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Abstract

In this paper, we are concerned with a class of nonlinear implicit fractional di�erential equation with a
discrete delay. By means of the contraction mapping principle, we prove the existence of a unique solution.
Then, we investigate the continuous dependence of the solution upon the initial delay data and the Ulam
stability.
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1. Introduction

Fractional di�erential equations are a generalization of ordinary di�erential equations to arbitrary non-
integer orders. During the last decades it has been shown that fractional di�erential equations arise naturally
in a number of �elds, when dealing with memory or hereditary properties, such as in viscoelasticity, biology,
engineering, biophysics, medicine, control theory, etc. For more details about the theory and widespread
applications of fractional di�erential equations, one can see [15, 18] and the references therein.

On the other hand, time delays appear in many phenomena in diverse domains such as in engineering,
biology, medicine, etc., where information transmission or responses in control systems are not instantaneous,
for example see [16].

Thus, fractional di�erential equations with delays have more adequate applications in some cases. Sub-
sequently, a large number of mathematicians investigated this class of equation and obtained several results
on the existence and uniqueness of solutions, one can consult [3, 4, 6, 9, 10].
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One of main qualitative properties of solutions of di�erential equations is their data dependence which is
studied by many methods. Recently, Ulam's type stabilities have attracted more and more attention. The
classical concept of Ulam stability posed by Ulam in 1940, was obtained for functional equation by Hyers
in 1941, see [11]. Then, the Hyers result was extended by replacing functional equations with di�erential
equations and this approach, which guarantees the existence of an ε−solution, is quite useful in many
applications where �nding the exact solution is impossible. It is important to notice that there are many
applications for Ulam-Hyers stability in realistic problems from di�erent topics such as population dynamic,
biology , economics, etc. To know many see [11, 12, 14, 20, 21].

With the expansion of the fractional calculus, more and more papers concerned with problems involving
various stabilities of solutions of fractional di�erential equations with or without delays are published, as
example [1, 5, 9, 10, 17] and for that of Ulam type, see [3, 7, 13, 22].

In [7], results on the existence and uniqueness of the solution and two types of Ulam's stability for an
initial value problem for nonlinear implicit fractional di�erential equation with Riemann-Liouville fractional
derivative, {

Dα
0+y (t) = f

(
t, y (t) , Dα

0+y (t)
)

; t ∈ (0, T ] , 0 < α < 1
t1−αy (t)

∣∣
t=0

= y0 ∈ R,
were obtained by using the Banach contraction mapping principle and Schaefer's �xed point theorem.

Motivated by the above work, we will investigate, the existence and uniqueness of the solution and
some stability properties, namely the continuous dependence upon the initial data, the Ulam-Hyers and
Ulam-Hyers-Rassias stabilities for problem involving a more general nonlinear implicit fractional di�erential
equation with a discrete delay

Dα
0+x (t) + λx (t) = F

(
t, x (t) , x (t− η) , Dα

0+x (t)
)

; t ∈ [0, T ] , (1)

for 0 < α < 1 , subject to the initial condition:

I1−α0+ x (t)
∣∣
t=0+

= 0 (2)

and to be in accordance with the given delay, we need the following data on the delay interval

x (t) = ϕ (t) ; t ∈ [−η, 0) with lim
t→0−

ϕ (t) = 0, (3)

Dα
0 denotes the Riemann-Liouville derivative of order α ∈ (0, 1); λ is a real positive constant; F and ϕ are

given functions; η > 0 is the time delay .
The di�culties of this problem come from the implicit form of the equation (1) as well as the time delay.

It's possible that (1) becomes of explicit form in some cases of weak nonlinearity of F , then the results
obtained for (1) will remain true with lightened conditions. To ensure the implicit form of (1), we assume
that F (t, x, y, z) is totally nonlinear precisely with its last variable.

The manuscript is structured as follows. In Section 2, we give some basic results from fractional calculus,
which will be used throughout the paper. In Section 3, we will employ the Banach contraction mapping
principle to show the existence and uniqueness of the solution for the problem (1)-(3) by transforming the
problem into an equivalent integral equation. In Section 4, we will study the continuous dependence upon
the initial data and two types of Ulam's stability.

2. Preliminaries

In this section, we introduce de�nitions and preliminary results which can be found in the books of Kilbas
et al [15] and Podlubny [18].

De�nition 2.1. The left-sided Riemann-Liouville fractional integral of order α ∈ R+ for an integrable

function f : R+ → R, is de�ned by

Iα0+f(t) =
1

Γ(α)

∫ t

0

f(s)

(t− s)1−α
ds, for almost every t > 0,
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Γ(α) is the Euler's gamma function and Γ(α+ 1) = αΓ(α).

