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Abstract 

This paper analyses the mixed convection flow of an incompressible micropolar fluid along a semi-infinite 
vertical plate with uniform heat and mass flux in the presence of transverse magnetic field. The governing 
nonlinear partial differential equations are transformed into a system of coupled nonlinear ordinary differential 
equations using local similarity transformations and then solved numerically using the Keller-box method. The 
non-dimensional velocity components, microrotation, temperature and concentration are presented graphically 
for various values of  magnetic parameter, Hall parameter, Ion-slip parameter, Dufour and Soret numbers. In 
addition, the Nusselt number, the Sherwood number, the skin-friction coefficient, the wall couple stress are 
shown in a tabular form. 
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1. Introduction 
Convection flows driven by temperature and concentration differences have been studied 
vastly in the past and various extensions of these problems have been reported in the 
literature. Simultaneous interactions of both temperature and concentration on different 
geometries have been studied by several Researchers among others, Beg[1] studied free 
convection heat and mass transfer in Darcian porous regime with chemical reaction, Anna[2] 
studied heat and mass transfer between air and falling-film desiccant in a parallel-plate using 
simplified model, Lloy [3] studied combined forced and free convection flow on vertical 
surfaces, Mahdy [4] examined mixed convection heat and mass transfer on a vertical wavy 
plate embedded in a saturated porous media. The contribution of mixed convection along a 
vertical plate has received a considerable attention because of wide-spread application in 
geophysical and engineering. Examples include cooling of electronic equipment, thermal 
insulation heating of the Trombe wall system and many other. 
 
The Soret and Dufour effects have garnered considerable interest in both Newtonian and non-
Newtonian convective heat and mass transfer. When heat and mass transfer occur 
simultaneously in a moving fluid, the relations between the fluxes and the driving potentials 
are of a more intricate nature. It has been observed that an energy flux can be generated not 
only by temperature gradients but also by concentration gradients. The energy flux caused by 
a concentration gradient is termed the diffusion thermo (Dufour) effect. On the other hand, 
mass fluxes can also be created by temperature gradients and this embodies the thermal-
diffusion (Soret) effect. In most of the studies related to heat and mass transfer process, Soret 
and Dufour effects are neglected on the basis that they are of a smaller order of magnitude 
than the effects described by Fouriers and Ficks laws. But these effects are considered as 
second order phenomena and may become significant in areas such as hydrology, petrology, 
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geosciences, etc. Soret and Dufour effects are important for intermediate molecular weight 
gases in coupled heat and mass transfer in binary systems, often encountered in chemical 
process engineering and also in high-speed aerodynamics. Soret and Dufour effects are also 
critical in various flow regimes occurring in chemical and geophysical systems. Alam and 
Rahman [5] have investigated the Dufour and Soret effects on mixed convection flow past a 
vertical porous at plate with variable suction. Gorla [6] studied mixed convection in a 
micropolar fluid along a vertical surface with uniform heat flux. Kafoussiasetal [7] have 
investigated Dufour and Soret effects on mixed free forced convective and mass transfer 
boundary layer flow with temperature dependent viscosity. Awad and Sibanda [8] examined 
Dufour and Soret effects on heat and mass transfer in a micropolar fluid in a horizontal 
channel. Srinivasacharya and Ramreddy [9] studied mixed convection heat and mass transfer 
in a micropolar fluid with soret and Dufour effect over semi-infinite vertical plate. 
 
