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Abstract

In the present study Navier method with generaliglear deformation theory for exponential modelclwhi
proposed by Aydalu [31] is used to determine the natural frequeaddd critical buckling loads of elastic
plates. According to the model the transverse ststiains through the thickness direction of thet@lare
distributed exponential and the theory accounts riitary inertia. The convergence and comparisordistsi
demonstrate the accuracy and correctness of thegptestudy. The results are obtained for compattirganti-
symmetric and symmetric cross-ply laminated plati¢s isotropic and orthotropic plates for simplypported
boundary condition. The material anisotropy, plafeometry (side-side, side-thickness), variatiorhigher
frequencies, and variation of vibration and axialdiling mode shapes are compared.

Key words: Cross-ply laminated plates, orthotropic plates,egaiized shear deformation plate theory, free
vibration, axial buckling

1.Introduction

Composites are generally used because they havwaldesproperties which could not be
achieved by either of the constituent material;ygcilone. The most common example is the
fibrous composite consisting of reinforcing fibeembedded in a matrix material. In the
continuous fiber composite laminate individual aoabus fiber/matrix laminae are oriented
in the required directions and bonded togetherotonfa laminate [1]. Each layer can be
considered as a homogeneous, orthotropic mateadn@ a value of Elasticity modulus
considerably greater in the longitudinal directian in transverse direction [2]. Despite the
difficulties in determining the mechanical propestiof laminated composite structures due to
the complex nature of those in comparison withiti@eal materials make important studying
about this subject due to their high specific gitbrand stiffness. However, investigation of
natural frequencies and critical buckling loadsegivan idea about dynamic properties and
stability characteristics of the system, respebtiveeaminated composite plates are
commonly used structural elements many engineeapglications such as aviation,
automobiles, marine and submarine vehicles, aecesptc. Hence these structures attract
great attention by researchers to investigate lstie behaviors of laminated plates such as
bending [3-8], buckling [9-10] and free vibrationadysis [11,15].
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This paper provides a contribution in rich literatas well-known for bending, vibration and
buckling analysis of laminated plates with a congmr of isotropic, orthotropic and
laminated plates in each others. In most applinatidghe laminate thickness of laminated
composite plates which are bonded together to farlaminate with desired thickness and
stiffness is small compared to the planar dimerssmmposites. Therefore, two-dimensional
theories are used to analyze laminated plates tfesses, usually. The two-dimensional
theories are obtained from the three-dimensionastieity theory by making assumptions
concerning the variation of displacements and/oesses through the thickness of the
laminate. In the literature, there are many studigeminated plates with three-dimensional
plate theories [16-17] and with displacement baseshr deformation plate theories such as
classical laminated plate theory [18,21] and vasibigher order shear deformation theories
[22,25] or generalized higher order shear deforomagilate theory [26,30]. In this study, the
exponential model [31] of generalized shear deftionaplate theory which based on
assumed displacement expansions plate theory sdsyed.

The elastic plates are compared in terms of mateni@otropy, plate thickness, side-to-side
ratio and mode shapes. In the buckling problem ethstic plates are compared in terms of
different loading conditions. The mode shapes givirfiormation for geometrical character of

the vibration and buckling behavior are plotteddonsidered elastic plates.

2. Equations of Laminated Plates

A rectangular plate which has a lengtha widthb and a constant thicknekss considered.
The plate geometry and dimensions are defined iggpect to a Cartesian coordinate system
(x,y,2), the origin of the coordinate system isceld at the geometric center of the plate. The
coordinate parameters are such that <afa/2, —b/2<x<b/2, —h/2<x<h/2 and the
corresponding displacement components U, V and Waglthe x, y and z directions,
respectively.