Lemma 2.2. When f ∈ C[0, T ], then Iα0+f ∈ C[0, T ].

De�nition 2.3. The left-sided Riemann-Liouville fractional derivative of order α ∈ (0, 1) is de�ned by

Dα
0+f(t) :=

d

dt
I1−α0+ f(t) =

1

Γ(1− α)

d

dt

∫ t

0

f(s)

(t− s)α
ds,

provided that the right-hand side is pointwise de�ned on (0,+∞).

Lemma 2.4. If f is an integrable function such that I1−α0+ f ∈ AC[0, T ], then Dα
0+f (t) exists for almost

every t ∈ [0, T ]. Furthermore, the following equalities

Iα0+D
α
0+f(t) = f(t)− tα−1

Γ(α)
I1−α0+ f(0+) and Dα

0+I
α
0+f(t) = f(t),

hold almost everywhere on [0, T ] .

Recall that the space of absolutely continuous functions AC[0, T ], coincides with the space of primitives
of Lebesgue summable functions i. e.

f (t) = c+

∫ t

0
θ (s) ds on [0, T ] for θ ∈ L1 [0, T ] .

Let us de�ne the Mittag-Le�er Function which is an important tool in the fractional calculus.

De�nition 2.5. A two-parameter Mittag-Le�er function is de�ned by the series expansion

Eα,β(z) =
∞∑
n=0

zn

Γ(αn+ β)
; z, α, β ∈ C with Reα > 0; (4)

in particular Eα,1(z) = Eα(z) and E1,1(z) = exp(z)

Corollary 2.6. The following properties hold for 0 < α ≤ β ≤ 1, λ ∈ R+ and t ∈ [0, T ) ( some T ≤ ∞) :
(i) Eα,β(−λtα) is a completely monotonic function and

0 < Eα,β(−λtα) ≤ 1

Γ (β)
;

(ii) tβ−1Eα,β(−λtα) is a completely monotonic function and∫ t

0
(t− s)β−1Eα,β(−λ(t− s)α)ds = tβEα,β+1(−λtα) <∞. (5)

Now, we give the integral form of the solution related to a linear Cauchy problem.

Lemma 2.7. The linear Cauchy fractional di�erential problem{
Dα

0+x(t) + λx(t) = H(t), t ≥ 0, λ > 0, 0 < α < 1,

I1−α0+ x(0+) = c,
(6)

where H is an integrable function, has the following integral representation of the solution for t ∈ (0, T ],

x(t) = ctα−1Eα,α(−λtα) +

∫ t

0
(t− s)α−1Eα,α(−λ(t− s)α)H(s)ds. (7)

Finally, we give a type of Gronwall's inequality for singular kernels which can �nd in [23].

Corollary 2.8. Suppose α > 0, a (t) is a nonnegative nondecreasing locally integrable function on [0, T )
( some T ≤ ∞) , g (t) is a nonnegative, nondecreasing continuous function de�ned on [0, T ) such that g (t) ≤
M (a constant) and suppose u (t) is nonnegative and locally integrable on [0, T ) with

u (t) ≤ a (t) + g (t)

∫ t

0
(t− s)α−1 u (s) ds, on [0, T ) .

Then

u (t) ≤ a (t)Eα (g (t) Γ (α) tα) , t ∈ [0, T ) .
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3. Main Results

3.1. Existence and uniqueness results

The existence result below is based on the well-known Banach �xed point theorem.
Let us introduce the following hypotheses on F :
(H1) 1- F ∈ C ([0, T ]× Ω) where Ω is an open set in R3 which contains 0 with sup

t∈[0,T ]
|F (t, 0, 0, 0)| = F0 ;

2- F satis�es the Lipschitz condition i. e there exist constants L1 > 0 , L2 > 0 , 0 < L3 < 1 such
that:

|F (t, x1, y1, z1)− F (t, x2, y2, z2)| ≤ L1 |x1 − x2|+ L2 |y1 − y2|+ L3 |z1 − z2| ,

for all (x1, y1, z1) , (x2, y2, z2) ∈ Ω and each t ∈ [0, T ] ;
For convenience, we shall give the following de�nition and notations.

De�nition 3.1. A real function x ∈ C [−η, T ] ∩ AC [0, T ] is said to be a solution of problem (1)-(3) if it

satis�es (1) on (0, T ], (2) for t = 0 and (3) on [−η, 0) for a given continuous function ϕ with lim
t→0−

ϕ (t) = 0.

Let us denote

Σ1 =
Tα

Γ (α+ 1) (1− L3)
; (8)

and C [a, b] the Banach space of continuous real functions on [a, b] endowed with the sup norm‖x‖C[a,b] =
sup
t∈[a,b]

|x (t)| .

