiple-stress fluid. Stokes [5] proposed
the theory of couple-stress fluid. According to theory of Stokes [5], couple-stresses are
found to appear in fluids of very large molecul€se long chain hylauronic acid molecules
are found as additives in synovial fluid. WalickidaWalicka [6] modeled synovial fluid as
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couple-stress fluid in human joints. Sharma andri8hg7] have studied the couple-stress
fluid heated from below in porous medium.

One of the applications of couple-stress fluidtgs use in the study of the mechanism of
lubrication of synovial joints, which has become thbject of scientific research. A human
joint is a dynamically loaded bearing which hascatar cartilage as the bearing and synovial
fluid as lubricant. When fluid film is generatedjugeze film action is capable of providing
considerable protection to the cartilage surfadee Shoulder, knee, hip and ankle joints are
the loaded-bearing synovial joints of human bodyl dhese joints have low-friction
coefficient and negligible wear. Normal synovialidl is clear or yellowish and is a viscous,
non- Newtonian fluid.

The investigation in porous media has been stangd the simple Darcy model and
gradually was extended to Darcy-Brinkman model.oddjaccount of convection problems
in a porous medium is given by Vafai and Hadim [Bgham and Pop [9], Nield and Bejan
[10], Sharma and Rana [11, 12] and Rana and Kub®r Recently, Kumar [14] studied the
hydromagnetic stability of stratified couple-stréssd in the presence of suspended particles
through porous medium whereas Rana and Sharmas{adied thermosolutal instability of
compressible Walters’ (model B') rotating fluid time presence of suspended particles and
magnetic field in porous medium and found that sanded particles and medium
permeability have destabilizing effects on the ayst

More recently, Rana and Thakur [16] derived a nmatitecal theorem on the onset of couple-
stress fluid permeated with suspended particlagataig a porous medium while Pap and
Vivona [17] discussed the applications of pseudalyais in the theory of fluid mechanics. In
the present paper, a mathematical theorem is deamethe onset of instabilities in the flow
of incompressible couple-stress elastico-viscousd flheated and soluted from below
saturating a porous medium.

2. Mathematical Mode and Perturbation Equations

Consider an infinite, horizontal, incompressibleigle-stress viscoelastic fluid layer of depth
d, bounded by the planes z = 0 and z = d in amogmt and homogeneous medium of
porositye and permeability ¥ which is acted upon by gravig(O, O, -g) as shown below in

the schematic sketch of physical situation. Thygitas heated and soluted from below such

that a steady adverse temperature gradiﬁm[‘i—TD and a uniform solute gradient
z

. _(ldc
""UE

determined by supposing that the system is slighidyurbed and then following its further
evolution.

j are maintained. The character of equilibrium oS tinitial static state is
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Schematic Sketch of Physical Situation
Fig.1.

The equations expressing the conservation of mamgninass, temperature, concentration
and equation of state for couple-stress fluid ppeous medium (Chandrasekhar [1], Sharma
and Sharma [11], Kumar [14] and Rana and Sharmia §t&

1fov 1 1 P\ 1 _H > K'N 1
;[E+;(V.D)V:|— on+g[1+ ,00] kl[v POD jv+,00£(vd—v)' ( )
Ov=0, (2)

b 9 I
oC; E+V.D T +mNC,, sa+vd.D T =k 0T, (3)

(9 (0 2
oC ¢ a'*‘V.D C+mNC €E+Vd.|] C—k—l—D C, (4)
p=pli-alT-T)+a(C-C,) (5)

where p, v, 1., p,&, T, a, v(0, 0, 0), denote respectively, the densityneknatic viscosity,
couple-stress viscosity, pressure, medium poroséymperature, thermal coefficient of
expansion, velocity of the fluid,v, (X,t), and N(X,t), denote the velocity and number
density of the particles respectively= 67pvn , wheren is particle radius, is the Stokes drag
coefficient, v, § r s), andx = (x,y,2),C,,C,, k; denote, respectively, the heat capacity of
the pure fluid, heat capacity of particles, ‘effeetthermal conductivity’ of pure fluid

andC'¢,C'» denote heat capacities analogous to solute. {ffi& gero refers to values at the
reference level z = 0.

The presence of particles adds an extra force f@oportional to the velocity difference
between particles and fluid as appeared in the tegquaf momentum (1). The buoyancy
force on the particles is neglected as the pastielee very small in size. Interparticles
reactions are not considered either since we asthehéhe distance between the particles are



quite large compared with their diameters. Thusnil is the mass of particles per unit
volume, then the equations of momentum and madfégparticles are

mN{zvtd+i(vd.D)vd} =K'N(v-vy), (6)
5%—T+D.(Nvd)=0, )

Since the force exerted by the fluid on the patids equal and opposite to that exerted by
the particles on the fluid, there must be an efdree term, equal in magnitude but opposite
in sign, in the equations of momentum for the phas (6).