The plate is assumed to be constructed of arbittargber, N, of linearly elastic orthotropic
layers. Thus, the state of stress in the k-th layeiven by the generalized Hooke’s law as
follows

0, ] |QuQ, 0 0 0O £,
o, Q,0,0 0 0 g,
T,| =|/0 0 Q.0 0 |1y, 1)
T, 0 Qu 0 | |Va
Ty [0 0 0 0 Qg |V

Whereai(jk) are the reduced and transformed material stiffoéfise k-th layer and defined as
follows
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Q,, =Q,,co8 8+Q,,sin8+2(Q, + 2Q,,) cosBsin? 6

Qp, = (Q +Q,, — 4Q,,)cos Bsin? 8 + le(cos“ 0 +sin* e)

Q,, = Q,;sin*8+Q,,cos B+ 2(Q, + 2Q,,) cosBsin?6

Q.. = Q,,co8B8+Q,sin"B

Q. = Q,,sin*6+Q, cos 6

Qos = (Qu + Q,, — 2Q,, — 2Qq)cOS Bsin 6 + Qﬁe(cos4 8+sin’ e)

Where the anglé is referred to as lamination angle anga@e reduced material stiffness and
defined as follows

(2)

E
Qp=—*

E v, E
Q _ 1 Q — 122 = ,
. v 1- ViV (3)

1- ViV 1- ViV
Q.4 =Gy, Qs5 = Gy, Qss = Gy,

In the higher order shear deformation theories tthaesverse normal stress is neglected
because the virtual strain energy of this stresgei® due to the fact that kinematically
consistent virtual strain must be zerg:=0), [32]. Thus, the infinitesimal strain comporent

& (,j=x,y,z) are defined as follows

e =U e, =V

X X1 y y? yyz = V’Z+W yXZ = U'Z+W yxy = U)y+V)X (4)

1y 1 1x
According to the generalized shear deformable ghetry which presented by Soldatos and
Timarci [29], and Timarci and Soldatos [30], theplacement field of the plate is assumed as

follows

U(x,y,z;t) = u(x,y;t) —zw,, +f(2u, (X,y; 1),
V(x,¥,zt) = v(x,y;t) —zw,, +f (v, (X, y; 1), (5)
W(X,y,z;t) = w(X,y;1),

Where the displacement components U, V and W a&edhresponding components along the
X, y and z directions, respectively. And where uw w and \ are the five unknown
displacement functions of middle surface of thetelavhile f represent shape function
determining the distribution of the transverse slstgins and stresses along the thickness.
Depends on the selection of the shape functiontii@)shear deformation theory corresponds
such as the classical plate theory (CPT) in whiehdisplacement field is selected so as to
satisfy the Kirchhoff hypothesis, first order shedaformation plate theory (FSDPT) of
Timoshenko, parabolic shear deformation plate the@SDPT) of Reddy and general
exponential shear deformation plate theory (ESDéfTAydogdu [31] which is also used in
the present study and they are given in Table hckléhe strain components are written in
terms of the displacement components as follows
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€y = Uy =ZW,, +f (Zuy,,

g, =V,,—zw,, +f (v, ,

Yye =1 V4, (6)
Ye = fu,

Yy = Uy, +V,, +2(=2w,, ) +fu,, +v,,,

Xy
where a prime denotes the derivative with respeztand ,x8/0x.

Table 1. Definitions of shear functions considéarethe study.

Corresponding Plate Theory  f(z)

CPT 0

FSDPT z

PSDPT z(1-443K7)
ESDPT 23—#1-3-““

The force and moment resultants are defined asvsl|

NS, N¢, NE )= hlzox,o T, )<dz, M, M, M, )= mo Jzdz,
y y y y y
-h/2 -h/2
h/2 h/2
(Mj,ij): (ox,rxy)"f(z)dz, (MiMf,) (Oy,Tyx f (z)dz, (7)
-h/2 -h/2

(Qi,Qé;): I(rxz,ryz)kf'dz

-h/2
By substituting the stress-strain relations inte thefinitions of the force and moment
resultants in accordance with the generalized stiefmrmable shell theory, the constitutive
relations equations are obtained as follows

N© _ -
N: _A11 A 0 By B 0 By B 0 0o
N© A A 0 B, B2 0 E. E. 0 0 Viy

v | |0 0 Ay O 0 B O 0 Eee  Eeo | Yy Vo
M >C< By B 0 Dy, Dy, 0 F Fo Fi 0 ~ Wo
M ; _ BlZ Bzz 0 D12 D22 0 F12 I:22 0 0 B W'W
Me, | |0 0 B, O O D, 0 O Fe Fy | 2w,
M i = E., 0 = R, Fe H,, H,, 0 0 U,
M 3 E. E, O Fo o 0 H, Hy, O 0 Viy
ve | [0 0 Ee O 0 Ry 0 0 Hg Hglu,
N yy 0 0 Esw O O Fs 0 0 He Heolv, |
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Q3 _|Au O Vi
{Qi}{o A}M ©

In these definitions, the resultants and strainsotksl with a superscript ‘c’ are the
conventional ones of the classical plate theoriesreas the remaining ones with a superscript
‘a’ are additional quantities incorporating thenseaerse shear deformation effects.