De�ne the space
C0 [−η, 0] = {ψ ∈ C [−η, 0] : ψ (0) = 0}

which is a Banach space endowed with the sup norm ‖ψ‖C0[−η,0] = sup
t∈[−η,0]

|ψ (t)| .

Theorem 3.2. Assume that (H1) is satis�ed and ϕ ∈ C0 [−η, 0]. If

0 < Σ1 [L1 + L2 + λL3] < 1, (9)

then, implicit delayed fractional di�erential problem (1)-(3) has a unique solution x ∈ C [−η, T ]∩AC [0, T ] .

Proof. First, we de�ne B on C [−η, T ] satisfying the functional equation

Bx(t) =

{
F (t, x (t) , x (t− η) ,Bx (t)− λx (t)) , t ∈ (0, T ] ,

0, t ∈ [−η, 0] .
(10)

B is well de�ned, since we have for each x ∈ C [−η, T ]

|Bx (t)| ≤ |F (t, x (t) , x (t− η) ,Bx (t)− λx (t))− F (t, 0, 0, 0)| (11)

+ |F (t, 0, 0, 0)| , t ∈ (0, T ] .

Then,

|Bx (t)| ≤ λL3 + L1 + L2

(1− L3)
‖x‖C[−η,T ] +

F0

(1− L3)
<∞, t ∈ [−η, T ] .

Next, using Lemma 2.7 with c = 0 and H (t) = Bx(t) for t ∈ (0, T ], we obtain that x ∈ C [−η, T ] the solution
of problem (1)-(3) satis�es

x (t) =


∫ t
0 (t− s)α−1Eα,α(−λ(t− s)α)Bx (s) ds, t ∈ (0, T ]

0, t = 0
ϕ (t) , t ∈ [−η, 0) ;

(12)
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for a given ϕ ∈ C0 [−η, 0]. Now, let us de�ne the following Banach spaces:

C0 [−η, T ] = {y ∈ C ([−η, T ] ,R) : y (t) = 0; t ∈ [−η, 0]} ,
C0,T [−η, T ] = {ψ ∈ C ([−η, T ] ,R) : ψ (t) = 0, t ∈ [0, T ]}

endowed with the sup norm ‖x‖C[−η,T ] = sup
t∈[−η,T ]

|x (t)|. This allows us to rewrite the solution of (1)-(3) as

follows

x (t) = x̃ (t) + ϕ̃ (t) , t ∈ [−η, T ]

where x̃ ∈ C0 [−η, T ] is de�ned from (12) for t ∈ (0, T ] and ϕ̃ ∈ C0,T [−η, T ] is de�ned from (12) for

t ∈ [−η, 0].
Next, we de�ne the operator P on C0 [−η, T ] by

Px̃ (t) =

{ ∫ t
0 (t− s)α−1Eα,α(−λ(t− s)α)Bx̃ (s) ds, t ∈ (0, T ]

0, t ∈ [−η, 0] .
(13)

and reduce problem (1)-(3) to a �xed point problem x̃ = Px̃. Now, we prove that P makes C0 [−η, T ] into
itself. First, for t ∈ (0, T ] ,

|Px̃ (t)| ≤
∫ t

0
(t− s)α−1Eα,α(−λ(t− s)α) |Bx̃ (s)| ds. (14)

From (11), we have on C0 [−η, T ]

|Bx̃ (s)| ≤ λL3 + L1

(1− L3)
|x̃ (s)| (15)

+
L2

(1− L3)
|x̃ (s− η)|+ F0

(1− L3)
.

Using (15) in (14), we obtain

|Px̃ (t)| ≤ (λL3 + L1)

(1− L3)
sup
s∈[0,t]

|x̃ (s)|
∫ t

0
(t− s)α−1Eα,α(−λ(t− s)α)ds

+
L2

(1− L3)
sup

z∈[−η,t−η]
|x̃ (z)|

∫ t

0
(t− s)α−1Eα,α(−λ(t− s)α)ds

+
F0

(1− L3)

∫ t

0
(t− s)α−1Eα,α(−λ(t− s)α)ds.

By (5), the monotonicity of Eα,α+1(−λtα) on [0, T ] which gives

sup
0<t≤T

tαEα,α+1(−λtα) =
Tα

Γ (α+ 1)
;

and the fact that Px̃ (t) = 0 for t ∈ [−η, 0], we get

‖Px̃‖C[−η,T ] ≤ [L1 + L2 + λL3]
Tα

Γ (α+ 1) (1− L3)
‖x̃‖C[−η,T ]

+F0
Tα

Γ (α+ 1) (1− L3)

≤
[
[L1 + L2 + λL3] ‖x̃‖C[−η,T ] + F0

]
Σ1 <∞.