The application of electromagnetic fields in controlling the heat transfer as in aerodynamic 
heating leads to the study of Magneto hydrodynamic(MHD) heat transfer. This MHD heat 
transfer has gained significance owing to recent advancement of space technology. The MHD 
heat transfer can be divided into two sections. One contains problems in which the heating is 
an incidental by product of the electromagnetic fields as in MHD generators and pumps etc. 
and the second consists of problems in which the primary use of lectromagnetic fields is to 
control the heat transfer. Several investigators have studied the effects of magnetic fields on 
the convection heat and mass transfer by ignoring the Hall and Ion-slip terms in Ohms law 
were ignored. However, in the presence of strong magnetic field, the influence of Hall current 
and Ion-slip are important. Hossian and Ahmed [10] studied MHD forced and free convection 
flow of an electrically conducting viscous incompressible fluid past a vertical flat plate with 
uniform heat flux. Chamkha [11] numerically examined MHD-free convection from a vertical 
plate embedded in a thermally stratified porous medium with hall effects. Seddeek [12] 
studied numerically under the assumption small magnetic Reynolds number the effects of 
Hall and ion-slip currents on a magneto-micropolar fluid and the heat transfer over a non-
isothermal stretching sheet with suction and blowing. Shateyietal [13] investigated the 
influence of a magnetic field on heat and mass transfer by mixed convection from vertical 
surfaces in the presence of Hall, radiation, Soret , and Dufour effects. Salem and Abd El-Aziz 
[14] examine effect of hall currents and chemical reaction on hydromagnetic flow of a 
stretching vertical surface with internal heat generation/absorption. Motsa and Shateyi [15] 
studied the effects of chemical reaction, Hall, ion-slip currents, and variable thermal 
diffusivity on the magnetomicropolar fluid flow, heat, and mass transfer with suction through 
a porous medium using successive linearization method together with the Chebyshev 
collocation method. Elgazery [16] analyzed numerically the problem of magneto-micropolar 
fluid flow, heat and mass transfer with suction and blowing through a porous medium under 
the effects of chemical reaction, Hall, ion-slip currents, variable viscosity and variable 
thermal diffusivity. 
 
It is well known that most fluids which are encountered in chemical and allied processing 
applications do not satisfy the classical Newton’s law and are accordingly known as non-
Newtonian fluids. The study of non-Newtonian fluid flows has gained much attention from 
the researchers because of its applications in biology, physiology, technology and industry. In 
addition, the effects of heat and mass transfer in non-Newtonian fluid also have great 
importance in engineering applications; for instance, the thermal design of industrial 
equipment dealing with molten plastics, polymeric liquids, foodstuffs, or slurries. A number 
of mathematical models have been proposed to explain the rheological behaviour of non-
Newtonian fluids. Further, there exist several approaches to study the mechanics of fluids 
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with a substructure. Ericson [17, 18] derived field equations which account for the presence 
of substructures in the fluid. It has been experimentally demonstrated by Hoyt[19] fluids 
containing small amount of polymeric additives display a reduction in skin friction. Eringen 
[20] first formulated the theory of micropolar fluids which display the effects of local rotary 
inertia and couple stresses. This theory can be used to explain the flow of colloidal fluids, 
liquid crystal, animal blood, etc. Eringen [21] extended the micropolar fluid theory and 
developed the theory of thermo-micropolar fluids. Physically, micropolar fluids may be 
described as non-Newtonian fluids consisting of dumb-bell molecules or short rigid 
cylindrical element, polymer fluids, fluid suspension, etc. The presence of dust or smoke, 
particularly in a gas, may also be modelled using micropolar fluid dynamics. 
 
The objective of the present work is to study the effects of Hall current, ion-slip, Soret and 
Dufour on boundary layer mixed convection MHD flow, heat and mass transfer along a 
vertical plate with uniform heat and mass flux conditions embedded in a micropolar fluid. 
The governing equations are solved numerically using a very efficient finite-difference 
method known as Keller-box method Cebeci [22]. The results obtained under special cases 
are then compared with that of Lin and Lin [23] and Yih[24] and found to agree very 
favourably. 
 