The extensional, coupling, bending and transvetsears rigidities in accordance with
generalized shear deformable shell theory are gisefollows

(r,.5,0,)= il (£, FH,)= fav (o he
-h/2 -h/2

w2 ©)

I

Au= [QO( fdz (=12, (i=48), () =d()dz

-h/2

Applying Hamilton and minimum potential energy miples [33] the governing equations of
the considered plate are obtained as follows

NS, + NS, = (poU = puW,, P U, ) o
N y + N f(y X (pov —pW,, +p(;21vl)’tt
MC +MT +2M5  +q+Niw

X, XX AW XY, Xy

e e —
o TNY W, +2N5 W, =
-11 =21,
(pOW_pl ’y_pZ(W'yy+W’xx)+pl ul,x +pl Vl,y+plu'x)'tt
a -11 -11 -12
M xyy_Q (po u-p, W’x+p0 ul)’tt

M2, + M2~ Q2 = (p5™v = piw,, +p72V,

(10)

Where q(x,y,t) is transverse load,°NN,°, Ny,° are the constant in-plane edge loads and the
inertia terms; andp;™™ s are defined as follows

h/2 h/2
p. = [p2dz (i=012), p™= [pz'f"dz,  (i=0L m=12). (11)
-h/2 -h/2

andp is the mass per unit volume.

The boundary conditions at the edges of the plateoatained as a result of Hamilton’s
principle and they are given in Table 2.

Table 2. The boundary conditions at the edgeseptate.

atx =+ a/2 aty =+ b/2

either u or N° prescribed either v or N prescribed,

either v or N, prescribed either u or N prescribed,

either w or M +2M°y,y prescribed either w or *+2M°x x prescribed,
either wy or M, prescribed either wor M,° prescribed,

either y or M,® prescribed eitherylor My,® prescribed,

either v or My, prescribed eitherpor My? prescribed.
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The Navier type solution is obtained for simply sogied boundary condition of considered
plates and considered boundary condition is defasefibllows

NS =v=w=M; =M3=v,=0 atx=zal2

C C a (12)
Ny =u=w=Mj=MJ=v, =0 aty=1b/2

2.1.Solution Procedure Of Free Vibration

The proposed displacement model for solution whatfses considered boundary condition
and the governing equations is given as follows

(uau)=(A, D)cos?sin%sinwt,

(v,bv,)=(B, E)sin%cosn%lysinwt, (13)

. mMMX . n .
W = Csm—sanysmoot.
a

Where m and n are half-wave numbers along x anidegtebns, respectively, and is radial
frequency. According to the free vibration probléme transverse load term (q(x;t)) and the
external force terms @ N,°, Ny, are set to zero.

For free vibration analysis the displacement fietsnponents which given with Eq.(13) are
substituted into governing equations which givethviéq.(10) and this process is leaded to an
eigenvalue equation which given as follows

{K]- 02 M 0} ={l0] (14)

where K and M are stiffness and inertia matricqespectively,Q, is the free vibration
frequency parameter and,Xis the column vector of unknown coefficients ofieg (14). For

a given a pair of m and n with certain geometrenadl material properties of the plate, the
solution of this eigenvalue problem predicts fivetural frequencies for vibration problem.
The non-dimensional frequency parameter is defisedlows

p =g &P p, = El Q? = poy? (15)
"D, )0 120-v2) "

2.2.Solution Procedure Of Buckling

The proposed displacement model for solution whatises considered boundary condition
and the governing equations is given as follows
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(uau)=(A, D)cos?sin%,

(v,bv,)=(B, E)sin% cosnTny, (16)
w = Csinmsinn—ny.

a b
According to the axial buckling problem the transeeload term (q(x;t)) and the external
shear force term ()f) are set to zero. The in-plane axial forceg® (NN, ) are negative for
compressive forces and positive for tensile forées.in the case of axial buckling the in-
plane forces are defined as follows

Ny
NE=-N,, NF=-8N, &=

Ny
wheres is a non-dimensional load parameter which cornedpdhe loading conditions. The
value ofd is 0, 1 and -0.5 when the plate is subjected eouthaxial compression along the x
axis, the biaxial compression and the tensile logdh the y direction while the plate is under
compression along the x direction, respectively.