Then, P makes C0 [−η, T ] into itself. Now, for each x̃ and ỹ in C0 [−η, T ],

|Px̃ (t)− P ỹ (t)| ≤
∫ t

0
(t− s)α−1Eα,α(−λ(t− s)α) |Bx̃ (s)− Bỹ (s)| ds.
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Using the Lipschitz property of F and as already seen in (15), we get

|Bx̃ (s)− Bỹ (s)| ≤ λL3 + L1

(1− L3)
|x̃ (s)− ỹ (s)| (16)

+
L2

(1− L3)
|x̃ (s− η)− ỹ (s− η)| .

Then, by the fact that |Px̃ (t)− P ỹ (t)| = 0 = |x̃ (t)− ỹ (t)| for t ∈ [−η, 0], we obtain

‖Px̃− P ỹ‖C[−η,T ] ≤ [L1 + L2 + λL3] Σ1 ‖x̃− ỹ‖C[−η,T ] .

From (9), we conclude that P is a contraction and in view of the Banach �xed point theorem, P has
a unique �xed point in C0 [−η, T ] which is the unique solution of (1) with the initial condition x̃ (t) =
0, t ∈ [−η, 0] . Thus, for a unique given ϕ̃ ∈ C0,T [−η, T ] the solution of (1)-(3), x (t) = x̃ (t) + ϕ̃ (t) is
unique in C ([−η, T ] ,R). Furthermore, x(t) is absolutely continuous for t ∈ [0, T ]. This yields from (12),
for t ∈ (0, T ] where Bx (s) satisfying (10) is continuous and (t − s)α−1Eα,α(−λ(t − s)α) is integrable on
[0, T ] with lim

t→0+
x (t) = 0 then x ∈ AC ([0, T ] ,R). Furthermore, Dα

0+x(t) is continuous by the continuity of

−λx (t) + Bx (t), for t ∈ (0, T ] .

3.2. Continuous dependence upon the initial data

Next, we study the continuous dependence of the solution of equation (1) upon the initial data ϕ (t) due
to the discrete delay.

Theorem 3.3. Assume that assumption (H1) and condition (9) hold. Then, the solution of problem (1)-(3)

depends continuously for each t ∈ [0, T ] upon the initial data ϕ ∈ C0 [−η, 0].

Proof. Let xj , j = 1, 2 be solutions of equation (1) corresponding to the initial data ϕj (t) , j = 1, 2, respec-
tively. Then, we have

|x1 (t)− x2 (t)|

≤
∫ t

0
(t− s)α−1Eα,α(−λ(t− s)α) |Bx1 (s)− Bx2 (s)| ds.

Using (16), we get

|x1 (t)− x2 (t)|

≤
∫ t

0
(t− s)α−1Eα,α(−λ(t− s)α)

L1 + λL3

(1− L3)
|x1 (s)− x2 (s)| ds

+
L2

(1− L3)

∫ t

0
(t− s)α−1Eα,α(−λ(t− s)α) |x1 (s− η)− x2 (s− η)| ds.

Putting (s− η) = z in the last integral, with sup
0≤(t−s)≤T

Eα,α(−λ(t− s)α) =
1

Γ (α)
, we get

1

Γ (α)

∫ t−η

−η
(t− η − z)α−1 |x1 (z)− x2 (z)| dz

≤ 1

Γ (α)
sup

z∈[−η,0]
|x1 (z)− x2 (z)|

∫ 0

−η
(t− η − z)α−1 dz

+
1

Γ (α)
sup

z∈[0,t−η]
|x1 (z)− x2 (z)|

∫ t−η

0
(t− η − z)α−1 dz

≤ tα − (t− η)α

αΓ (α)
‖ϕ1 − ϕ2‖C[−η,0] +

(t− η)α

αΓ (α)
‖x1 − x2‖C[0,T ] .
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Consequently, we obtain

|x1 (t)− x2 (t)| ≤ Tα

αΓ (α) (1− L3)
L2 ‖ϕ1 − ϕ2‖C[−η,0]

+
Tα

αΓ (α) (1− L3)
(L1 + λL3 + L2) ‖x1 − x2‖C[0,T ] .

Then, with x1 (0) = 0 = x2 (t) , we have

sup
t∈[0,T ]

|x1 (t)− x2 (t)| ≤ [L1 + L2 + λL3] Σ1 sup
t∈[0,T ]

|x1 (t)− x2 (t)|

+Σ1L2 ‖ϕ1 − ϕ2‖C[−η,0] .