The initial state of the system is taken to be sgeat layer (no settling) with a uniform
particle distribution number. The initial state is

v=(000),v, =(000), T=-Bz+T,, 0=p,(1+aBz). (8
is an exact solution to the governing equationst \(@,v,w), 6, & and Jdp denote,

respectively, the perturbations in fluid velocy0,0,0), temperature T, pressure p and
densityp .The change in densitgjp caused by perturbatid¢hin temperature is given by

P =-p, (aH - a'y). . 9)

The linearized perturbation equations governingniogion of fluid are

1ov__1e P L, Ko KN (10)
£ ot Po o gpo K, [V Po . jv+po£(vd _V)’
Ov=0, (11)
00 _ )
(1+b£)E = B(w+bs) + k1%, (12)
L+ b's)% = B(w+bs)+« 0%, (13)
mNC . '
whereb = b :M and w, s are the vertical fluid and particlesocély,
PoCy PC 1

K= K , is the thermal diffusivity and = kT. , Is the solute diffusivity.
PCy P.C

In the Cartesian form, equations (10)-(13) with lileép of equation (9) can be expressed as

14
lu__ 10 )-1(V_ﬂcmzju+mNau, (14)
£ ot Lo 1) kl Po P g(mz+lj ot

LK ot
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}aV__ia( )_;[V_IUCDZJV'F mNa ?' ( )
A P&[mfﬂj t

gat p, 0y
K' ot
1ow_ 10 oo 1 p N dw (16)
@+@+0_\N:0 , (17)
ox oy o0z
(1+ bg)%—f = B(w+bs)+«0%0, (18)
(1+ b}s)% = B(w+bs)+x 0%, (19)

Operating equation (14) and (15)§y andai respectively, adding and using equation
X y

1a[awj=_1(52_62]@_1[V_%Dz][awj+mNa[aw), (20)
gat\ oz Do 0z k, Do 0z o 5[ m 9 ]at 0z

(17), we get
— =1
K' ot

2_ 0%

Operating equation (16) and (20) tEﬂZl azzj andai respectively and adding to
z

eliminated between equations (16) and (20), we get

la(DZW):—l(v—'uCDZJDZW+g[aZ+(t](ae—a'y)—mNa(DZW). (21)
ot k0 x> ay o g( 9 +1] ot
ot
2
where1? =0+ 9 9

2 2+ 2
ox° oy° o0z

3. Normal Mode Analysis

Following the normal mode analyses, we assumethi@gaperturbation quantities have x, y
and t dependence of the form

[w,8,y]=W(2),0(2).F ()] explilx +imy + nt), (22)

wherel andm are the wave numbers in the x and y directidms,(l2 +m?f2 is the resultant
wave number and n is the frequency of the harmdrsturbance, which is, in general, a
complex constant.

Using expression (22) in equations (21), (18) dY) become



n(dzz_kz}A/ = _l[v_ll'lcljzj(dzz_kZ}A/_QKZ(aO_a'I—)_ mN [dzz_kz}/\/, (23)
eldz k, Po dz (mg j dz
Pof| -~ +1
00 d?
1+b +bs) + -k 24
(wbe) 3=l ) -k o, @4

i+ b'g)%—: = Blw+ bs)+/('(:—222 - kzjr , (25)

Equation (23) and (25) in non-dimensional form,drmee

2 _ 292 "N242
H“ M ]J 1- F!D aq(D2 a)N gaad@ gaad F’ (26)

l+r0 )¢ P vV
(p?-a2-EPo)o=- (M)W (27)
k \1+ro
b /o
(D2 -a’- E‘P,'a)r = —&(M)W, (28)
k \ 1+1,0
where we have put
2
r=M - =T E=14beB=1+bB =1+b E =1+bea=kd,o="9 R =" is
K d v d
the dimensionless medium permeability, :K, is the thermal Prandtl numbeR,, =2 , IS
K K

2

the Schmidt numberf; :% , is the couple-stress parameter BNng ddi and the

2
superscript * is suppressed for convenience.

I e pd? _pBd? . . .
SubstitutingW =W ,06=—0 and =——T in equations (26), (27) and (28)
K

K
respectively and dropping * for convenience, weaobt
_ 2 _ 42
Kl+ M j£+1 F(D a )}(Dz—az)N=—RaZG)+Sa2F, (29)
l+r0 )¢ P
B+r,o
D’-a’-EPojo=- L : 30
( e (“ Tla)w (30)
[p?-a-EPRO) = —( i Tl")w, (31)
1+1,0
4
whereRzM , Is the thermal Rayleigh number

VK

'n'A4
ands = ga,@d , IS the analogous solute Rayleigh number.
VK
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Here we assume that the temperature at the boesdmrikept fixed, the fluid layer is
confined between two boundaries and adjoining mmdaielectrically non-conducting. The
boundary conditions appropriate to the problem(@tendrasekhar [1])

W=DW=l=0=0 atz=0and 1. 2)3
Then, we prove the following theorem:
Theorem: If R >0, F>0, B =1+b, b > 0B =1+b,b> 0 ando =0 , then the necessary

condition for the existence of non-trivial squt(Wi,O,l‘) of equations (29)-(31) together
with the boundary conditions (32) is that

F 772(772 +a2)2 N B

R> h .
BR a B

Proof: If the instability sets in stationary convectiamdaprinciple of exchange of stability’
is valid, the neutral or marginal state will be @&werized by = 0. Thus the relevant
governing equations (29)-(31) are reduced to