(17)

For buckling analysis the displacement field congus which given with Eq.(13) are
substituted into governing equations which givethviédqg.(10) and this process is leaded to an
eigenvalue equation which given as follows

{[K]- v, [MH[X o ]} ={(0] (18)

where K and M are stiffness and geometric matricespectivelyN, is the critical buckling
load parameter and% is the column vector of unknown coefficients ofisg (17). For a
given a pair of m and n with certain geometricall anaterial properties of the plate, the
solution of this eigenvalue problem predicts fiviéical buckling loads for buckling problem.
The non-dimensional critical buckling load paramételefined as follows

E,h°

o) o) Y
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3. Numerical Results

The cross-ply laminated plates are compared froenptint of free vibration and buckling

behavior under in-plane axial forces with isotropied orthotropic plates. The analysis is
performed based on a generalized shear deformhbletseory using Navier type solution.

Hence, it is considered simply supported boundamydition. The material properties of
laminated plates which used in the present stuelgiaen in Table 3.

Table 3. Comparison of non-dimensional fundamedntgjuency parameter of simply
supported isotropic and orthotropic plate®, % (ou(b2 /T2 )\/ph/D,,).

a/b  Method Isotropic HE,=3 E/E>=10
a/h=100 a/h=10 a/h=100 a/h=10 a/h=100 a/h=10
0.5 Ref.[32] 4.999 4.900 7.669 7.517 13.072 12.814
Present 4.998 4.973 7.669 7.630 13.074 13.008
Study
1.0 Ref.[32] 2.000 1.984 2.541 2.521 3.672 3.643
Present 1.997 1.982 2.539 2.519 3.671 3.641
Study
2.0 Ref.[32] 1.250 1.244 1.342 1.336 1.499 1.491
Present 1.248 1.224 1.341 1.315 1.496 1.466
Study
3.0 Ref.[32] 1.111 1.106 1.145 1.139 1.183 1.178
Present 1.109 1.067 1.140 1.099 1.178 1.135
Study

The frequency parameters, the critical bucklingdbb@nd mode shapes of vibration and
buckling are obtained for different plate geomeaiyd material anisotropy according to
vibration and axial loading conditions.

In order to establish the validity of the presdntly comparison results are presented in Table
4-9. In Table 4, comparison of non-dimensional amental frequency parameter of isotropic
and orthotropic plates is given. In Table 5, congmr of non-dimensonal frequency
parameters for higher modes of laminated platesrdogy to the classical plate theory is
given. In table 6, comparison of critical bucklihgad of isotropic plates under uniaxial
compression§=0) along the x-axis is given. In Table 7-9, conmaam of critical buckling
load of orthotropic and laminated plates are gif@nuniaxial compression along the x-axis
and biaxial compressio®£1). The results are in good agreement.
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Table 4. Comparison of non-dimensonal frequencgrpaters of simply supported laminated
plates according to the classical plate theory=b/Ik/E,=20).

(m,n)  Solution Method (09 (0° /90°) (0°/90°)  (0°/90°)
(1,1) Ref.[34] 4.847 0.990 1.386 2.638
Present Study 4.845 0.984 1.385 2.636
(1,2) Ref.[34] 6.781 2.719 3.913 4.917
Present Study 6.778 2.716 3.911 4.915
(1,3) Ref.[34] 11.111 5.789 8.456 9.637
Present Study 11.105 5.784 8.450 9.632
(2,1) Ref.[34] 18.193 2.719 3.913 9.354
Present Study 18.188 2.716 3.911 9.352
(2,2) Ref.[34] 19.388 3.959 5.547 10.554
Present Study 19.381 3.956 5.544 10.549
(2,3) Ref.[34] 22.153 6.702 9.507 13.826
Present Study 22.141 6.695 9.501 13.818

Table 5. Comparison of critical buckling load ahgly supported isotropic plates under
uniaxial compression along the x-ax#sQ) for different a/b ratios.

a/b 0.5 1.0 1.5
Ref.[32] 6.250 4.000 4.340
Present Study 6.249 3.999 4.339

t Denotes change to the next higher mode.