2. Mathematical formulation 
Consider a steady, laminar, incompressible, mixed convective heat and mass transfer along a 
semi infinite vertical plate embedded in a free stream of electrically conducting micropolar 
fluid under the influence of a transversally applied magnetic field. The free stream velocity 
which is parallel to the vertical plate is ݑஶ, temperature is ஶܶ  and concentration is ܥஶ. 
Choose the coordinate system such that x-axis is along the vertical plate and y-axis normal to 
the plate. The plate is maintained at uniform and constant heat and mass fluxes qw and qm 
respectively. A uniform magnetic field of magnitude B0 is applied normal to the plate. The 
magnetic Reynolds number is assumed to be small so that the induced magnetic field can be 
neglected in comparison with the applied magnetic field. The electron-atom collision 
frequency is assumed to be relatively high, so that the Hall effect and the ion slip cannot be 
neglected. Further, assume that all the fluid properties are constant except the density in the 
buoyancy term of the balance of momentum equation. In addition, the Soret and Dufour 
effects are considered. 
 
Using the Boussinesq, MHD and boundary layer approximations, the governing equations for 
micropolar fluid in the presence of Soret and Dufour effect are given by 
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where u, v, w are velocity components Γ is microrotaion, T is the temperature, C is the 
concentration, ρ and j are the fluid density and gyration parameter, µ dynamic coefficient of 
viscosity, κ is vortex viscosity, γ is the spin gradient viscosity, g∗ is the acceleration due to 
gravity, βT is the coefficient of thermal expansion, βc is the coefficient of solutal expansion, α 
is the thermal diffusivity, D is the mass diffusivity, Cp is the specific heat capacity, Cs is the 
concentration susceptibility, and Tm is the mean fluid temperature, Be = σβB0 is Hall 
parameter. 
 
The boundary conditions are given by 
 
 At y = 0:     u = 0,       v = 0,        = 0,       qw = - kడ்

డ௬
,         qm = - D డ஼

డ௬
                   (7a) 

 As y :    u = ݑஶ    w = 0,       = 0,        T = ஶܶ,             C = ܥஶ                         (7b) 
 
In view of equation (1) we introduce a stream function   by 
                                     u = డ
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substituting (8) in (2) to (6) and using the following local similarity transformations 
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 is the local Reynolds number, we get the following dimensionless equations 
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plate, Df = ஽௄೅௤೘௞
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The corresponding boundary conditions in dimensionless form are: 
  
  = 0:    f(0) = 0,   f	′(0)= 0,    h(0) = 0,   g(0) = 0,   (0) = -1,    (0) = -1             (15a) 
 
 :                   f	′()= 1,    h() = 0,   g() = 0,   () = 0,    () = 0             (15b) 
 
The wall shear stress, the local Nusselt number (Nux) and the local Sherwood number (Shx), 
respectively are given by 
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The non-dimensional skin friction Cf, the local Nusselt number Nux and Sherwood number 
Shx respectively are 
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3.    Results and discussion 
 
The flow equations (10) and (12) which are coupled, together with the energy and 
concentration equations (13) and (14), constitute non-linear nonhomogeneous differential 
equations for which closed-form solutions cannot be obtained. Hence, these equations (10) to 
(14) are solved numerically using the Keller-box implicit method discussed in Cebeci and 
Bradshaw [22]. This method has been proven to be adequate and give accurate results for 
boundary layer equations. A uniform grid was adopted, which is concentrated towards the 
wall. The calculation are repeated until some convergence criterion is satisfied and the 
calculations were stopped when δ ଴݂

ᇱᇱ ≤ 10-8, δℎ଴ᇱ  ≤ 10-8, δ݃଴ᇱ  ≤ 10-8, δߠ଴ᇱ  ≤ 10-8, δ଴
ᇱ  ≤ 10-8 
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In the present study the boundary conditions for η at∞ are replaced by a sufficiently large 
value of η where the velocity, microrotation, temperature and concentration profiles approach 
zero. In order to see the effects of step size (∆η) the code ran for our model with three 
different step sizes ∆η = 0.001, ∆η = 0.01 and ∆η = 0.05 and in each case we found very good 
agreement between them on different profiles. After some trials we imposed a maximal value 
of η at∞ of 10 and a grid size of η as 0.01. 
 