In view of (9), we have for each t ∈ [0, T ]

|x1 (t)− x2 (t)| ≤ Σ1L2

1− [L1 + L2 + λL3] Σ1
‖ϕ1 − ϕ2‖C[−η,0] . (17)

This implies the continuous dependence of x (t) for each t ∈ [0, T ] upon the initial data of the delay ϕ (t).
This completes the proof.

3.3. Ulam-Hyers stability

As already said in the introduction, in 1941 Hyers gave an answer to the problem posed by Ulam for
functional equation in the following result called the Ulam-Hyers stability:

Let X1;X2 be a Banach spaces, ε > 0 and a mapping f : X1 → X2 such that |f (x+ y)− f (x)− f (y)| ≤
ε for x, y ∈ X1. Then, there exists a unique additive mapping g : X1 → X2 such that |g (x)− f (x)| ≤ ε ,
x ∈ X1.

The generalization of Ulam's type stability was proposed by replacing functional equations with di�eren-
tial equations of integer order and later of fractional order. In [2], Alsina and Ger seem to be the �rst authors
who investigated the Hyers-Ulam stability of linear di�erential equation :y′ (t) = y (t) . They obtained this
result:

Let ε > 0, I an open subinterval of R and f : I → R a di�erentiable function. If f satis�es the di�erential
inequality |y′ (t)− y (t)| ≤ ε, t ∈ I, then there exists a di�erentiable function g : I → R solution of the
di�erential equation y′ (t)− y (t) = 0 such that |f (t)− g (t)| ≤ 3ε for any t ∈ I.

Following this approach, we will embrace the de�nitions of Ulam-Hyers stability and Ulam-Hyers-Rassias
stability presented by Rus in [19] .

Let ε be a positive real number and ψ (t) be a positive continuous function on [0, T ] and consider the
following inequalities:

|Dα
0 y (t) + λy (t)−H (t)| ≤ ε, t ∈ [0, T ] ; (18)

and
|Dα

0 y (t) + λy (t)−H (t)| ≤ εψ (t) , t ∈ [0, T ] ; (19)

where H is de�ned for t ∈ [0, T ] by

H(t) = F (t, y (t) , y (t− η) , Dα
0+y (t)) . (20)

Recall the de�nition of the solution of the inequality (18).

De�nition 3.4. A function y ∈ C [−η, T ]∩AC [0, T ] is a solution of inequality (18) with the initial conditions

(2)-(3) if and only if there exists a function h ∈ C [0, T ] such that |h (t)| ≤ ε for every t ∈ [0, T ] and{
Dα

0+y (t) + λy (t) = F
(
t, y (t) , y (t− η) , Dα

0+y (t)
)

+ h (t) , t ∈ (0, T ]

I1−α0+ y (t)
∣∣
t=0+

= 0 and y (t) = ϕ (t) ; t ∈ [−η, 0) ,
(21)

for a given ϕ ∈ C0 [−η, 0] .
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Remark 3.5. One can have similar de�nition for inequality (19) with |h (t)| ≤ εψ (t).

De�nition 3.6. Fractional di�erential equation (1) is said to be Ulam-Hyers stable if there exists a real

number k > 0 such that for each ε > 0 and each absolutely continuous function y solution of inequality (18)

there exists some absolutely continuous function x solution of (1) , such that

|y (t)− x (t)| ≤ kε, t ∈ [0, T ] . (22)

De�nition 3.7. Fractional di�erential equation (1) is said to be Ulam-Hyers-Rassias stable with respect to

ψ (t) if there exists a real number γ > 0 such that for each absolutely continuous function y solution of

inequality (18) there exists some absolutely continuous function x solution of (1) , such that

|y (t)− x (t)| ≤ γεψ (t) , t ∈ [0, T ] . (23)

Lemma 3.8. If y ∈ C [−η, T ] ∩AC [0, T ] is a solution of (18), (2) and (3), then y satis�es for t ∈ (0, T ]∣∣∣∣y (t)−
∫ t

0
(t− s)α−1Eα,α(−λ(t− s)α)Bhy (s) ds

∣∣∣∣ < ε
Tα

Γ (α+ 1)
, (24)

where Bhy (t) satis�es for each y ∈ C [−η, T ]

Bhy (t) = F (t, y (t) , y (t− η) ,Bhy (t)− λy (t) + h (t)) . (25)

Proof. In view of Lemma 2.7 with H (t) = Bhy (t) , the solution of (21) satis�es

y (t) =

∫ t

0
(t− s)α−1Eα,α(−λ(t− s)α) (Bhy (s) + h (s)) ds, t ∈ (0, T ] . (26)

First, we have to check that Bh is well de�ned. Then, for each y ∈ C [−η, T ], as already done with B in (15),
we obtain with one more term

|Bhy(t)| ≤ (L1 + L2 + λL3)
‖y‖C[−η,T ]

1− L3

+
F0

1− L3
+

L3

1− L3
|h (t)| <∞.