Table 6. Comparison of critical buckling load ahgly supported orthotropic plates under
uniaxial compression along the x-axis=Q) for different a/b ratios.

a/b Solution Method EE2=1 E1/E2:3 E1/E2:10 E_/E2:25

0.5 Ref[32] 6.250 14.708 42.737 102.750
Present Study 6.619 14.699 42.729 102.739

1.0 Ref[32] 4.000 6.458 13.488 28.495
Present Study 4.369 6.449 13.479 28.489

2.0 Ref[32] 4.006" 6.458>" 8.987 12.745
Present Study 4.369 6.449%" 8.979 12.739

3.0 Ref[32] 4.0008" 6.042%" 9.182*" 14.273
Present Study 4.369 6.039%% 9.179*% 14.269

Table 7. Comparison of critical buckling load ahgly supported orthotropic plates under
biaxial compressions¢1) for different a/b ratiosN = N _ b? /(nZDZZ)

a/b Solution Method EE2=1 El/E2=3 E1/E2:10 El/E2=25
0.5 Ref[32] 5.000 11.767 25.427 40.784%
Present Study 5.299 11.759 25479 40.778
1.0 Ref.[32] 2.000 3.229 6.744 10.19%6
Present Study 2.179 3.219 6.739 10489
2.0 Ref[32] 1.250 1.442 1.798 2.549
Present Study 1.319 1.439 1.789 2.539
3.0 Ref[32] 1.111 1.179 1.260 1.427
Present Study 1.139 1.169 1.249 1.419
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Table 8. Comparison of critical buckling load ahgly supported laminated plates under
uniaxial compression along the x-axis and biaxwahpression for different a/b ratios, (0°/90°

/0°/90°).

a/b Solution Method H#E,=5 E/Ex=10 E/E,=20 E/E,=40

Uniaxial compressionsE0)

0.5 Ref.[34] 4.705 4.157 3.828 3.647
Present Study 4.699 4.149 3.819 3.639

1.0 Ref.[34] 2.643 2.189 1.923 1.778
Present Study 2.639 2.179 1.919 1.769

1.5 Ref.[34] 2.955 2.487 2.211 2.061
Present Study 2.949 2.479 2.209 2.059

Biaxial compressiond=1)

0.5 Ref.[34] 3.764 3.325 3.062 2.917
Present Study 3.759 3.319 3.059 2.909

1.0 Ref.[34] 1.322 1.095 0.962 0.889
Present Study 1.319 1.089 0.959 0.879

1.5 Ref.[34] 1.009 0.860 0.773 0.725
Present Study 0.999 0.859 0.769 0.719

Firstly, effects of the material anisotropy, thatplthickness and the side-to-side ratio on the
number of layer of cross-ply laminated plates akestigated in Fig.1. It is observed that the
frequency parameters increase with increasing thienmal anisotropy ratio (#E;), the side-
to-side ratio (a/b) and the plate becoming thinfiée variation of frequency with a/h ratio is
sharply for a/h<20 values and after the value b$20 the variation of frequency is slightly.
When the effect of the material anisotropy and tthiekness of the plate on the freqeuncy
parameter is investigated, it is seen that theugaqy values of the two-layer cross-ply plate
are smaller than the others with big differences.