In the limit, as N→ 0, the governing Eqs. (10-14) reduce to the corresponding equations for a 
mixed convection heat and mass transfer in viscous fluids. Hence, in the absence of coupling 
number N, Soret number Sr and Dufour number Df with Ha=0, Gs = Gc = 0 and J=0 the 
results have been compared with the case Lin and Lin [23]  also it is compared the present 
value of  ଵ

ଶ
௙ܴ݁௫ܥ

ଵ/ଶ	 with Yih [24] for Ha = 0, N = 0, Gs = Gc = 0, Df = 0 and Sr = 0,X = 1 it 
was found that they are in good agreement, as shown in table (1) and table (2) respectively. 
 
 

Table 1: A comparison of values of Pr obtained by the viscous fluid without Ha, Df and Sr 
effects 

Pr Lin[23] Present  
0.1 0.20065 0.20062 
1 0.45897 0.45882 
10.0 0.99788 0.99776 
100 2.15196 2.15459 

 
     Table 2: A comparison of values of present value of  ଵ

ଶ
௙ܴ݁௫ܥ

ଵ/ଶ	 with Yih [24]  
Yih[24] Present 

0.332057 0.33206 
 
 
In the present study, we have adopted the following default parameter values for the 
numerical computations: Pr is taken equal to 0.71, Gs = 1.0, Gc = 0.1, j = 0.1, Re = 10, Sc = 
0.22, Ec = 0.1, X = 0.5, λ = 1.0 and the values of Dufour number Df and Soret number Sr are 
chosen in such a way that their product is constant assuming that the mean temperature is 
constant are chosen so as to satisfy the thermodynamic restrictions on the material parameters 
given by Eringen[21]. These values are used throughout the computations, unless otherwise 
indicated.  
 
The effect of magnetic parameter on non-dimensional velocity components, microrotation, 
temperature and concentration is depicted in Fig.(1) It is observed from Fig. (1a) that velocity 
decreases as the magnetic parameter (Ha) increases. It is found from Fig. (1b) that the non-
dimensional fluid velocity component (h) increases with increasing values of magnetic 
parameter. It is also note that when Ha is zero the velocity h will be zero hence no flow in the 
z direction. From Fig. (1c), it is clear that the microrotation component increases near the 
plate and deceases far away from the plate for increasing values of Ha. It is noticed from Fig. 
(1d) that the non-dimensional fluid temperature increases with increasing values of magnetic 
parameter. It is clear from Fig. (1e) that the non-dimensional fluid concentration increases 
with increasing values of Ha. Application of a uniform magnetic field normal to the flow 
direction produces a force which acts in the negative direction of flow. This force is called the 
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Lorentz force which tends to slow down the movement of the electrically conducting fluid in 
the vertical direction. This retardation effect is accompanied by an appreciable increase in the 
fluid temperature and concentration. These behaviours are clearly depicted in Figs. (1) 

     
(a)                                                                        (b)    

 

   
(c)                                                                          (d) 
 

 
(e) 

Figure 1: Effect of Magnetic parameter on (a) velocity(f	′) (b) induced velocity(h) (c) 
microrotation (d) temperature and (e) concentration for N = 0.4, Df = 2.0, Sr = 0.03, βi = 2, Be = 2 
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The variation of non-dimensional velocity components, microrotation, temperature and 
concentration with Hall parameter is shown in Fig.(2). From Fig.(2a) it is noticed that an 
increase in the Hall parameter increases the velocity ݂ᇱ. As Hall parameter increases the 
effective conductivity also increases, in turn, decreases the damping force on velocity, and 
hence the velocity increases. It is observed from Fig.(2b) the velocity component h is 
increasing with the increase of Hall parameter. When there hall parameter is zero then there is 
no cross flow. The microrotation component is increasing away from the plate as the hall 
parameter is increasing as depicted in Fig.(2c). Figs (2d) and (2e) shows that increase in the 
Hall parameter decreases the temperature and concentration throughout the boundary layer. 
 