Then, we get for t ∈ (0, T ]

I (t) =

∣∣∣∣y (t)−
∫ t

0
(t− s)α−1Eα,α(−λ(t− s)α)Bhy (s) ds

∣∣∣∣
≤

∫ t

0
(t− s)α−1Eα,α(−λ(t− s)α) |h (s)| ds

≤ ε

∫ t

0
zα−1Eα,α(−λzα)dz ≤ ε sup

0≤z≤T
tαEα,α+1(−λzα),

which leads to (24). The proof is complete.

Theorem 3.9. Assume that ϕ ∈ C0 [−η, 0], (H1) and condition (9) hold. Then, equation (1) has Ulam-Hyers

stability.

Proof. Under the above assumptions, problem (1)-(3) has a unique solution in C [−η, T ]∩AC [0, T ] satifying
(12). Let y ∈ C [−η, T ]∩AC [0, T ] be a solution of inequality (18) and (2)-(3), then we have for each t ∈ (0, T ]

|y (t)− x (t)| =
∣∣∣∣y (t)−

∫ t

0
(t− s)α−1Eα,α(−λ(t− s)α)Bx (s) ds

∣∣∣∣
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where Bx (t) satis�es (10). Then,

|y (t)− x (t)| ≤
∣∣∣∣y (t)−

∫ t

0
(t− s)α−1Eα,α(−λ(t− s)α)Bhy (s) ds

∣∣∣∣
+

∣∣∣∣∫ t

0
(t− s)α−1Eα,α(−λ(t− s)α) (Bhy (s)− Bx (s)) ds

∣∣∣∣ .
Expressions (10) and (20) with hypothesis (H1) give

|Bhy (s)− Bx (s)| ≤ L1 |y (s)− x (s)|+ L2 |y (s− η)− x (s− η)|
+L3 |Bhy (s)− Bx (s)|+ λL3 |y (s)− x (s)|+ L3 |h (s)| .

As a result, we have

|Bhy (s)− Bx (s)| ≤ λL3 + L1

1− L3
|y (s)− x (s)| (27)

+
L2

1− L3
|y (s− η)− x (s− η)|+ L3

1− L3
|h (s)|

which implies

|y (t)− x (t)| < I (t)

+

(
λL3 + L1

(1− L3)

)∫ t

0
(t− s)α−1Eα,α(−λ(t− s)α) |y (s)− x (s)| ds

+
L2

(1− L3)

∫ t

0
(t− s)α−1Eα,α(−λ(t− s)α) |y (s− η)− x (s− η)| ds

+
L3

(1− L3)

∫ t

0
(t− s)α−1Eα,α(−λ(t− s)α) |h (s)| ds.

In view of (24), we get

‖y − x‖C[0,T ] < ε
Tα

Γ (α+ 1)
+ ε

L3T
α

Γ (α+ 1) (1− L3)

+ [L1 + λL3 + L2]
Tα

Γ (α+ 1) (1− L3)
‖y − x‖C[0,T ] .

Then, there exists a real positive constant

k =
L3Σ1

1− [L1 + L2 + λL3] Σ1
(28)

where Σ1 is de�ned by (8), such that

|y (t)− x (t)| < kε, t ∈ (0, T ] ,

with x (t) = y (t) on [−τ, 0] and this completes the proof.

Theorem 3.10. Assume that (H1) and condition (9) hold. If

(H2) there exist a nondecreasing positive function ψ ∈ C [0, T ] and some positive constant βψ such that

Iα0+ψ (t) ≤ βψψ (t) , for any t ∈ (0, T ] .

Then, equation (1) has Ulam�Hyers-Rassias stability with respect with ψ (t).
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Proof. Let y ∈ C [−η, T ]∩AC [0, T ] be a solution of the inequality (19) with initial conditions (2)-(3). Then,
for t ∈ (0, T ]∣∣∣∣y (t)−

∫ t

0
(t− s)α−1Eα,α(−λ(t− s)α)Bhy (s) ds

∣∣∣∣
≤

∫ t

0
(t− s)α−1Eα,α(−λ(t− s)α) |h (s)| ds

≤ ε sup
0≤t−s≤T

Eα,α(−λ(t− s)α)

∫ t

0
(t− s)α−1ψ (s) ds

≤ ε

Γ (α)

∫ t

0
(t− s)α−1ψ (s) ds ≤ εβψψ (t) . (29)