Frequency Parameter
Frequency Parameter

Frequency Parameter

ah alb

(a) (b) (©)
Figure 1: Variation of frequency parameter with number gEls of cross-ply laminated
plates for (a) different orthotropy degrees ( abh=&b=1); (b) different a/h ratios ( E1/E2=30,
a/b=1); (c) different a/b ratios ( E1/E2=30, a/hx20

Comparisons of anti-symmetric and symmetric crdgdgminated plates with isotropic and
orthotropic plates in terms of free vibration bebav are given in Fig.2-5. As usual,
frequency values of considered plates increase wvitfeasing the material anisotropy, the
plate thickness and the length of the plate and méxjuency values of symmetric cross-ply
and orthotropic plates are very closely each oth&esording to the material anisotropy and

10
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the plate thickness, symmetric cross-ply and ortipi¢ plates are more rigid but according to
the plate length anti-symmetric plates are moré&rand frequency values of symmetric
cross-ply laminated plates are bigger than frequeradues of orthotropic plates. In all
profiles, isotropic plates have minimum frequenejues. In the higher modes, it is seen that
the variations of frquency values increase wavy faeguency values of -symmetric cross-ply
laminated and orthotropic plates are very closalgheothers but orthotropic plates have more
rigidity in terms of symmetric cross-ply laminatgdlates and anti-symmetric cross ply
laminated plates.

—e—— isonopic
18 o Orthotropic

——-%¥-——  0/90/0/90

—Ae— 090100 P

Frequency Parameter

Figure 2: Variation of frequency parameter with orthotromgcee for different elastic plates
(a/b=1 a/h=20).

40 80

——@—— Isotropic

35 J o Orthotropic
——-¥-—— 0/90/0/90 ,
——A—- 0/90/90/0

» ——e—— Isotropic X
/ 70 + o Orthotropic
——-¥———  0/90/0/90 /
/ —_———h— 0/90/90/0
v /

30 A 60

25 50 4
20 40

15 4 30 4

Frequency Parameter
Frequency Parameter

10 4 20 4

101

T T T T T T T T T T T T
0,0 0,5 10 15 2,0 2,5 3,0 35 0,0 05 1,0 15 2,0 2,5 30 35
alb alb

(a) E1/E2=3 (b) E1/E2=30
Figure 3: Variation of frequency parameter with a/b ratiad aith ortotropy degrees for
different elastic plates ( a/h=20).

8,0 18
[ SR |
751 Qe e 161 o
g ————— — v < e —— v
v ///',/
o] ? s 141 ﬁ
T 704 ) 2
1S3 ! ——8——  Isotropic £ /
© // o Orthotropic © 12 —8&——  Isotropic »
< ——-y——— 0/90/0/90 < / [ Orthotropic
QO 45 ——A— 0/90/90/0 o ——-¥-—— 0/90/0/90
oy 2 % —-—A-—-- 0/90/90/0
g g
5 S 104 o
g &
o 601 o
w L 8-
551 61 S o .
5,0 T T T T T 4 T T T T T
0 20 40 60 80 100 120 0 20 40 60 80 100 120
a/h a/h

Figure 4: Variation of frequency parameter with a/h ratiod arith ortotropy degrees for
different elastic plates ( a/b=1).
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80 160
o o
70 4 fa 140 A
7 /
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. = 5
& o /
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Mode Sequence Number Mode Sequence Number

Figure 5:Variation of higher frequency parameter with modguence numbers and with
ortotropy degrees for different elastic platesb&d/, a/h=20 ).

Comparisons of anti-symmetric and symmetric crdgdgminated plates with isotropic and
orthotropic plates in terms of buckling behavioadar various buckling load types are given
in Fig.6-9. As expected all of considered plategehmaximum value of critical buckling load
when the plate is subjected to uniaxial compresalong the x axisd=0) and have minimum
value critical buckling load when the plate is ®adbgd to bi-axial compression loag=().
According to the variation of material anisotropitical buckling loads of considered plates
are almost linearly increasing and critical bucglimads of symmetric cross-ply laminated
and orthotropic plates are very closely each otlaes critical buckling loads of them are
bigger than anti-symmetric laminated plates. Itolsserved that critical buckling loads
increase with the plate becoming thinner. The Wamaof buckling load with a/h ratio is
sharply for a/h<20 values and after the value 6620 the variation of buckling load is
slightly. According to the variation of the sidegmle ratio, it is seen that buckling loads
increase with increasing of the plate length. Haaveeritical buckling loads of orthotropic
plates decrease with increasing of the plate lefagtibi-axial compression loading. In terms
of the variation of the plate length anti-symmetlates more stable than the others. In all
profiles, isotropic plates have minimum criticalckling loads. In the higher buckling modes,
it is seen that the variations of critical bucklitgpds of considered plates are slightly until
sixth mode and next it is observed that criticatking loads of anti-symmetric laminated
plates increase sharply for uniaxial compressiawliltg. For bi-axial compression and tensile
loading in the y direction while the plate is undempression along the x direction, critical
buckling loads of orthotropic plates higher thammsyetric laminated plates, of anti-
symmetric laminated plates plates and of isotrpfates, respectively.