 

   
(a)                                                                        (b) 

 

   
(c)                                                                       (d) 

Figure 2: Effect of Hall parameter on (a) velocity(f ′) (b) induced velocity(h) (c) microrotation 
(d) temperature and for N = 0.4, Df = 2.0, Sr = 0.03, βi = 2, Ha = 2 
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(e) 

Figure 2(e): Effect of Hall parameter on concentration for N = 0.4, Df = 2.0, Sr = 0.03, βi = 2, Ha = 2 
 
 
The ion-slip effect (βi) on the non-dimensional velocity components, microrotation, 
temperature and concentration is depicted in Fig Fig.(3). It is observed from Fig.(3a) that 
increase in βi increases the velocity component (݂ᇱ). As Ion slip parameter increases the 
effective conductivity also increases, in turn, decreases the damping force on velocity, and 
hence the velocity increases. From Fig (3b) it is noticed that increase in the ion-slip parameter 
decrease the velocity component h. It is clear from Fig. (3c) that increase in ion-slip 
parameter decreases the microrotation away from the plate and the effect of this parameter on 
micrrotation near the plate is negligible. It is seen from Figs.(3d) and (3e) that the effect of 
ion-slip on temperature and concentration is less pronounced. The increase in the ion-slip 
parameter decreases the fluid temperature and concentration. 
 
 

    
(a)                                                                         (b) 

Figure 3: Effect of ion-slip parameter on (a) velocity(f ′	)  (b) induced velocity(h) for N = 0.4,           
Df = 2.0, Sr = 0.03, Ha = 2, Be = 2 
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(c)                                                                        (d) 

 

 
(e) 

Figure 3: Effect of ion-slip parameter on (c) microrotation (d) temperature and (e) concentration for  
N = 0.4, Df = 2.0, Sr = 0.03, Ha = 2, Be = 2 
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number (decrease in Soret number) causes a rise in the temperature throughout the boundary 
layer i.e., the raise of Dufour number encourages heat transfer. Fig.(4e) demonstrates the 
dimensionless concentration for different values of Soret and Dufour number. It is seen that 
the concentration of the fluid increases with increase of Soret number. 
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Figure 4: Effect of Soret and Dufour numbers on (a) velocity(f ′	) (b) induced velocity(h) (c) 

microrotation (d) temperature and (e) concentration for N = 0.4,Ha = 2 βi = 2, Be = 2 
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Table 2 shows the local skin friction coefficient, rate of heat and mass transfer for different 
values of coupling number, Hartman number, Hall and ion-slip parameters. As it can be seen 
from this table the proportional skin-friction coefficient ݂ᇱᇱ(0) increases with both the ion-slip 
and Hall parameters increases where as it decreases with Hartman, coupling number and X-
distance increases. Here it is noted that increasing the coupling number N→ 1 (microstructure 
is significant) the skin friction decreases, hence micropolar fluid may be used as a lubricant. 
The quantity of heat exchanged between the body and the fluid is given by the temperature 
gradient Nu (Nusselt number) which is given in the same table inferred that the higher values 
of Hartmann umber, ion-slip parameter and coupling number decreases Nu and increasing in 
Hall parameter and X-distance Nu increases. The rate of mass transfer Sh (Sherwood 
number) found to be increasing with increasing the X-location, βi and Be where as it 
decreases with increase in coupling number and Hartmann umber. Fig 5 shows the Effects of 
heat and mass transfer coefficients for some values of Hartman number, ion-slip parameter, Hall 
parameter and coupling number with X.   
 