Under (H1) and condition (9), problem (1)-(3) has a unique solution in C [−η, T ]∩AC [0, T ] satisfying (12).
Then, we obtain for each t ∈ (0, T ]

|y (t)− x (t)| <

∣∣∣∣y (t)−
∫ t

0
(t− s)α−1Eα,α(−λ(t− s)α)Bhy (s) ds

∣∣∣∣
+

∣∣∣∣∫ t

0
(t− s)α−1Eα,α(−λ(t− s)α) (Bhy (s)− Bx (s)) ds

∣∣∣∣ .
From (27) and (29) , we conclude

|y (t)− x (t)| < εβψψ (t) +
(L1 + λL3)

(1− L3) Γ (α)

∫ t

0
(t− s)α−1 |x (s)− y (s)| ds

+
L2

(1− L3) Γ (α)

∫ t

0
(t− s)α−1 |x (s− η)− y (s− η)| ds

+
L3

(1− L3) Γ (α)

∫ t

0
(t− s)α−1 |h (s)| ds.

Letting v (t) = sup
β∈[0,η]

|x (t− β)− y (t− β)|, we can see that

v (t) <
εβψψ (t)

(1− L3)
+

[L1 + λL3 + L2]

(1− L3) Γ (α)

∫ t

0
(t− s)α−1v (s) ds.

By Corollary 2.8, with ψ (t) an increasing function, we get

v (t) <
εβψψ (t)

(1− L3)
Eα

(
[L1 + λL3 + L2]

(1− L3)
tα
)
.

From the monotonicity of Eα, it follows that there exists a real number γ > 0 given by

γ =
εβψ

(1− L3)
Eα

(
Tα

1− L3
[L1 + λL3 + L2]

)
(30)

such that
|y (t)− x (t)| ≤ εγψ (t) , t ∈ (0, T ] , (31)

with x (t) = y (t) on [−τ, 0]. This is the wanted result.

Example 3.11. We consider the following nonlinear fractional di�erential equation with discrete delay:

D
1/2
0+ x (t) + 2x (t) =

exp (−4t)

10

|x (t)|
1 + |x (t)|

(32)

+
t

10
cosx

(
t− 2

5

)
+

1

t2 + 10

∣∣∣D1/2
0+ x (t)

∣∣∣ ; t ∈ (0, 1] ,
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the initial condition I
1/2
0+ x (0) = 0 and the the delay initial data

ϕ (t) = 3t, t ∈ [−0.4, 0) (33)

where α = 1
2 , λ = 2, η = 0.4, T = 1. F given by

F (t, x, y, z) =
exp (−4t)

10

|x|
1 + |x|

+
t

10
cos y +

1

t2 + 10
|z| ; x, y, z ∈ R

is Lipschitz continuous with

L1 = L2 = L3 =
1

10
and sup

t∈[0,T ]
|F (t, 0, 0, 0)| = 1

10
.

This permits us to calculate Σ1

Σ1 =
Tα

αΓ (α) (1− L3)
=

2
√
π
(
1− 1

10

) ' 1. 253 8

which satis�es condition (9) as we have

Σ1 [L1 + L2 + λL3] = 1. 253 8× 4

10
' 0.501 52 < 1.

Also, ϕ (t) = 3t ∈ C [−0.4, 0] with lim
t→0−

ϕ (t) = 0. This ensures the existence and uniqueness of the solution

in view of Theorem 3.2.

Moreover, from Theorem 3.9, we conclude the Ulam-Hyers stability of equation (32) on [0, 1] with the

Ulam constant k

k =
L3Σ1

1− [L1 + L2 + λL3] Σ1
' 0.251 5.

Next, for ψ (t) = exp (nt) , n > 0 which is an increasing positive continuous function which satis�es for

t ∈ (0, 1]∫ t

0
(t− s)α−1ψ (s) ds < 2t1/2 + 2n exp (nt)

∫ t

0
(t− s)1/2ds

< 2

(
t1/2 + 2n

t3/2

3

)
exp (nt)

< 2

(
1 +

2

3
n

)
ψ (t) .

By setting βψ = 2
3 + 2n

3
, ψ (t) satis�es (H2). Then, Theorem 3.10 implies that equation (32) has the Ulam�

Hyers-Rassias stability with respect with ψ (t) = exp (nt) , n > 0. As example, for n = 0.25 we get βψ = 2.
333 3 and γ = 5. 185 1× E1/2 (0.444 44) .

Conclusion. In this paper, we studied a class of nonlinear fractional di�erential equations with a
discrete delay. Such problems are real-life models and their stability analysis is one of the most important
investigated topics. We used contraction mapping principle to obtain existence and uniqueness result, then
we investigated the continuous dependence upon the initial data due to the delay and Ulam's stability which
guarantees the existence of an ε−solution.