{ﬂﬂ)}(v _ oW = -Ra’O + S, (33)

R
(D*-a’)o=-Bw, (34)
D2 -a2) =-BW, (35)
(D?-a)

together with the boundary conditions (26).
Multiplying equation (33) by (the complex conjugate of W) throughout and iraéigg
the resulting equation over the vertical range, afe get
1 (2 2 _F i~ 2P a2 i ol
o [W(p? - a? iz o [W' (D% -a?fweiz =~ Ra? [W'@dz + Sa* [W'Tdz.  (36)
Taking complex conjugate on both sides of equat{84¥ and (35), we get
(p?-a%)e" =-BW', (37)
(D2 -2’ =-BW", (38)

Using equations (37) and (38) in the right han@ siflequation (36), we obtain
ij'lvv (D2 - az)/\ldz —Efvv (D2 - az)z\l\ldz =
R R® (39)

Ra” il (s _» S22,
--Je (D?-a )@dz—?jor (0?-a?)raz
Integrating term by term on both sides of equa(i&®) for an appropriate number of times

by making use of boundary conditions (32), we abtai

7 WDW'”@‘ZNVIZ)ﬂZ-EE(\DW+2a2|Dvw2+a4wv|2)dz=
R ooy + bz = [{orf + airf ke

(40)



SinceW,® and’ satisfyW(0)=0=W(0),0(0)=0=0 (1), andl0)=0=rI @), we
have by Rayleigh-Ritz inequality

[JoW[dz> 72 [Wi’dz, (41)

[Joef*dz= 72 [jofaz, (42)

[Jorfdz= 72| dz, (43)
and

[JoW[ dz= 7 [W[dz. (44)

Further, multiplying equation (34) b® (the complex conjugate d®), integrating by
parts each term of resulting equation on the rlgdnid side for an appropriate boundary
condition, namel®(0) =0=0 (1), it follows that

% EOD@F + a2|®|2)12 = Real part o(ﬂe*wdz)

<

E@*\Ndz‘,
< ﬂ@*w‘dz,
< [Jo'widz
< [jowiz

<(fler dz]%( i dz). (45)

(by using Cauchy-Schwartz inequality)

Thus, inequalities (42) can be written as

s : a ( ﬂ@fdzj% <( jj\/v|2dz)%. (46)

Combining inequalities (45) and (46), we obtain

L]loe" +ate’ b <2 (e (47)

Using inequality (42) in (47), we get

% j;QDeF + a2|e|2)1z < F(#) ﬂDW|2dz. (48)

Similarly, we can write
1 !Q 2 Z)j B 2
EIO DI +a?r[* bz S e [Jow[ dz. (49)
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Thus, if R >0, F >0, B =1+b, b. 0, using thegualities (44), (48) and (49), the equation
(40) becomes

(1+az).+[gl(nz+az)_ nz(jffazr nz(jj;'faz)}ﬂ[)wdz<o, (50)

_ 2 2 Z)j . i .
where | —J:QDW| +a’W| bz , is positive definite.
Therefore, we must have

) ey )

which implies that

F 2(m +a?)f )

R> .
BR & B

(51)

. - T +at] . .
Since minimum value e?j—) is 471" at a®> =7 > 0, hence, we necessarily

2

a
have
R> 4T°F +§' (52)
BR B

which completes the proof of the theorem.

From physical point of view, the above theoremestdhat the onset of instability at marginal
state in a couple-stress fluid heated and solutedh fbelow permeated with suspended
particles in porous medium cannot manifest asastaty convection, if the thermal Rayleigh
numberR, the couple-stress parameterstable solute gradie® medium permeabilityR

and suspended particles number derBijtyatisfy the inequality
A :
< 4k +§

R< . 53
S (53)

4. Conclusion

The effect of suspended particles on double-d¥eigionvection in couple-stress fluid in a
porous medium has been investigated. From the ath@cgem, the main conclusions are as
follows:
() The necessary condition for the onset of instabiis stationary convection for
couple-stress elastico-viscous fluid is

AT'F B
+ —

R> .
BR B




(i) The sufficient condition for non-existence of gtaary convection at marginal state
is

AT'F | SB'
BP B’

R<

(iiIn the inequality (52), the thermal Rayleigiimber R > 0 , is directly proportional to
the couple-stress parameter F and stable solutiegtaS. Thus, couple-stress
parameter and stable solute gradient have stalglieffects on the system as
derived by Sharma and Sharma [7], Kumar [14] angeRand Sharma [15].

(iv)In the inequality (52), the thermal Rayleigh numBeP O , is inversely proportional
to the suspended particles number density paraniBgtevhich mathematically
established the destabilizing effect of suspengeadicles number density
parameter on the system as derived by Scanlon agdl $], Rana and Kumar
[12], Rana and Sharma [15] and Kumar [14].

(v) The medium permeability has a destabilizing eftacthe system as can be seen from
inequality (52), which is an agreement with theliearwork of Sharma and
Sharma [7], Rana and Kumar [13], Kumar [14] andd&and Sharma [15].
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