Table 2: Effects of skin friction, heat and mass transfer coefficients for varying values of Hartman 
number, ion-slip parameter, Hall parameter, coupling number and x-location 
Ha    βi     Be    N     X    					݂ᇱᇱ           −	ߠ          −		 
0.0   2.0   2.0   0.4   0.5 
1.0   2.0   2.0   0.4   0.5 
2.0   2.0   2.0   0.4   0.5 
3.0   2.0   2.0   0.4   0.5 

1.03603      0.39542      0.34143 
1.02992      0.39296      0.34006 
1.01225      0.38583      0.33598 
0.98505      0.37478      0.32934 

2.0   0.0   2.0   0.4   0.5 
2.0   1.0   2.0   0.4   0.5 
2.0   3.0   2.0   0.4   0.5 
2.0   5.0   2.0   0.4   0.5 

0.99951      0.38227      0.33326 
1.00373      0.38253      0.33399 
1.01774      0.38803      0.33727 
1.02374      0.39045      0.33865 

2.0   2.0   0.0   0.4   0.5 
2.0   2.0   1.0   0.4   0.5 
2.0   2.0   3.0   0.4   0.5 
2.0   2.0   5.0   0.4   0.5 

0.92779      0.34987      0.31328 
0.99606      0.37922      0.33208 
1.01917      0.38863      0.33760 
1.02541      0.39114      0.33904 

2.0   2.0   2.0   0.1   0.5 
2.0   2.0   2.0   0.4   0.5 
2.0   2.0   2.0   0.7   0.5 
2.0   2.0   2.0   0.9   0.5 

1.27676      0.40787      0.35454 
1.01225      0.38583      0.33598 
0.66810      0.34929      0.30502 
0.32935      0.29848      0.26180 

2.0   2.0   2.0   0.4   0.1 
2.0   2.0   2.0   0.4   0.4 
2.0   2.0   2.0   0.4   0.7 
2.0   2.0   2.0   0.4   0.9 

0.36273      0.30426      0.26609 
0.84766      0.36901      0.32132 
1.33856      0.41466      0.36156 
1.47944      0.49229      0.42540 

Fig 5.  Effects of heat and mass transfer coefficients for some values of Hartman number, ion-slip 
parameter, Hall parameter, coupling number with X  
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4.   Conclusions 
 
In this paper the flow of heat and mass transfer character of the mixed convection flow of 
micropolar fluid is studied. Numerical solutions (Killer box method) are presented for the 
fluid flow and heat transfer characteristics and their dependence on the pertinent material 
parameters is discussed. It is observed decrease in Soret number enhance the temperature 
inclusion of hall and ion-slip parameter decrease the temperature and concentration. It is also 
observed micropolar fluids reduces skin friction, heat and mass transfer rates hence may be 
use as a lubricant. It is hoped that the findings of this investigation may be useful for 
magnetohydrodynamic (MHD) energy generators, materials processing, geophysical 
hydromagnetics, etc. 
 
Nomenclature 
 
qw  heat fluxes 
qm  mass fluxes  
Tm   mean fluid temperature 
KT   thermal diffusion ratio 
u, v, w       velocity components (in x, y, z directions respectively) 
  ஶ  free stream velocityݑ
ஶܶ    free stream temperature  
 concentration	stream	ஶ.   freeܥ
Γ   microrotaion  
T   temperature 
C   concentration 
ρ   fluid density 
j   gyration parameter 
µ   dynamic coefficient of viscosity 
κ   vortex viscosity 
γ   spin gradient viscosity 
g∗   acceleration due to gravity 
βT   coefficient of thermal expansion 
βc   coefficient of solutal expansion 
α   thermal diffusivity 
D   mass diffusivity 
Cp   specific heat capacity 
Cs   concentration susceptibility 
Tm   mean fluid temperature 
Be   Hall parameter 
σ  electric conductivity of the fluid 
B0  applied magnetic field 
βi  ion-slip parameter   
  kinematic viscosity 
D  solutal diffusivity of the medium 
Df   Dufour number, 
Sr   Soret number 
Gr   thermal Grashof number 
Gc   solutal Grrashof number 
Re   Reynolds number 
݃௦   temperature bouncy parameter 
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݃௖   mass bouncy parameter 
X   dimensionless coordinate along the plate 
   spin gradient viscosity 
Ec   Eckert number 
 ௔ଶ  Hartman numberܪ
Sc   Schmidt number 
Pr   Prandtl number 
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