R. Atmania, Adv. Theory Nonlinear Anal. Appl. 6 (2022), 246�257. 257

References

[1] R. Agarwal, D. O'Regan and S. Hristova, Stability of Caputo fractional di�erential equations by Lyapunov functions, Appl.
Math., 60, 6 (2015), 653-676.

[2] C. Alsina, R. Ger, On some inequalities and stability results related to the exponential function, J. Inequal. Appl. 2 (1998)
373�380.

[3] R. Atmania and S. Bouzitouna, Existence and Ulam Stability results for two-orders fractional di�erential Equation, Acta
Math. Univ. Comenianae, Vol. LXXXVIII, 1 (2019), 1�12.

[4] K. Balachandran, S. Kiruthika, J.J. Trujillo, Existence of solution of nonlinear fractional pantograph equations, Acta Math.
Sci. 33 (3),(2013) 712�720.

[5] D. Baleanu, G.C. Wu and S.D. Zeng, Chaos analysis and asymptotic stability of generalized Caputo fractional di�erential
equations, Chaos Solitons Fractals , 102 (2017), 99�105.

[6] M. Benchohra, J. Henderson, S.K. Ntouyas and A. Ouahab, Existence results for fractional order functional di�erential
equations with in�nite delay, J. Math. Anal. Appl., 338(2008), 1340-1350.

[7] M. Benchohra, S. Bouriah and J.J. Nieto, Existence and Ulam stability for nonlinear implicit di�erential equations with
Riemann-Liouville fractional derivative, Demonstr. Math. (2019) 52:437�450.

[8] Capelas de Oliveira E., Vanterler da C. Sousa J., Ulam-Hyers stability of a nonlinear fractional Volterra integro-di�erential
equation. Appl. Math. Let., 81, 50�56 (2018).

[9] Z. Gao, L. Yang and Z. Luo, Stability of the solutions for nonlinear fractional di�erential equations with delays and integral
boundary conditions, (2013), 2013:43.

[10] S. Hristova and C. Tunc, Stability of nonlinear Volterra integro-di�erential equations with Caputo fractional derivative
and bounded delays, EJDE, Vol. 2019, No. 30 (2019), 1�11.

[11] D.H. Hyers, On the stability of the linear functional equation,Proceedings of the National Academy of Sciences of the
United States of America, vol. 27,(1941) pp. 222�224.

[12] D.H. Hyers, G. Isac and Th. M. Rassias, Stability of functional equations in several variables, Birkhauser, 1998.
[13] R.W. Ibrahim, Generalized Ulam-Hyers stability for fractional di�erential equations, Int. J. Math., Vol. 23, No. 5 (2012)

1250056 (9 pages).
[14] S.M. Jung, Hyers-Ulam-Rassias stability of functional equations in mathematical analysis, Hadronic Press, Palm Harbor,

2001.
[15] A.A. Kilbas, H.M. Srivastava and J.J. Trujillo, Theory and Applications of Fractional Di�erential Equations, North-Holland

Mathematics Studies, vol. 204, Elsevier Science B.V., Amsterdam, 2006.
[16] Y. Kuang, Delay di�erential equations: with applications in population dynamics, Vol. 191 of Mathematics in Science and

Engineering, Academic Press, New York, 1993.
[17] Y. Li, Y. Chen and I. Podlubny, Mittag-Le�er stability of fractional order nonlinear dynamic systems, Automatica,

45(2009), 1965-1969.
[18] I. Podlubny, Fractional Di�erential Equations, Academic Press, Mathematics in Science and Engineering, vol. 198. Aca-

demic Press, New York ,1999.
[19] I.A. Rus, Ulam stabilities of ordinary di�erential equations in a Banach space, Carpathian J. Math., 2010, 26, 103�107.
[20] S.M. Ulam, Problems in Modern Mathematics, Science Editions, Chapter 6, Wiley, New York, NY, USA, 1960.
[21] S.M. Ulam, A Collection of Mathematical Problems, Interscience Publishers, New York, 1968.
[22] J. Wang, L. Lv and Y. Zhou, Ulam stability and data dependence for fractional di�erential equations with Caputo derivative,

Electron. J. Qual. Theory Di�er. Equ., 63, (2011) 1�10.
[23] H.Ye, J. Gao, Y. Ding, A generalized Gronwall inequality and its application to a fractional di�erential equation, J.Math.

Anal. Appl., (2007), 328, 1075�1081.


	1 Introduction
	2 Preliminaries
	3 Main Results
	3.1 Existence and uniqueness results
	3.2 Continuous dependence upon the initial data
	3.3 Ulam-Hyers stability