ES 18 70

8

S
NN
N
g 3
\ﬂz
\
\

8

Critical Buckling Load
o
N\
\

N
N
N\
Y
Critical Buckling Load
N\
\
Y
Critical Buckling Load

@

R,
R,

°
°
°

(a) (b) (c)
Figure 6: Variation of critical buckling load with orthotropdegrees for different elastic
plates which subjected to considered loading candit( a/b=1 a/h=20 ).
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Critical Buckling Load
5

Critical Buckling Load
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(b)

(©)

Figure 7: Variation of critical buckling load with a/h ragdor different elastic plates which
subjected to considered loading conditions (E1/BE2sB=1 ).
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Figure 8: Variation of critical buckling load with a/b rasdor different elastic plates which
subjected to considered loading conditions (E1/BE2s8=20 ).
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The vibration mode shapes of the first six freqyeparameters of considered elastic plates
are given in Fig. 10-16 for transverse displacenfiefd component (w). The mode shapes are
unknown coefficients corresponding to eigenvectdrsigenvalue problem which is given in
Eq. 14. From this equation, firstly the eigenvalugkich corresponding the natural
frequencies are obtained. Hence, the eigenvectbrshwcorresponding natural frequencies
and so unknown coefficients are obtained. Thusst#uling the coefficients in the Eq. (13)
the mode shapes can be drawn. It is observed so#iopic, orthotropic and symmetric
laminated plates have the same mode arrangemerms thle value of material anisotropy
(E/Ep) is 3. When the value of material anisotropy is 8% mode arrangements of
symmetric laminated and orthotropic plates are imaryfor higher modes. The mode
arrangements of anti-symmetric laminated plateddferent from the other plates and there
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is no variation with the mode arrangements of aytitmetric laminated plates with the
variation of the material anisotropy.
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Figure 16. Mode shapes of free vibration modes of symmetossply laminated plates,
(a/b=1, a/h=20, §#E,=30, 0/90/90/0).

The buckling mode shapes of the first four critibatkling loads of considered elastic plates
which obtained with Navier method are given in Ri@-19 for transverse displacement field
component (w). It is observed that the mode arnameges of symmetric laminated and anti-
symmetric laminated plates have the same variaidhe same material anisotropy. Critical
buckling loads increase with increasing materias@mopy, but also wave numbers of plates
increase even if at lower modes.
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4.Conclusions

The objective of the study is to do a relative gsigl with isotropic, orthotropic and laminated
plates in terms of free vibration and axial bucglipehaviours. In the study an analytical
solution is carried based on a higher order sheérohation theory for simply supported
boundary condition.

According to the variation of material anisotropydaplate thickness, it is observed that
frequency values and critical buckling loads ofottopic and symmetric laminated plates
are very closely each others and higher than th@eseof anti-symmetric laminated plates
with increasing material anisotropy and decreapiatg thickness. According to the variation
of side-to-side ratio, it is observed that when ¥adies of frequency and critical buckling
loads ranging from the higher value to the lessuie/athey are belong to anti-symmetric
laminated, symmetric laminated, orthotropic andtriguc plates, respectively. In all

conditions, isotropic plates have minimum frequerajue and critical buckling loads. It is

seen that the frequency values and the criticaklmg loads increasingly increase with
increasing material anisotropy, decreasingly ineeewith increasing side-to-side ratio and
sharply increase until a critical value (a/lh=20Y after the critical value the variation is
slightly with decreasing plate thickness.

It is observed that the mode arrangements varyidersg isotropic plates with increasing
material anisotropy. In the buckling problem, itssen that the variation of validation is not
only for mode arrangement as in the vibration pFobbut also for nodal point number.
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